[W6] - Learning in games from a stochastic approximation viewpoint

P. Mertikopoulos, Y.-P. Hsieh, and V. Cevher. Working paper.


We develop a unified stochastic approximation framework for analyzing the long-run behavior of multi-agent online learning in games. Our framework is based on a “primal-dual”, mirrored Robbins–Monro (MRM) template which encompasses a wide array of popular game-theoretic learning algorithms (gradient methods, their optimistic variants, the EXP3 algorithm for learning with payoff-based feedback in finite games, etc.). In addition to providing an integrated view of these algorithms, the proposed MRM blueprint allows us to obtain a broad range of new convergence results, both asymptotic and in finite time, in both continuous and finite games.

arXiv link: https://arxiv.org/abs/2206.03922

Nifty tech tag lists from Wouter Beeftink