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Abstract—The joint fluctuations of the extreme eigenvalues and
eigenvectors of large sample covariance matrices of the spiked-
model type are analyzed. This result is used to develop an original
framework for the diagnosis of local failures in sensor networks,
corroborated by simulations.

I. INTRODUCTION

One of the elementary requests for fault diagnosis is the
fast, reliable and computationally light identification of a
system failure. In dynamical scenarios, those systems are made
of fluctuating parameters whose evolutions are tracked by a
noisy sensor measures, which become increasingly difficult
to fast process in recent large networks. In this article, we
concentrate on off-line diagnosis of local failures. We wish
the diagnosis to be fast so we assume that the number n of
successive sensor reports is not large compared to the size
N of the network. We also assume the hypothetical failure
scenarios known in advance. Calling H0 the hypothesis that
the system is not in failure and Hk, 1 ≤ k ≤ K, the
hypothesis that a failure of type k occurs, we need to: (i)
decide whether the observation Σ = [s1, . . . , sn] ∈ CN×n of
n successive sensor reports suggests H0 or its complementary
H̄0 (the event union of the Hk), and (ii) upon decision of
H̄0, decide which Hk is the most likely. Both problems are
optimally solved by multi-hypothesis Neyman-Pearson tests
with maximum likelihood performance given Σ but these tests
are computationally intense for large systems.

The approach we follow is based on large dimensional
random matrix theory and assumes N,n → ∞ and cN =
N/n → c, with 0 < c < ∞. In this context, we develop
asymptotic results on the extreme eigenvalues and associated
eigenvector projections of a certain family of random matri-
ces, in order to provide novel subspace methods for failure
diagnosis. Our interest is on random matrices Σ modeled
as Σ = (IN + P )

1
2X (called spiked model), where X is

a left-unitarily invariant random matrix and P is a rank-r
Hermitian matrix with r � N . Such matrix models have been
largely studied recently, often in the special case where X is
a standard Gaussian matrix, i.e. with independent CN(0, 1/n)
entries [2], [3], [4], [1]. The main result of this article is an
expression of the joint fluctuations of the extreme eigenvalues
and associated eigenspace projections.

Notations: Uppercase characters stand for matrices, with ‖·‖
the spectral norm. Lowercase characters stand either for scalars
or vectors, with ‖ · ‖ the Euclidean norm. The symbol (·)∗
denotes complex transpose. We denote C+ = {z ∈ C, =(z) >

0}. The notations ‘ a.s.−→’, ‘⇒’, and ‘ P−→’ denote convergence
almost sure, weak, and in probability, respectively.

II. DETECTION AND LOCALIZATION OF LOCAL FAILURES

To motivate our study, we first introduce two examples of
sensor network failure scenarios, which can be modeled as
small rank perturbations of the identity matrix.

A. Node failure

Consider the model

y = Hθ + σw (1)

where H ∈ CN×p is deterministic, θ = [θ(1), . . . , θ(p)]T ∈
Cp, w ∈ CN have independent and identically distributed
(i.i.d.) complex standard Gaussian entries, and σ > 0. We
denote y = [y(1), . . . , y(N)]T ∈ CN . In a sensor network
composed of N nodes, y represents the observation through
the channel H of the vector θ, constituted of independent
Gaussian system parameters, impaired by white noise. There-
fore, E[yy∗] = HH∗ + σ2IN , R.

In case of failure of sensor k, y(k) (kth entry of y)
will return inconsistent noisy outputs. Assuming this noise
Gaussian with zero mean and variance σ2

k and denoting y′

the modified observations of the network

y′ = (IN − eke∗k)Hθ + σkeke
∗
kθ
′ + σw

where θ′ is distributed like θ, ek(k) = 1 and ek(i) = 0, i 6= k.
We therefore now have that y′ is Gaussian with zero mean
and variance

E[y′y′∗] = (IN − eke∗k)HH∗(IN − eke∗k) + σ2
keke

∗
k + σ2IN .

Denoting s = R−
1
2 y′, we have E[ss∗] = IN + Pk with

Pk , R−
1
2 ek

[
(e∗kHH

∗ek + σ2
k)e∗kR

− 1
2 − e∗kHH∗R−

1
2

]
−R− 1

2HH∗eke
∗
kR
− 1

2 . (2)

Therefore, E[ss∗] is a perturbation of the identity matrix by
Pk, whose image is included in Span(R−

1
2 ek, R

− 1
2HH∗ek)

of dimension at most two.

B. Sudden parameter change

Consider again (1) and now assume that θ(k) experiences
a sudden change in mean and variance, so y′ is now

y′ = H(Ip + αkeke
∗
k)θ + µkHek + σw

for some µk, αk ∈ R, and ek ∈ Cp defined as above. The
signal y′ is now Gaussian with zero mean and variance

E[y′y′∗] = H(Ip + [µ2
k + (1 + αk)2 − 1]eke

∗
k)H∗ + σ2IN .
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Denoting R = HH∗ + σ2IN and taking s = R−
1
2 y′, we

then have E[ss∗] = IN + Pk where Pk = [µ2
k + (1 + αk)2 −

1]R−
1
2Heke

∗
kH
∗R−

1
2 of unit rank.

The derivations above generalize naturally to sudden
changes of multiple parameters.

C. Detection and localization

For models as above, assume a general scenario with K
possible failure events, let s1, . . . , sn be n successive inde-
pendent observations of the random variable s and denote
Σ , 1√

n
[s1, . . . , sn] ∈ CN×n. We take s Gaussian with zero

mean and covariance (IN +Pk) for a certain k ∈ {1, . . . ,K},
so we can write Σ = (IN + Pk)

1
2X where X ∈ CN×n is a

given matrix with independent CN(0, 1/n) entries.
Since the failure information is carried by Pk, we derive

in the following a likelihood test relying on the properties
linking Pk to Σ, for large N,n. Precisely, we develop a two-
step approach to: (i) decide on the occurrence of a failure and
(ii) identify the failure, relying on the asymptotic statistics of
the eigenstructure of ΣΣ∗.

III. MAIN RESULTS

A. Notations, assumptions and basic results

We first summarize our notations. We define Σ = (IN +
P )

1
2X with X ∈ CN×n left-unitarily invariant, and P

Hermitian of rank-r with spectral factorization P = UΩU∗,
Ω = diag (ω1Ij1 , . . . , ωtIjt), ω1 > . . . > ωs > 0 > ωs+1 >
. . . > ωt > −1. Accordingly, U =

[
U1 · · ·Ut

]
, Ui ∈ CN×ji .

We denote λ̂1 ≥ · · · ≥ λ̂N the eigenvalues of ΣΣ∗. For
i ∈ {1, . . . , s}, let K(i) = j1 + · · · + ji−1, with j0 = 0. For
i ∈ {s+1, . . . , t+1}, let K(i) = N−(ji+. . .+jt). Also denote
Π̂i the orthogonal projection matrix on the eigenspace of
ΣΣ∗ associated with the eigenvalues {λ̂K(i)+`}ji`=1. Similarly,
denote Πi = UiU

∗
i the orthogonal projection matrix on the

eigenspace of P associated with ωi. Finally, let Q(z) ,
(XX∗ − zIN )−1 and α(z) = 1

N trQ(z). We consider the
asymptotic regime where n,N → ∞ and N/n → c ∈ (0, 1),
denoted simply by n→∞.

We now state our basic assumptions:
A1 The probability law of X is invariant by left multi-

plication by a deterministic unitary matrix.
A2 For z ∈ C+, α(z)

a.s.−→ m(z), the Stieltjes transform1

of a measure π with support [a, b] ⊂ (0,∞).
A3 We have ‖XX∗‖ a.s.−→ b and (‖(XX∗)−1‖)−1 a.s.−→ a.

Assumption A3 implies that A2 holds also for z ∈ C \ [a, b].
The classical model satisfying A1-A3 is for standard Gaus-

sian X , i.e. with independent CN(0, 1/n) entries, as in the
system models of Section II, for which the limiting distribution
π is the Marc̆enko-Pastur distribution with Stieltjes transform

m(z) =
1

2zc

(
1− c− z +

√
(1− c− z)2 − 4zc

)
(the square root is such that m(z) ∈ C+ if z ∈ C+).

The unitary invariance of X implies the important lemma:

1We recall that the Stieltjes transform m(z) of a real measure π is defined
for z outside the support of π by m(z) =

∫
1

λ−z dπ(λ).

Lemma 1 ([6]): Assume A1. Let u, v ∈ CN of unit norm,
σ(XX∗) the eigenvalue spectrum of XX∗. For ε > 0, z ∈
C\ [a−ε, b+ε], denote dz the distance from z to [a−ε, b+ε]
and AN = {σ(XX∗) ⊂ [a− ε, b+ ε]}. Then, for p > 0,

E ‖1AN
u∗(Q(z)− α(z)IN )v‖p ≤ Kpd

−p
z

Np/2

where Kp depends on p only, and, for z, z′ ∈ C\ [a−ε, b+ε],

E‖1Anu
∗(Q(z)Q(z′)− 1

N
trQ(z)Q(z′)IN )v‖p ≤

Kpd
−p
z d−pz′

Np/2
.

We now introduce our main results and outlines of proofs.

B. First order behavior

1) Eigenvalues: We first write

det(ΣΣ∗ − xIN )

= det(IN + P ) det(XX∗ − xIN + x[IN − (IN + P )−1])

= det(IN + P ) detQ(x) det(IN + xP (IN + P )−1Q(x)).

If x is an eigenvalue of ΣΣ∗ but not of XX∗, it must cancel:

det(IN + xP (IN + P )−1Q(x))

= det(Ir + xΩU∗(IN + UΩU∗)−1Q(x)U).

Denote Ĥ(z) = Ir + zΩ(Ir + Ω)−1U∗Q(z)U . Then under
A1-A3, Ĥ(z)

a.s.−→ H(z) = Ir + zm(z)Ω(Ir + Ω)−1 for z ∈
C \ [a, b] (from Lemma 1). We therefore expect the solutions
of detH(x) = 0 outside [a, b] to coincide with the limits of
the isolated eigenvalues of ΣΣ∗, that is the solutions of

h(ρ) + (1 + ωk)ω−1
k = 0 (3)

with h(x) = xm(x), for some k ∈ {1, . . . , p, q, . . . , t}.
Theorem 1 ([7]): Assume A1-A3. Let p be zero or the max-

imum index such that ωp > 0 and h(b+) + (1 + ωp)ω
−1
p < 0,

and q be t + 1 or the minimum index such that ωq < 0 and
h(a−) + (1 + ωq)ω

−1
q > 0. For i = 1, . . . , p, let ρi be the

unique solution of (3) such that ρi > b. Then

λ̂K(i)+`
a.s.−→ ρi for ` = 1, . . . , ji and λ̂K(p+1)+1

a.s.−→ b.

For i = q, . . . , t, let ρi be the unique solution of (3) such that
ρi < a. Then

λ̂K(i)+`
a.s.−→ ρi for ` = 1, . . . , ji and λ̂K(q)

a.s.−→ a.

The variables ω1, . . . , ωp, ωq, . . . , ωt satisfying the condi-
tions of Theorem 1 are said to satisfy the separation condition.
For X standard Gaussian, Theorem 1 entails:

Corollary 1: Consider the setting of Theorem 1. Assume
additionally that X is standard Gaussian. Let p be zero or the
maximum index for which ωp >

√
c and q be t + 1 or the

minimum index such that ωq < −
√
c. Then

λ̂K(i)+`
a.s.−→ ρi = 1 + ωi + c(1 + ωi)ω

−1
i

λ̂K(p+1)+1
a.s.−→ (1 +

√
c)2

λ̂K(q)
a.s.−→ (1−

√
c)2

for i ∈ {1, . . . p, q, . . . , t} and ` = 1, . . . , ji.
For failure detection purposes, upon observation of Σ, we

may then test the null hypothesis Σ = X (call it hypothesis
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H0) against the hypothesis Σ = (IN + P )
1
2X (call it

hypothesis H̄0), depending on whether eigenvalues of ΣΣ∗

are found outside the support of the Marc̆enko-Pastur law.
However, this information, if sufficient for failure detection
purposes, is not good enough to perform failure localization.
We need for this to consider eigenspace properties of P .

2) Projections on eigenspaces: Given i ≤ t, we now
assume that ωi satisfies the separation condition. Given
b1, b2 ∈ CN with bounded norms, our purpose is to study
the asymptotic behavior of b∗1Π̂ib2. We shall show that this
bilinear form is simply related with b∗1Πib2 in the asymptotic
regime.

Our starting point is to express b∗1Π̂ib2 as a Cauchy integral.
Denoting Ci a positively oriented contour encompassing only
the eigenvalues λ̂K(i)+` of ΣΣ∗ for ` = 1, . . . , ji, we have
after immediate calculus

b∗1Π̂ib2 = − 1

2πı

∮
Ci

b∗1(ΣΣ∗ − zIN )−1b2 dz

= − 1

2πı

∮
Ci

b∗1(IN + P )−
1
2Q(z)(IN + P )−

1
2 b2 dz

+
1

2πı

∮
Ci

â1(z)∗Ĥ(z)−1â2(z) dz.

where â1(z)∗ = zb∗1(IN + P )−
1
2Q(z)U and â2(z) = Ω(Ir +

Ω)−1U∗Q(z)(IN+P )−
1
2 b2. By Assumption A3 and Theorem

1, with probability one for all large n, the first term on the
right hand side is zero, while the second is equal to

1

2πı

∮
γi

â1(z)∗Ĥ(z)−1â2(z)dz.

where γi is a deterministic positively oriented circle enclosing
only ρi among the limits of the isolated eigenvalues specified
by Theorem 1, therefore enclosing none of the ρj , j 6= i. Using
Lemma 1 in conjunction with the analyticity properties of the
integrand, one can show that â1(z)∗Ĥ(z)−1â2(z) converges
uniformly to a1(z)∗H(z)−1a2(z) on γi almost surely, where
a1(z)∗ = zm(z)b∗1(IN + P )−

1
2U and a2(z) = m(z)Ω(Ir +

Ω)−1U∗(IN + P )−
1
2 b2. It results that b∗1Π̂ib2 − Ti

a.s.−→ 0,
where

Ti ,
1

2πı

∮
γi

a1(z)∗H(z)−1a2(z)dz.

Details can be found in [6] in a similar situation.
Let us find the expression of Ti. Noticing that
H(z)−1 =

∑t
`=1

[
1 + zm(z)ω`(1 + ω`)

−1
]−1

I` where
I` = diag(0, . . . ,0, Ij` ,0, . . . ,0), we obtain

Ti =

t∑
`=1

ω`
(1 + ω`)2

b∗1Π`b2
1

2πı

∮
γi

zm2(z)

1 + zm(z) ω`

1+ω`

dz

=

t∑
`=1

b∗1Π`b2
1 + ω`

1

2πı

∮
γi

zm2(z)
1+ω`

ω`
+ zm(z)

dz.

Applying the residue theorem and observing from (3) that (1+
ωi)
−1 = (1 + h(ρi))h(ρi)

−1, we obtain the following limits.
Theorem 2: Assume A1-A3. Given i ≤ t, assume that ωi

satisfies a separation condition. Let b1 ∈ CN and b2 ∈ CN

be two sequences of increasing size deterministic vectors with
bounded Euclidean norms. Then

b∗1Π̂ib2 − ζib∗1Πib2
a.s.−→ 0

where ζi = m(ρi)(1 + h(ρi))(h
′(ρi))

−1.
Corollary 2: Let X be standard Gaussian, then Theorem 2

holds with ζi = (1− cω−2
i )(1 + cω−1

i )−1.
Theorem 4 and Corollary 4 provide an interesting charac-

terization of the eigenspaces of P through limiting projections
in the large dimensional setting. In the context of local failure
in large sensor networks, it is therefore possible to detect and
diagnose one or multiple failures by comparing eigenspace
projection patterns associated with each failure type. To this
end though, not only first order limits but also second order
behaviour need be characterized precisely.

C. Second order behavior

Before studying the fluctuations of λ̂K(i)+`, ` = 1, . . . , ji,
when ωi satisfies the separation property, we first remind for
later use the fluctuations of λ̂K(i)+` when ωi does not satisfy
the separation property, and when X is a standard Gaussian
matrix. For this, we have the following theorem [4].

Theorem 3: Let X be standard Gaussian. If 0 < ωi <
√
c,

N
2
3 (1 +

√
c)−

4
3 c−

1
2 (λ̂K(i)+` − (1 +

√
c)2)⇒ T2

and, if −
√
c < ωi < 0,

−N 2
3 (1−

√
c)−

4
3 c−

1
2 (λ̂K(i)+` − (1−

√
c)2))⇒ T2

for ` = 1, . . . , ji, as n→∞, where T2 is the complex Tracy-
Widom distribution function [8].

The tools used to derive Theorem 3 are different from those
exploited here and are not discussed. For failure diagnosis
purposes, Theorem 3 will be used to declare a failure prior to
locate it. To locate the fault, second order statistics of both
eigenvalue and eigenspace projections when the separation
property arises are needed.

In contrast to above, we now assume that ωi satisfies the
separation property. We first need additional assumptions:

A4 For z ∈ C \ [a, b],
√
N (α(z)−m(z))

P−→ 0.
This assumption is satisfied by most models of practical
importance in our context, provided

√
N(cN − c) → 0. For

simplicity, we also assume:
A5 Each ωi, 1 ≤ i ≤ t, satisfies the separation condition.
The main result of this section is the following theorem.
Theorem 4: Assume A1-A5. For i = 1, . . . , t, we denote

Li,n =
√
N
[
λ̂K(i)+1 − ρi, . . . , λ̂K(i)+ji − ρi

]T
Vi,n =

√
NU∗i

(
Π̂i − ζiIN

)
Ui.

For ρ ∈ R \ [a, b], let

D(ρ) ,

[
h(ρ)(1+h(ρ))h′′(ρ)

h′(ρ)3 −h(ρ)(1+h(ρ))
h′(ρ)2

− ρ
h′(ρ) 0

]

R(ρ) ,

[
m′(ρ)−m(ρ)2 m′′(ρ)/2−m(ρ)m′(ρ)

m′′(ρ)/2−m(ρ)m′(ρ) m(3)(ρ)/6−m′(ρ)2

]
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Fig. 1. Empirical and theoretical distribution of the fluctuations of û1 with
r = 1, X has i.i.d. zero mean variance 1/n entries, N/n = 1/8, N = 64
and ω1 = 1.

where m(3) is the third derivative of m. Consider the matrices[
Gi
Ki

]
,
(

(D(ρi)R(ρi)D(ρi)
∗)

1/2 ⊗ Iji
)[M1,i

M2,i

]
where M1,1,M2,1, . . . ,M1,t,M2,t are independent GUE ma-
trices with M1,i,M2,i ∈ Cji×ji . Let Li be the Rji -valued
vector of eigenvalues of Ki arranged in decreasing order. Then

((Vi,n, Li,n))
t
i=1 ⇒ ((Gi, Li))

t
i=1 .

When the multiplicities of the eigenvalues of P are all equal
to one, we immediately have the following corollary:

Corollary 3: If ji = 1 for all i, Theorem 4 becomes

((Vi,n, Li,n))i=1,...,r ⇒ N(0, R)

with R = diag(D(ρ1)R(ρ1)D(ρ1)∗, . . . , D(ρr)R(ρr)D(ρr)
∗).

In the standard Gaussian case, we have in particular:
Corollary 4: If X is standard Gaussian, Corollary 3 holds

with D(ρi)R(ρi)D(ρi)
∗ = C(ρi), with

C(ρi) ,

 c2(1+ωi)
2

(c+ωi)2(ω2
i−c)

(
c (1+ωi)

2

(c+ωi)2
+ 1
)

(1+ωi)
3c2

(ωi+c)2ωi

(1+ωi)
3c2

(ωi+c)2ωi

c(1+ωi)
2(ω2

i−c)
ω2

i

 .
In Figure 1, the histogram of a simulation of 10 000 re-

alizations of the projection V1,n =
√
N(|û∗1u1|2 − ζ1), with

u1 = U1 ∈ CN , û1û
∗
1 = Π̂1 of unit rank, and X standard

Gaussian, is depicted against the asymptotic Gaussian law
derived in Corollary 4, for c = 1/8, r = 1, N/n = 1/8,
N = 64 and ω1 successively equal to 1.

We now sketch the proof of Corollary 3. Theorem 4 is
more difficult to treat using the contour integration method
and requires other approaches mimicking [9]. Using residue

calculus, we first find

Li,n−
[
− ρi
h′(ρi)

u∗i (m(ρi)−Q(ρi))ui

]
a.s.−→ 0

Vi,n−
[
h(ρi)(1 + h(ρi))h

′′(ρi)

h′(ρi)3
u∗i (m(ρi)−Q(ρi))ui

−h(ρi)(1 + h(ρi))

h′(ρi)2
u∗i (m

′(ρi)−Q′(ρi))ui
]

a.s.−→ 0

It then suffices to study the joint fluctuations of u∗i (m(ρi) −
Q(ρi))ui and u∗i (m

′(ρi) − Q′(ρi))ui. For this, we have the
following lemma, proved in [10] (and generalized to ji > 1):

Lemma 2: Assume A1-A4, and ji = 1. Let f1, . . . , ft and
g1, . . . , gt be real functions analytical on a neighborhood of
[a, b]. Let Sn be the t-uple of random matrices

Sn =

(√
N

[
u∗i fi(XX

∗)ui −
(∫
fi(λ)dπ(λ)

)
u∗i gi(XX

∗)ui −
(∫
gi(λ)dπ(λ)

)])t
i=1

.

For i = 1, . . . , t, define the covariance matrices

Ri =

∫ ([
fi −

∫
fidπ

gi −
∫
gidπ

] [
(fi −

∫
fidπ) (gi −

∫
gidπ)

])
dπ.

Then
Sn ⇒ N(0,diag(R1, . . . , Rt)).

Applying this lemma with with fi(λ) = (λ − ρi)
−1 and

gi(λ) = (λ − ρi)
−2, Ri takes the value R(ρi) provided in

the statement of Theorem 4. An immediate application of the
delta method then gives the final result.

IV. APPLICATION

Recall that we assume a number K of failure scenarios
indexed by 1 ≤ k ≤ K. Scenario k is modelled by Σ =
(IN + Pk)

1
2X with Pk =

∑tk
i=1 ωk,iUk,iU

∗
k,i of rank rk =∑tk

i=1 jk,i, where Uk,i ∈ CN×jk,i and ωk,1 > . . . > ωk,sk >
0 > ωk,sk+1 > . . . > ωk,tk , and X is standard Gaussian. We
also call pk the smallest index i such that ωk,i >

√
c (or zero),

and qk the largest index i such that ωk,i < −
√
c (or tk + 1).

A. Detection algorithm

The detection phase relies on Theorem 3. We decide here
between H0 and H̄0. For simplicity, assume that all Pk
only have non-negative eigenvalues. From Theorem 1, the
largest eigenvalue λ̂1 of ΣΣ∗ tends to (1 +

√
c)2 under

H0, while λ̂1 is larger than (1 +
√
c)2 under H̄0 if ωk,1

exceeds
√
c. We assume that ωk,1 >

√
c is verified for all

k. That is, we assume that cN , N/n < c+ where c+ ,
inf {c | ωk,1 >

√
c, 1 ≤ k ≤ K }. This condition allows for

a theoretically almost sure error detection, as N,n → ∞.
The test consists in rejecting H0 if its posterior probability
is sufficiently low. That is, for a given acceptable false alarm
rate η, the statistical test is defined as

λ̂′1
H0

≶
H̄0

(T2)−1(1− η) (4)

where λ̂′1 , N
2
3 (1 +

√
cN )−

4
3 c
− 1

2

N (λ̂1 − (1 +
√
cN )2). This

generalizes naturally to scenarios where eigenvalues of Pk may
be of arbitrary sign, see [10].
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Fig. 2. Network of N = 10 sensors. The correlation E[y(i)∗y(j)], i 6= j,
is read on link (i, j), and E[|y(i)|2] is shown in parentheses.

B. Localization algorithm

We now wish to diagnose the identified failure. Similar
to the previous sections, we denote ρk,i = 1 + ωk,i +
c(1 + ωk,i)ω

−1
k,i and ζk,i = (1− cω−2

k,i )(1 + cω−1
k,i )
−1, we de-

fine the mapping Kk to be such that Kk(i) = jk,1+. . .+jk,i−1

if 1 ≤ i ≤ sk, and Kk(i) = N−(jk,1 + . . .+jk,tk) if sk+1 ≤
i ≤ tk. Finally, we denote Π̂k,i any projector on the subspace
generated by the eigenvalues λ̂Kk(i)+1, . . . , λ̂Kk(i)+jk,i

.
Since different Pk’s have in general distinct eigenspaces,

we propose the following subspace localization test, which
decides on the hypothesis Hk? for which k? is given by

k? = arg max
k∈S

P
((
V ki,n, L

k
i,n

)
i∈L(pk,qk)

)
(5)

with L(pk, qk) = {1, . . . , pk, qk, . . . , rk}, S the set of indexes
k such that L(pk, qk) is non-empty, and where

Lki,n ,
√
N
[
λ̂Kk(i)+1 − ρk,i, . . . , λ̂Kk(i)+jk,i

− ρk,i
]T

V ki,n ,
√
NU∗k,i

(
Π̂k,i − ζk,iIjk,i

)
Uk,i.

We need here to specify the indexation i ∈ L(pk, qk) since we
do not assume A5 for any k. From Theorem 4, this probability
can be approximated for large n. When the ωk,i all have
multiplicity one, Corollary 4 gives the following estimator

k̂ = arg max
k∈S

∏
l∈L(pk,pk)

f
(
(V ki,n, L

k
i,n);C(ρk,i)

)
(6)

where f(x; Ω), x ∈ Cm, Ω ∈ Cm×m, is the m-variate real
normal density of zero mean and covariance C at x, and
C(ρk,i) is defined as in Corollary 4, with ωi replaced by ωk,i.

C. Simulations

Our application example relates to the sensor network model
y = Hθ + σw of Section II-A for N = 10 nodes, p = N ,
and σ2 = −20 dB. This is depicted in Figure 2, where
the entries of HH∗ + σ2IN are presented. We also take
σ2
k =

∑N
i=1(HH∗)ki. In this context, it appears that, for

all k, ωk,1 � |ωk,2|. We therefore only consider the largest
eigenvalue of ΣΣ∗ to perform the failure diagnosis. The
theoretical threshold for cN = N/n (if N,n were large) is
0.8 with the worst-case failure being on node 10. We carry
out 100 000 Monte Carlo simulations of node 10 failures for
n varying from 8 to 140 and under false alarm rates varying
from 10−2 to 10−4. This is depicted in Figure 3, where we
observe that detection becomes possible for n = 8. For not
too large n, while detection rates increase, we observe that
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Fig. 3. Correct detection (CDR) and localization (CLR) rates for different
false alarm rates (FAR) and different n.

localization capabilities are still unsatisfying, which is mainly
due to the inappropriate fit of the large dimensional model
with N = 10. This is corrected for larger n.

V. CONCLUSION

The joint fluctuations of the extreme eigenvalues and corre-
sponding eigenspace projections of spiked random matrices
are evaluated and used to develop novel failure diagnosis
algorithms in large sensor networks. The minimal number
of observations required is evaluated and simulations are
provided that suggest the algorithms allow for high failure
diagnosis performance even in small size networks.
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