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Abstract. Motivated by applications to deep learning which often fail standard Lips-
chitz smoothness requirements, we examine the problem of sampling from distributions
that are not log-concave and are only weakly dissipative, with log-gradients allowed to
grow superlinearly at infinity. In terms of structure, we only assume that the target
distribution satisfies either a Log-Sobolev or a Poincare inequality and a local Lipschitz
smoothness assumption with modulus growing possibly polynomially at infinity. This
set of assumptions greatly exceeds the operational limits of the “vanilla” ULA, making
sampling from such distributions a highly involved affair. To account for this, we intro-
duce a taming scheme which is tailored to the growth and decay properties of the target
distribution, and we provide explicit non-asymptotic guarantees for the proposed sampler
in terms of the KL divergence, total variation, and Wasserstein distance to the target
distribution.

1. Introduction

A broad array of modern and emerging machine learning architectures relies on being able
to sample efficiently from a target distribution π on Rd, typically expressed in Gibbs form
as π(x) ∝ exp(−u(x)) for some potential function u : Rd → R. Under suitable assumptions
for u, this distribution arises naturally as the invariant measure of the Langevin stochastic
differential equation

dXt = −∇u(Xt) dt+
√
2 dBt (LSDE)

where Bt is a canonical Wiener process (Brownian motion) in Rd with unit volatility. Based
on this key property of (LSDE), one of the most – if not the most – widely used algorithmic
schemes for sampling from π is the so-called unadjusted Langevin algorithm (ULA), given in
recursive form as

θULA
n+1 = θULA

n − λh
(
θULA
n

)
+
√
2λξn+1 (ULA)

where θn ∈ Rd, n = 1, 2, . . . , is the algorithm’s state variable, ξn is an independent and
identically distributed (i.i.d.) sequence of standard d-dimensional random variables with
unit covariance, λ > 0 is a step-size parameter, and h := ∇u denotes the gradient of u.
The idea behind (ULA) is that θULA

n can be seen as an Euler-Maruyama discretization of
(LSDE) so, for sufficiently large n and small enough λ, θULA

n will be distributed according to
some approximate version of the invariant measure of (LSDE), which is precisely the target
distribution π.

This simple idea has generated a vast corpus of literature and techniques for proving the
non-asymptotic convergence rate of (ULA) in different probability metrics, the most popular
ones being the Wasserstein and total variation distances, as well as the Kullback–Leibler (KL)
and/or Rényi divergence. Much of this literature has focused on the case where the target
distribution π is log-concave and has Lipschitz continuous log-gradients, corresponding
respectively to convexity and Lipschitz smoothness of the potential u; for some representative
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recent works, see Dalalyan [12], Durmus & Moulines [13, 14], Barkhagen et al. [5] and
references therein.

Beyond these works, especially when the target distribution is multimodal, there has
been significant effort to relax the (strong) convexity requirement for u by means of a
combination of “convexity at infinity” and “dissipativity” assumptions – that is, convexity
outside a compact set, and a drift coercivity condition of the form ⟨h(x), x⟩ = Ω(|x|2) for
the drift h = ∇u of (LSDE) respectively, cf. Cheng et al. [10], Majka et al. [23], Erdogdu
et al. [16], as well as a recent thread of results on the related stochastic gradient Langevin
dynamics (SGLD) scheme by Raginsky et al. [30], Chau et al. [9] and Zhang et al. [34].

At the same time, building on an important insight of Vempala & Wibisono [33], a
parallel thread in the literature has explored at depth the role of isoperimetric inequalities in
establishing the (rapid) convergence of (ULA) when the potential of π is Lipschitz smooth,
either via the use of a logarithmic Sobolev inequality (LSI) in the case of Mou et al. [26] and
Chewi et al. [11], or a Poincaré inequality (PI) in the case of Balasubramanian et al. [4],
and even weaker inequalities in Mousavi-Hosseini et al. [27] possibly reducing the degree of
smoothness to (global) Hölder continuity of the drift of (LSDE), cf. Nguyen et al. [29] and
Erdogdu & Hosseinzadeh [15],Mousavi-Hosseini et al. [27].

Our contributions in the context of related work. Our paper seeks to bridge these branches
of the sampling literature – the relaxation of global Lipschitz smoothness requirements and
the relaxation of convexity requirements via the use of isoperimetric inequalities – and, in so
doing, to bring together the best of both worlds. Specifically, motivated by applications to
the optimization and sampling of deep learning models (which are notoriously non-Lipschitz),
we seek to answer the following question:

How to sample efficiently in the absence of log-concavity and linear gradient growth
properties? Can one derive bounds in different distances with weaker assumptions?

This is a difficult setting for sampling because, as has been noted in several works, both
(ULA) and its SGLD variants may be highly unstable in such scenarios; in particular, when
the drift coefficient of (ULA) exhibits superlinear growth, the Euler-Marauyama scheme –
which forms the core component of (ULA) – diverges in a very strong sense. A key result in
this direction was obtained by Hutzenthaler et al. [17] who showed that the difference of the
exact solution of a stochastic differential equation (SDE) and its numerical approximation,
diverges to infinity in the strong mean square sense, even at a finite point in time. This
negative result has shown that superlinear growth of the drift coefficient directly results in a
blow-up of the moments of the numerical approximation scheme used to generate samples,
which thus explains the failure of these algorithms.

Providing an efficient work-around to this issue is not easy, and one needs to explore
the roots of (ULA) for a possible answer – specifically, going all the way back to the initial
observation that (ULA) is an Euler-Maruyama numerical apporximation scheme for the
trajectories of (LSDE), and using the theory of numerical solutions of SDEs to explore
a different angle of attack. In this regard, a technology tailored to solving SDEs with
superlinearly growing drifts first emerged in the works of Hutzenthaler et al. [18] and Sabanis
[31, 32], revolving around a technique known as “taming”. The idea of these schemes is to
create an adaptive Euler scheme with a new drift coefficient µλ which is a “tamed”, rescaled
version of the original drift, with the step-size of the algorithm appearing in the rescaling
factor, and with the aim of ensuring the following dove-tailing properties:

(P1) µλ has at most linear growth, that is, µλ(x) = O(|x|) for large x.

(P2) µλ converges pointwise to µ in the limit λ→ 0.
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Convexity Dissipativity

Brosse et al. [7] strongly convex (for W2) ⟨x|∇u(x)⟩ ≥ c|∇u(x)||x|
Neufeld et al. [28] convex at infinity (2 + r)-dissipative (r > 0)
Lytras & Sabanis [22] LSI 2-dissipative
Current work PI + WC / LSI 1-dissipative

Table 1: Comparison of convexity and dissipativity assumptions in related works.

KL Divergence Total Variation Wasserstein Constants

Brosse et al. [7] — Õ(1/ε2) Õ(1/ε) [W2] exp(O(d))

Neufeld et al. [28] — — Õ(1/ε2) [W2] exp(O(d))

Lytras & Sabanis [22] Õ(1/ε) Õ(1/ε2) Õ(1/ε2) [W2] poly(d)/CLSI

Current work(under LSI) Õ(1/ε) Õ(1/ε2) Õ(1/ε2) [W2] poly(d)/CLSI

Current work (under PI) Õ(1/ε3) Õ(1/ε6) Õ(1/ε8) [W1] poly(d)/CPI

Table 2: Comparison of convergence rates under different assumptions; factors
that are logarithmic in 1/ε have been absorbed in the tilded Õ(·) notation. The
observed drop relative to the concurrent work of Lytras & Sabanis [22] is due to
the weaker assumptions made in our paper – Poincaré vs. log-Sobolev and weak
dissipativity vs. 2-dissipativity (or higher), cf. Table 1. The constants CLSI and
CPI refer to the (positive) constants that appear in the log-Sobolev and Poincaré
inequalities respectively.

This technique has been applied previously in the setting of Langevin-based sampling in
multiple works under strong dissipativity or convexity assumptions [7; 19], in the stochastic
gradient case [21] under a “convexity at infinity” assumption [28] and, in a concurrent
work, under a logarithmic Sobolev inequality coupled with a 2-dissipativity assumption
[22]. However, even though it is fairly common for distributions with superlinearly growing
log-gradients to satisfy a logarithmic Sobolev inequality, it is not always possible obtain a
bound that remains well-behaved with respect to the dimension – and similar limitations
also hold for the 2-dissipativity condition.

The main contribution of our paper is to provide a bridge between these two worlds
and bring to the forefront the best properties of both: sampling efficiently from potentials
with locally Lipschitz log-gradients that may grow polynomially at infinity, with a drift
coefficient that is only 1-dissipative (instead of 2-dissipative) and a considerably lighter
Poincaré inequality requirement – as opposed to the more rigid framework imposed by the use
of LSIs. Specifically, we propose two novel algorithmic schemes, the weakly dissipative tamed
unadjusted Langevin algorithm (wd-TULA) and the regularized tamed unadjusted Langevin
algorithm (reg-TULA) which allow us to simultaneously treat superlinearly growing drift
coefficients for target distributions satisfying a Poincaré inequality, the former under a weak
convexity (WC) requirement, the latter without. For completeness, we also show that the
proposed taming schemes achieve optimal convergence rates in the presence of stronger LSI
conditions.

To position these contributions in the context of related work, Table 1 summarizes our
paper’s assumptions relative to the most closely related works in the literature, and Table 2
provides a side-by-side comparison of the achieved rates. To the best of our knowledge, the
work closest to our own is the concurrent work of Lytras & Sabanis [22], who provide a tamed
algorithmic scheme achieving an Õ(1/ε) rate of convergence to π in the KL divergence metric
(respectively Õ(1/ε2) in terms of the total variation and Wasserstein W2 distance). Due
to the relaxation from a logarithmic Sobolev inequality to a considerably weaker Poincaré
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inequality, our rates do not match those of Lytras & Sabanis [22] in the case of the KL
and total variation (TV) metrics – where wd-TULA achieves a rate of Õ(1/ε3) and Õ(1/ε6)
respectively, cf. Table 2 (the Wassserstein metrics are otherwise incomparable; see also
Theorem 3 for the rates without any WC requirements). This also applies to the “convexity
at infinity” assumption of Neufeld et al. [28], which has been shown to imply an LSI, and is
thus considerably more stringent than the PI setting of our paper. Importantly, our analysis
still carries a polynomial dependence on the dimensionality of the problem, in contrast to
the analysis of Neufeld et al. [28] where the dependence is exponential. These aspects of our
results are particularly intriguing for future work on the subject, as they open a hitherto
unexplored link between the isoperimetric inequalities, the role of coercivity in the target
distribution in a superlinearly-growing gradient setting.

2. Setup and blanket assumptions

In this section, we provide the necessary groundwork for stating the proposed algorithmic
schemes and our main results.

2.1. Notational conventions. We begin by fixing notation and terminology. Throughout
our paper, |·| denotes the Euclidean norm of a vector, ∥·∥ the spectral norm of matrix; the
Frobenius norm will be denoted by ∥·∥F , and the total variation distance by ∥·∥TV. For
a sufficiently smooth function f : Rd → R, we will write ∇f , ∇2f and ∆f for its gradient,
Hessian matrix, and Laplacian respectively, and J (i)f for its i-th order Jacobian. We also
write Hk for the usual Sobolev space.

For any two probability measures µ, ν on a measurable space Ω with a σ-algebra understood
from the context, we will write dµ/dν for the Radon-Nikodym derivative of µ with respect to
ν when µ is absolutely continuous relative to ν (µ≪ ν). In this case, the Kullback–Leibler
(KL) divergence of µ with respect to ν is defined as

Hν(µ) =

∫
Ω

dµ

dν
log

(
dµ

dν

)
dν. (KL)

We say that ζ is a transference plan of µ and ν if it is a probability measure on Rd × Rd

(endowed with the standard Borel algebra) and we have ζ
(
A× Rd

)
= µ(A) and ζ

(
Rd ×A

)
=

ν(A) for every Borel subset A of Rd. We denote by Π(µ, ν) the set of transference plans
of µ and ν. Furthermore, we say that a couple of Rd-valued random variables (X,Y ) is a
coupling of µ and ν if there exists ζ ∈ Π(µ, ν) such that (X,Y ) is distributed according to ζ.
Finally, for two probability measures µ and ν on Rd, the Wasserstein distance of order p ≥ 1
is defined as

Wp(µ, ν) =

(
inf

ζ∈Π(µ,ν)

∫
Rd×Rd

|x− y|p dζ(x, y)
)1/p

. (1)

2.2. Blanket assumptions. Throughout what follows, we will write π := e−u
/ ∫

e−u for the
target distribution to be sampled, and Lf = ∆f − Γ(u, f) for the infinitesimal generator of
(LSDE), where Γ(f, g) = ⟨∇f |∇g⟩ denotes the carré du champ operator for f, g ∈ H1.

We begin by stating our blanket assumptions for (LSDE):

Assumption 1. The drift h = ∇u of (LSDE) satisfies the following conditions:
(A1) Polynomial Lipschitz continuity:

|h(x)− h(y)| ≤ L′(1 + |x|+ |y|)l
′
|x− y| (PLC)

for some L′, l′ > 0 and for all x, y ∈ Rd
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(A2) Weak dissipativity:
⟨h(x)|x⟩ ≥ A|x|a − b (WD)

for some a ≥ 1, A, b > 0 and for all x ∈ Rd.
(A3) Polynomial Jacobian growth:

max{|h(x)|, ∥J (i)(h)(x)∥} ≤ L(1 + |x|2l) (PJG)

for some L, l > 0 and for all x ∈ Rd.

Of the above, Assumption (A1) posits that h is locally Lipschitz continuous, with the
modulus of Lipschitz continuity (essentially the largest eigenvalue of the Hessian of u) growing
possibly at a polynomial rate at infinity. As such, Assumption (A1) allows us to capture
a very broad spectrum of applications with superlinear Hessian growth (especially in the
context of deep learning landscapes that exhibit polynomial growth with a degree equal to
the depth of the underlying network).

Assumption (A2) is at the core of our analysis, as it enables us to provide moment
bounds that are uniform in time: it is essentially a coercivity assumption, but with a
relaxed exponent relative to the 2-dissipativity framework of other works, which can be
fairly restrictive if the tails of the target distribution are thicker than sub-Gaussians. For
generality, we treat not only the case of 1-dissipative gradients, but all dissipativity exponents
a ≥ 1. In practice, although it is quite possible that 2- dissipativity may hold for a given
distribution, a-dissipativity for a < 2 may be much easier to verify and leverage to produce
more favourable constants A,b.

Finally, Assumption (A3) is a strictly technnical requirement intended to streamline our
presentation when rigorously differentiating under the integral sign – that is, exchanging
the order of integration and time derivatives – in the use of a divergence theorem when
establishing a differential inequality later in our paper.

Our next blanket assumption concerns the target distribution π:

Assumption 2. The target distribution π satisfies a Poincaré inequality (PI) of the form

Varπ(f) :=

∫
Rd

(
f −

∫
Rd

f dπ

)2

dπ ≤ 1

CPI

∫
|∇f |2 dπ (PI)

for some positive constant CPI > 0 and all test functions f ∈ H1(Rd).

This assumption is weaker than the widely used (but more stringent) logarithmic Sobolev
inequality.

Hπ(ν) :=

∫
Rd

f log f dπ ≤ 1

2CLSI

∫
Rd

Γ(f, f)

f
dπ =:

1

2CLSI
Iπ(ν), (LSI)

for some positive constant CLSI > 0 and for every probability measure ν ≪ π with f := dν/dπ.
One should note that PI can be given as a consequence of the weak dissipativity condition
(see [2]). In the case of diffusion processes, the importance of these inequalities lies in
the fact that (PI) implies exponential ergodicity with respect to the χ2 divergence, while
(LSI) implies exponential ergodicity in relative entropy. In particular, by the Bakry–Emery
theorem [1], (LSI) was established for strongly convex potentials and is stable under bounded
pertrubations, Lipschitz mappings and convolutions. It also implies Talagrand’s transporation-
cost inequality: if µ satisfies (LSI), then

W2(µ, ν) ≤
√

2

CLSI
Hµ(ν). (2)

By comparison, (PI) is significantly less stringent than (LSI): to begin, (LSI) implies (PI)
with the same constant but, moreover, (PI) has been shown to hold for dissipative potentials
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where (LSI) fails, and is also stable under pertubations, Lipschitz mappings and convolutions.
It also implies exponential moments of some order i.e., Eµe

q|x| < ∞ whenever µ satisfies
(PI).

Our last assumption concerns the convexity characteristics of the potential u(x) and will
be used only in the case where (PI) is the strongest condition in place.

Assumption 3. u is weakly convex, i.e.,

∇2u(x) ≽ −KI for some K > 0 and for all x ∈ Rd. (WC)

This assumption simply means that the eigenvalues of ∇2u(x) do not become arbitrarily
negative, and is widely used in the numerical approximation of SDEs. For our purposes, we
will mostly use it in the context of the famous HWI inequality

Hπ(ν) ≤
√
Iπ(ν)W2(π, ν) +

K

2
W 2

2 (π, ν) for all π, ν ∈ P2(Rd). (HWI)

To provide a glimpse of the analysis to come, we will develop and examine two novel
taming schemes, one non-regularized and one regularized, that are tailored to the dissipativity
profile of the initial potential, and which cover the following cases:

(1) When the potential satisfies (LSI).
(2) For the non-regularized case: when (LSI) fails and the potential satisfies (PI) along

with (WC).
(3) For the regularized case: when (LSI) fails and the potential only satisfies (PI).

2.3. The failure of the unadjusted Langevin algorithm. Before moving forward with the
development of the taming schemes mentioned above, we conclude this section with a simple
– but not simplistic – 1-dimensional example that satisfies our range of assumptions, but
where the “vanilla” unadjusted Langevin algorithm fails.

Setting u(x) = x3/3 and applying (ULA) with step-size λ and initial condition X0 =
N (0, 4

λ ), we get
Xn+1 = Xn − λX2

n +
√
2λξn+1

Then, since Xn is independent of ξn+1

E[X2
n+1] = E

[
X2

n(1− λXn)
2
]
+ 2λ = EX2

n(1− 2λEXn + λ2EX2
n) + 2λ

using the inequality 1− 2x+ x2 ≥ −1 + 1
2x

2 one obtains

E[X2
n+1] ≥ −EX2

n +
1

2
λ2EX6

n ≥ −EX2
n +

λ2

2

(
EX2

n

)3
+ 2λ

where the last step was obtain by Jensen’s inequality. Applying for n = 0 it is easy to see
that

EX2
1 ≥ (EX2

0 )

(
λ2

2
E(X2

0 )
2 − 1

)
+ 2λ ≥ EX2

0 + 2λ.

Iterating over n yields
EX2

n+1 ≥ EX2
n + 2λn. (3)

We thus see that the second moment of the algorithm’s iterates diverges as n→ ∞, indicating
in this way that (ULA) cannot be used to sample from the target distribution.

3. Tamed schemes and main results

We now proceed to state our tamed algorithmic schemes and main results.
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3.1. Taming without regularization. To streamline our presentation and ease the introduction
of the various components of the analysis, we begin with the case where the eigenvalues of
∇2u do not become arbitrarily negative, i.e., u satisfies the weak convexity assumption (WC).
In this case, we will consider the weakly dissipative tamed unadjusted Langevin algorithm
that iterates as

θ̄λn+1 = θ̄λn − λhλ(θ̄
λ
n) +

√
2λξn+1 for all n = 0, 1, . . . (wd-TULA)

where θ0 is initialized randomly according to a Gaussian distribution π0,1 ξn is an i.i.d.
sequence of Gaussian d-dimensional vectors with unit covariance, and the tamed drift hλ is
given by

hλ(x) =
Ax

(1 + |x|2)1−a/2
+ fλ(x) with fλ(x) =

f(x)

1 +
√
λ|x|2ℓ

(4)

where f(x) = h(x)− Ax
(1+|x|2)1−a/2 and the various constants defined as in Assumption 1.

To connect (wd-TULA) with the existing literature on tamed schemes, we note here that
the majority of taming factors are either of the form h(x)/[1+(λ)c|h(x)|] for c = 1 or c = 1/2
[7], or of the form h(x)/[1 + λc|x|2l−1] [21]. In this regard, the taming scheme (4) is more
intricate: we first split the original gradient drift into a part which has at most linear growth,
and we then proceed to tame the superlinearly growing part. The drift coefficient of this
scheme has the property that it grows at most as |x| a2 (so it grows at most linearly) while
inheriting the dissipativity condition of the initial gradient. For more details, see Lemma A.1.
In this regard, when the potential satisfies a stronger 2-dissipativity condition, we recover
the taming scheme of Lytras & Sabanis [22].

Our main result for (wd-TULA) may then be stated as follows:

Theorem 1. Suppose that Assumptions 1–3 hold and let ρn denote the distribution of the
n-th iterate of (wd-TULA) run with λ < λmax = min{ 1

4(2AC∗+2L+1)2 ,
1

ċ0Hπ(ρ0)
, 2
µ2 } where

the constants are given in the proof of Proposition A.2 and Lemmas A.2, Proposition A.3 .
Then ρn enjoys the convergence guarantee

Hπ(ρn) ≤
(
1− ċ0

2
λ3/2

)n

Hπ(ρ0) +

(
1 +

4c1
c0

)√
λ (5)

where c1 depends polynomially on d and ċ0 is an explicit function of the Poincaré constant CPI

of (PI). In particular, given a tolerance level ε > 0, (wd-TULA) achieves Hπ(ρn) ≤ ε within
n ≥ ċ−1

0 (1 + c1/ċ0)
3 log(2/ε)/ε3 = Θ̃(1/ε3) if run with step-size λ ≤ ε2/[4(1 + 4C1/ċ0)

2].

This theorem ensures that the algorithm converges at a polynomial rate, even in the
absence of (LSI). This is very important in practice as, even if (LSI) holds, it is usually
difficult to derive explicit bounds with nice dependence on the problem’s defining parameters.
More to the point, if (LSI) holds and CLSI is known, the proposed algorithm exhibits optimal
convergence rates, achieving in this way the best of both worlds:

Theorem 2. Suppose that Assumption 1 and (LSI) hold. Let ρn be the distribution of n− th
iterate of the algorithm (wd-TULA). Then, for λ ≤ λmax, we have

Hπ(ρn) ≤ e−
3
2CLSIλ(n−1)Hπ(ρ0) +

Ĉ
3
2CLSI

λ

1The Gaussian requirement could be relaxed by positing that |∇ log π0| and ∥∇2 log π0∥ grow at most
polynomially, but we will not need this level of generality.
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where Ĉ depends polynomially on the dimension with leading term at most O
(
dmax{2,l′+1}(2l+1)

)
.

In particular, given a tolerance level ε > 0, if (wd-TULA) is run with step-size λ ≤ 3ϵCLSI

2Ĉ
,

for n ≥ 2Ĉ
ϵ C

−1
LSI log(

2
ϵHπ(ρ0)) = Θ̃(1/ε) iterations, we have Hπ(ρn) ≤ ϵ.

Theorems 1 and 2 are our main results for (wd-TULA). The proof of both theorems is
fairly arduous and involves a series of intricate steps, so, to streamline our presentation
and facilitate our comparison with the case where (WC) is dropped altogether, we proceed
directly to the regularized version of (wd-TULA) and defer the discussion of the proof of
the theorem to the next section.

3.2. Regularized taming. We consider now the case where the eigenvalues of ∇2u(x) become
arbitrarily negative (i.e., Assumption 3 fails altogether). To account for this negative growth,
we are going to regularize the tamed potential by anchoring it close to the original target.
This will require care to ensure that the new sampling potential satisfies Assumption 3 with a
controllable constant, as well as the corresponding regularity requirements of Assumption 1.

Without further ado, these considerations lead to the regularized potential

ur,λ(x) = u(x) + λ|x|2r+2 (6)

where, with a fair degree of hindsight, the exponent r is chosen so that r > l/2 and
r(2 + l′)/[(r + 1)(2r − l′)] < 1 (a moment’s reflection shows that this is not the empty set).

In view of the above, the regularized taming scheme that we will consider involves rescaling
by the factor (1 +

√
λ|x|2r+1), leading to the regularized drift:

hr,λ(x) =
Ax

(1 + |x|2)1− a
2
+

∇ur,λ(x)−Ax(1 + |x|2)a/2−1

1 +
√
λ|x|2r+1

. (7)

In this way, we obtain the regularized tamed unadjusted Langevin algorithm

x̄λn+1 = x̄λn − λhr,λ(x̄
λ
n) +

√
2λΞn+1 (reg-TULA)

where Ξn is an i.i.d. sequence of Gaussian d-dimensional vectors. Our main result for this
regularized sampling scheme may then be stated as follows:

Theorem 3. Suppose that Assumptions 1 and 2 hold and let ρregn denote the distribution of
the n-th iterate of (reg-TULA) run with λ < λmax,2 := min{λmax,

ln2
R2r+2

2

} where R2 is given
in Lemma A.8. Then ρregn enjoys the convergence guarantee

Hπ(ρ
reg
n ) ≤

(
1− cλ1+

1
r+1+

l
2r−l

)n−1

Hπreg
(ρ0) + (Ĉ/c)λ1−

1
r+1−

l
2r−l + C3λ (8)

where c, C3, Ĉ depend polynomially on d. In particular, if cl,r := r(2+l)
(r+1)(2r−l) , then, for

λ < O
(
ϵ

1
1−cl,r

)
, we have

Hπreg(ρ
reg
n ) ≤ ϵ after n = Θ

(
log(1/ϵ) · ϵ−

1+cl,r
1−cl,r

)
iterations.

4. Proof outline and technical innovations

To give an idea of the main ideas and technical innovations required for the proof of
Theorems 1–3, we provide below a brief roadmap of our proof strategy.

The cornerstone of our approach is the derivation of a differential inequality in the spirit
of Vempala & Wibisono [33]. The tricky part here is that the drift coefficient is not the
original gradient but a tamed one, which yields additional complexity when one tries to
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prove the exchange of integrals and derivatives starting from the Fokker-Planck equation. In
so doing, we ultimately obtain a “template inequality” of the form

d

dt
Hπ(π̂t) ≤ −3

4
Iπ(π̂t) + E|h(θt)− hλ(θkλ)|2 (9)

where π̂t is the continuous-time interpolation of the algorithm.
The first term of the template inequality (9) is connected to the relative entropy via an

isoperimtric inequality, either directly – if (LSI) holds – or by means of another inequality
– under (PI) and (WC). In this last case, the connection is achieved by establishing a
“modified” version of (LSI) as a consequence of (PI) and (HWI). As for the second term
of (9), its contribution can be controlled by the one-step error of the algorithm (by local
Lipschitzness) and the L2 approximation of the tamed scheme to the original gradient at
grid points. A key difficulty here is that these bounds must be uniform in the number of
iterations moment bounds for our algorithm which is obtained by the careful construction of
the tamed coefficient, which satisfies a dissipativity condition.

This is an important novetlyt of our work, as we are able to achieve a uniform-in-time
exponential moment bound for the algorithm, even in the 1− dissipative case (contrary
to other works such as [15] where the moments bounds are not uniform in time or [34]
which leverages a “convexity at infinity” assumption). We achieve this by means of a Herbst
argument for Gaussians (since each iterate is a Gaussian when conditioned to the previous
step), to pass from the conditional expectation of the exponential to the exponential of the
conditional expectation. We then use the contraction structure (which is provided by the
inherited dissipativity of our scheme and the growth of the tamed drift coefficient as given in
Lemma A.1) to create an induction.

In the absence of both (LSI) and (WC), we employ a similar method to sample from the
regularized potential – for which we prove the equivalent of (LSI) – and we then proceed
to compute the KL divergence of the algorithm’s iterates relative to the target distribution.
The main challenge here is to show that the regularized potential also satisfies (PI) with a
constant that is explicitly connected to the Poincaré constant of the original target and is
independent of λ. In general, these are mutually antagonistic properties, which are ultimately
achieved in our case by leveraging the dissipativity properties of the regularized potential to
find a Lyapunov function W such that LW ≤ −θ for some θ > 0 outside of a ball. By using
the inequality for the infinitesimal generator of the Langevin SDE with drift coeffient the
regularized potential, and the fact that, inside said ball, the regularized measure inherits the
Poincaré constant of the original (as a bounded perturbation thereof), and by employing a
variation of a shrewd argument of Cattiaux et al. [8, Proof of Theorem 2.3], we are finally able
to establish (PI) on the whole space. The conditions of 2-dissipativity and weak convexity
are then easier to prove, eventually leading to the upgrade of (PI) to a suitably modified
form of (LSI).

A major obstacle in the above strategy is determining the explicit constants while
simultaneously trying to minimize their dependence on the step-size as much as possible. For
example, one can establish a version of (LSI) for the regularized potential in a more direct
manner, by simply using convexity at infinity, or by a technique similar to Lytras & Sabanis
[22, Corollary 5.4]. However, the version of (LSI) obtained in this would involve a catastrophic
exponential dependence on 1/λ, which would thus render it unusable for deriving finite-time
convergence rates. Albeit (significantly) more involved, our method completely circumvents
the exponential dependence, which in turn enables the polynomial-time convergence rates of
the proposed schemes (and recoups the technical investment described above).

For convenience, we summarize the main steps below, in decreasing order of the assump-
tions made.



10 I. LYTRAS AND P. MERTIKOPOULOS

Case 1: Analysis under (LSI). This case concerns Theorem 2, and the analysis unfolds as
follows:

(1) We prove that the tamed coefficients exhibit linear growth, and inherit the dissipativity
property of the original gradient, cf. Lemma A.1.

(2) We use the properties of the tamed scheme to derive exponential (and subsequently
polynomial) moments for our algorithm, cf. Lemmas A.2 and A.3.

(3) We establish a differential template inequality for the relative entropy between the
continuous-time interpolation of the algorithm and target measure, cf. Corollary 2.
This involves a rigorous treatment of the exchange of derivatives and integrals.

(4) We bound the remaining terms using the local Lipschitz property of ∇u and the
approximation properties of the tamed scheme.

(5) We employ (LSI) to conntect the Fisher information term to the relative entropy, and
we backsolve to produce convergence rates in terms of the KL divergence.

(6) Using Pinsker’s inequality, we obtain a result for total variation distance and by
Talagrand’s inequality for the W2 distance.

Case 2: (PI) and (WC). This case concerns Theorem 1, and the analysis unfolds as follows:
(1) We employ the same scheme to tame ∇u and repeat the first steps as in the proof of

Theorem 2.
(2) Lacking (LSI), our analysis branches out as follows: we use Assumption 3 and (PI) to

produce a different template inequality between the KL divergence and the Fisher
information distance between the continuous-time interpolation of the algorithm and
target measure (Proposition A.2).

(3) We backsolve the derived differential inequality to produce non-exponential conver-
gence rates relative to the KL divergence, cf. Proposition A.3 and Theorem 6.

(4) Finally, by using Pinsker’s inequality and the exponential moments of our alogirthm
and the bound in relative entropy, we are able to derive bounds TV and W1 distance
under (PI), cf. Corollary 3.

Case 3: (PI) only. This case concerns Theorem 3, and the analysis unfolds as follows:
(1) We introduce a regularized potential to sample from, and we show that it has a range

of desirable properties as described in Lemma A.1.
(2) We use the same scheme to tame the gradient of the regularized potential and, through

similar arguments, we derive exponential (and polynomial) moments for (reg-TULA).
(3) We show that the regularized measure satisfies a version of (PI), cf. Lemma A.8,

and this inequality can be upgraded to a version of (LSI) with manageable constants
(Proposition A.4).

(4) We branch back to the analysis using (LSI) to sample from the regularized potential,
and we use the relation between the regularized and the original one to derive the
algorithm’s convergence rate, as outlined in Theorem 7.

(5) Using Pinsker’s and Talagrand’s inequalities, we convert these bounds to TV and W2

(Corollary 4).
The details of all the above are provided in full in the paper’s appendix.

5. Numerical Experiments

We proceed by providing some numerical experiments that validate our results. The
focus of our attention will be the invariant measure π generated by the double-well potential
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Figure 1: Performance of (wd-TULA) compared to TULA (left and right respec-
tively); lower values are better.

u = (|x|2 − 1)2. Since ∇u = 4x(|x|2 − 1) one easily observes that the potential satisfies
our smoothness and dissipativity assumptions. Since the 1-dissipativity holds one can also
deduce a Poincare inequality for the potential. Finally, it is immediate to see that the
potential satisfies a convexity at infinity assumption, which of course is way stronger that
our weak convexity assumption. For explicit calculations the interested reader can point to
[28]. We perform the experiment for our algorithm for 106 iterations and 105 samples for
100 independent iterations. The dimension is d = 100 and we start the algorithm from a
constant where every coordinate is zero, but the first coordinate is 200. We should note that
starting from a constant doesn’t contradict our analysis as we can still perform the analysis
of the algorithm starting from the result of the 1st iteration which is a Gaussian. When one
runs ’vanilla’ ULA for stepsize={0.1, 0.01} all experiments show that the algorithm explodes
(the moments exceed the infinity value of the computer) so the need to use an alternative
becomes apparent. Here we present a boxplot which describes the the second moment of the
first coordinate for different values. The second moment of each coordinate is given by

E
[
X2

i

]
= d−1

∫
R+

r2ν(r)dr/

∫
R+

ν(r)dr, ν(r) = rd−1 exp
{(
r2/2

)
−
(
r4/4

)}
and is estimated by a random walk of 107 samples as E[X2

i ] = 0.104. The figure below shows
the behaviour of the algorithm for different stepsizes. One can see that the for stepsize={0.1,
0.01} the error is of order 10−1 while for stepsize =0.001 the error is of order 10−2.

We also present a similar figure for the well-known TULA algorithm devoleped in [7]. We
can see that the TULA algorithm is not as efficient as wd-TULA for large stepsize as it gives
an error of approximately 1.1 but performs better for stepsize 0.1 (gives error of order 10−2)
and similarly to wdTULA for λ = 0.001.

A. Preliminary steps and lemmas

A.1. Moment bounds for (wd-TULA). In order to prove the moment bounds for our algo-
rithm, the following properties of our the tamed coeffient will play a pivotal role.

Lemma A.1. For all x ∈ Rd, we have

⟨hλ(x), x⟩ ≥ A1|x|a −B1 (A.1)

where A1 = A/2 and B1 = max{A1, B}. In addition, we have

|hλ(x)|2 ≤ 4A2|x|a + 2L2/λ+ 4A2 for all x ∈ Rd. (A.2)
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Proof. Postponed to the proof section. ■

Lemma A.2. Let M :=
(
2(2d+ 4A2 + 2L2 +A)

) 1
a and µ = AaMa

16(1+M2)1−
a
2
. Let Vµ(x) =

eµ(1+|x|2)
a
2 . There holds, for λ < min{1, A4 ,

2
µ2 }

sup
n

EVµ(θ̄λn) ≤ Cµ

where Cµ ≤ O(eµd).

Proof. Postponed to the Appendix. The main tools used in the proof is the fact that
conditionally on the previous step the algorithm is a Gaussian distribution and therefore
satisfies a Log-Sobolev. We proceed our proof by using the fact that the function f(x) =
|x|/(1 + |x|2) is 1-Lipschitz and we proceed using Herbst argument. The dissipativity and
growth condition of our scheme enables to control the key quantity |x− hλ(x)|2. ■

Lemma A.3. Let p ∈ N. There holds

sup
n

|θ̄λn|2p ≤ Cp

where Cp ≤ O(dp) + 2p.

A.2. Establishing a key differential inequality regarding KL- divergence. The goal of this
Section is to establish a differential inequality that will be the basis for our analysis. We
define the continuous-time interpolation of our algorithm given as

θt = θkλ − (t− kλ)hλ(θkλ) +
√
2(Bt −Bkλ), ∀t ∈ [kλ, (k + 1)λ] (A.3)

and θ0 = θ̄0.
That way

L(θkλ) = L(θ̄λk ) ∀k ∈ N.
We define the marginal distribution of θt as π̂t. One notices that, since conditioned on θkλ,
θt is a Gaussian its conditional distribution is given by

π̂t|Fkλ
(x|y) = Ce−

√
t−kλ
2 |x−µ(t,y)|2

where µ(t, y) = y − (t− kλ)hλ(y) and C some normalizing constant. One further notes that,
as π̂t|Fkλ

(x|y) can be viewed as a distribution of a process satisfying a Langevin SDE with
constant drift −hλ(y) and initial condition y, i.e

dµ̂t = −hλ(y)dt+
√
2dBt, ∀t ∈ (kλ, (k + 1)λ]

µ̂kλ = y

it satisfies the following Fokker-Planck PDE:

∂π̂t|Fkλ
(x|y)

∂t
= div

(
π̂t|Fkλ

(x|y)hλ(y)
)
+∆xπ̂t|Fkλ

(x|y). (A.4)

Based on rigorous work done in the Appendix we are able to prove the analogous differential
in time relative entropy inequality (that originally appeared in [33] for the vanilla ULA) for
our tamed scheme.

Proposition A.1. Let k ∈ N. Then, for every t ∈ [kλ, (k + 1)λ],

d

dt
Hπ(π̂t) = −

∫
Rd

⟨π̂t(x)E
(
hλ(θkλ)

∣∣θt = x
)
+∇π̂t(x),∇ log π̂t(x)−∇ log π⟩dx.
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Proof. See Appendix. The idea of the proof is the same as the one in Lytras & Sabanis [22].
We see that our scheme has nice properties such as ||∇hλ|| ≤ O( 1√

λ
) and has polynomially

growing higher derivatives. Working as in Lytras & Sabanis [22] we are able to produce the
following inequality and show that in a small neighbourghood of t

π̂t(x) ≤ Ce−r|x|2

and |∇ log π̂t| and ||∇2 log π̂t|| grow polynomially in x. This enables some change of the
integrals and the derivatives along with application of the divergence theorem. By using
Bayes theorem on the conditional Fokker-Planck equation with the divergence theorem we
produce the following inequality. ■

Theorem 4. Then, for λ < λmax and for every t ∈ [kλ, (k + 1)λ] ,k ∈ N, there holds

d

dt
Hπ(π̂t) ≤ −3

4
Iπ(π̂t) + E|h(θt)− hλ(θkλ)|2.

Lemma A.4. There holds
E|θt − θkλ|2p ≤ C1,pλ

p

The proof follows by using the growth of property of hλ and the uniform in time moment
bounds of the algorithm.

Lemma A.5. Then,
E|hλ(θkλ)− h(θt)|2 ≤ Cerrλ ∀k ∈ N,

where Cerr is given explicitly in the proof and depends at most polynomially in the dimension.

For this proof we have split the split the difference as follows

|h(θt)− hλ(θkλ)|2 ≤ 2|h(θt)− h(θkλ)|2 + 2|h(θkλ)− hλ(θkλ)|2.

The first term is bounded using Assumption (A1) Lemma A.4 and the uniform in time
moment bounds of the algorithm (since L(θkλ) = L(θ̄λn) and the squared taming error which
is of order λ.
Now we are going to provide an inequality between the relative entropy and the Fisher
information. When LSI is assumed the connection is immediate.

A.3. Convergence analysis.

A.3.1. Convergence under LSI.

Theorem 5. Let ρn be the distribution of n− th iterate of the algorithm (wd-TULA). Then,
for λ ≤ λmax,

Hπ(ρn) ≤ e−
3
2CLSIλ(n−1)Hπ(ρ0) +

Ĉ
3
2CLSI

λ

where Ĉ is given explicitly in the proof and depends polynomially on the dimension.

Using Talagrand’s inequality one deduces the following result regarding the convergence
in Wasserstein distance.

Corollary 1. There holds,

W2(L(θ̄λn), π) ≤
√
2√

CLSI

(
e−

3
4 (CLSIλ(n−1)Hπ(ρ0) +

√
βĈ

3
2 (CLSI)

λ

)
.
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A.3.2. Convergence under PI and weak convexity. When one does not assume any Log-
Sobolev inequality other tools are needed to describe their connection.

Proposition A.2. There exists ċ0 > 0 such that

Hπ(π̂t) ≤
1

ċ0

√
Iπ(π̂t).

The relies on a combination of an inequality between the W2 distance and the Fischer
information which stems from the Poincare inequality, combined with the HWI inequality.

Corollary 2. There holds,
d

dt
Hπ(π̂t) ≤ −ċ0H2

π(π̂t) + Cerrλ ∀t ∈ [kλ, (k + 1)λ]

Proof. Combining Theorem 4, Proposition A.2 and Lemma A.5 yields the result. ■

Proposition A.3. Let ρn be the n-th iteration of our algorithm. Then, there holds

Hπ(ρk+1) ≤ (Hπ(ρk)
−1 + ċ0λ)

−1 + 2C1λ
2

The proof proceeds by using a comparison theorem for ODEs to solve the differential
inequality. By using elementary inequalites we reach a simpler recurrent condition which we
iterate over n to reach the following theorem.

Theorem 6. Suppose that λ satisfies the stepsize restrictions given in the moment bounds. In
addition, we assume that λ ≤ 1

4ċ0C1
. Then, There holds

Hπ(ρn) ≤ (1− ċ0
2
λ

3
2 )nHπ(ρ0) + (1 +

4C1

ċ0
)
√
λ

Suppose that λ < ϵ2/4(1 + 4C1

ċ0
)2 Then, Hπ(ρn) ≤ ϵ after n ≥ O

(
log( 1ϵ )

1
ϵ3

)
iterations.

Corollary 3. Let θ̄λn be the n− th iterate of the algorithm. Then, there holds

∥L(θ̄λn), π)− π∥TV ≤
√
2

2

(√
Hπ(ρ0)(1−

ċ0
2
λ

3
2 )

n
2 +

√
(1 + 4

c1
ċ0

)λ
1
4

)
and

W1(L(θ̄λn), π) ≤ CW

(
Hπ(ρn) +Hπ(ρn)

1
2

)
A.4. Proving convergence without Assumption 3 using a regularized potential. In the case
where B3 is missing, we are going to sample from a regularized potential which is close to the
original target. The new regularized potential will inherit the important Local Lipschitzness,
growth and dissipativity properties of the original and it will also satisfy B3 with constant
depending on λ.

We first state some important properties of the new potential which are related to the
properties of the original target.

A.4.1. Properties of the regularized potential.

Lemma A.6. For λ ≤ 1, the regularized potential ureg,λ satisfies Assumption (A1) with
constants independent of λ. As a result, the tamed scheme inherits the a-dissipitivity condition,
and has at most linear growth.

Lemma A.7. Let p > 1. There exist, Creg,2p ≤ O(dp) such that

sup
n

E|xλn|2p ≤ Creg,2p
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Since the regularized potential satisfies potential satisfies Assumption 1 with different
constants independent of λ and the tamed scheme inherits the dissipativity condition, the
proof follows in the same way as in the unregularized case.

Lemma A.8. Let λ ≤ ln2
2R2r+2

2

. and R2 ≤ O(d). The measure πreg satisfies a Poincare

inequality with constant C−1
P,r independent of λ.

Proposition A.4. The regularized measure satisfies LSI with constant C−1
LSI ≤ O

(
( 1λ )

1
r+1+

l′
2r−l′

)
To prove this theorem we use the fact that the regularized measure satisfies a Poincare

inequality. By proving that it also satisfies a 2-dissipativity condition and has a lower
bounded Hessian, by using some classic theorems depending on Lyapunov functions we show
the Poincare inequality can be upgraded to a Log-Sobolev.

Theorem 7. Let ρregn be the distribution of the n-th iterate of the tamed algorithn with the
regularized gradient (reg-TULA). There holds

Hπ(ρ
reg
n ) ≤ Hπreg

(ρregn ) +O(λ) ≤ e−ċλ(n−1)Hπreg
(ρ0) +

Ĉ

ċ
λ

where ċ = CLS given in Lemma A.4 and Ĉ depends polynomially on the dimension.

By using the same arguments as in the unregularized case one reaches a differential
inequality. This time we make use of the Log-Sobolev inequality to get a differential inequality
for Hπreg

(ρregn ). Then, the proof of the connection between Hπ(ρ
reg
n ) and Hπreg

(ρregn ) is a
simple application of the definition of the relative entropy and the moments of the algorithm
and the invariant measure.

Corollary 4. Let cl,r := r(2+l)
(r+1)(2r−l) For λ < O

(
ϵ

1
1−cl,r

)
, there holds

Hπreg
(ρn) ≤ ϵ after n ≥ O

(
log(

1

ϵ
)(
1

ϵ
)

1+cl,r
1−cl,r

)
iterations

and

||L(x̄λn)− π||TV ≤ ϵ n ≥ O
(
log(

1

ϵ

2

)(
1

ϵ2
)

1+cl,r
1−cl,r

)
iterations

In addition, for λ ≤ O
(
ϵ

2+cr,l
1−cl,r

)
there holds

W2(L(x̄λn), π) ≤ ϵ after n ≥ O
(
log(

1

ϵ
)(
1

ϵ
)
(2+cr,l)

1+cl,r
1−cl,r

)
iterations.

B. Proof section

B.1. Proof of preliminary statements.

Proof of Lemma A.1. It easy to see that if ⟨f(x), x⟩ < 0, then ⟨fλ(x), x⟩ ≥ ⟨f(x), x⟩ which
implies that

⟨hλ(x), x⟩ ≥ A|x|a −B.

Suppose that ⟨f(x), x⟩ ≥ 0. Then,

⟨hλ(x), x⟩ ≥ A
|x|2

(1 + |x|2)1− a
2
≥ A|x|a |x|2

1 + |x|2

If |x| > 1 then

⟨hλ(x), x⟩ ≥
A

2
|x|a
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and if |x| < 1

⟨hλ(x), x⟩ ≥
A

2
|x|a − A

2
.

To prove the second part one notices that

|hλ(x)|2 ≤ 2(1− 1

1 +
√
λ|x|2l

)2A2 |x|2

(1 + |x|2)2−a
+ 2(

h(x)

1 +
√
λ|x|2l

)2

≤ 2A2(1 + |x|2)a−1 + 2
L2

λ

≤ 2A2(1 + |x|2) a
2 + 2

L2

λ

≤ 4A2 + 4A2|x|a + 2
L2

λ

■

B.2. Moment bounds.

Proof of Lemma A.2. The proof starts by noticing that conditioned on θ̄λn, θλn+1 is a Gaussian,
with covariance matrix λ

2 Id. Thus conditioned on the previous step since the function
(1 + |x|2) 1

2 ) is 1-Lipschitz by t Proposition 5.5.1 in Bakry et al. [3] there holds so for µ2 ≤ 2
λ ,

E[Vµ(θλn+1)|θ̄λn] ≤ eµ
2λeµE[(1+|θλ

n+1|
2)

1
2 |θ̄λ

n]

≤ eµ
2λeµ(1+E[|θλ

n+1|
2|θ̄λ

n])
1
2

= eµ
2λeµ(1+|θ̄λ

n−λhλ(θ̄
λ
n)|

2+2λd)
1
2

where the penultimate step was obtained by Jensen’s inequality. Since

|x− λhλ(x)|2 ≤ |x|2 − 2λ⟨x, hλ(x)⟩+ λ2|hλ(x)|2

≤ |x|2 + λ(4λA2 −A|x|a) + λ(A+ 2L2) + λ24A2
(B.1)

Since for λ ≤ max{1, 1
2A}, and |x| ≥M :=

(
2(2d+ 4A2 + 2L2 +A)

) 1
a by (B.1) one deduces

(1 + |x− hλ(x)|2 + 2λd)
1
2 ≤ (1 + |x|2 − λ

A

4
|x|a) 1

2

= (1 + |x|2) 1
2

(
1− λ

A

4

|x|a

(1 + |x|2)

) 1
2

≤ (1 + |x|2) 1
2

(
1− Aa

8
λ

|x|a

(1 + |x|2)

)
using (1− t)

1
2 ≤ 1− 1

2
t

= (1 + |x|2) 1
2 − λ

A

8

|x|a

(1 + |x|2)1− 1
2

= (1 + |x|2) 1
2 − λ

A

8

|x|a

(1 + |x|2) 1
2

≤ (1 + |x|2) 1
2 − λ

AMa

8(1 +M2)
1
2

(B.2)
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and the last step was deduced using that the function g(x) = xa

(1+|x|2)
1
2

is increasing for a ≥ 1

and x ≥ 0 Using (B.2) one deduces that if |θ̄λn| ≥M,

eµ(1+|θ̄λ
n−λhλ(θ̄

λ
n)|

2+2λd)
1
2 ≤ Vµ(θ̄

λ
n)e

−µ2λ

On the other hand, if |θ̄λn| ≤M, using the inequality (1 + z + y)
1
2 ≤ 1 + z

1
2 + y

2 one deduces

µ
(
1 + |θ̄λn − λhλ(θ̄

λ
n)|2 + 2λd

) 1
2 = µ

(
1 + |θ̄λn|2 + (2|θ̄λn||hλ(θ̄λn)|+ λ2|hλ(θ̄λn)|2 + 2λd)

) 1
2

≤ µ(1 + |θ̄λn|2)
1
2 + (

µ

2
(2|θ̄λn|λ|hλ(θ̄λn)|+ λ2|hλ(θ̄λn)|2 + 2λd)

1
2

≤ µ(1 + |θ̄λn|2)
1
2 + λCM

(B.3)
where CM ≤ C0 +M2l+1 +M4l+2 + 2d where C0 is an absolute constant independent of the
dimension. As a result, if |θ̄λn| ≤M

eµ(1+|θ̄λ
n−λhλ(θ̄

λ
n)|

2+2λd)
1
2 ≤ Vµ(θ̄

λ
n)e

CMλ

which leads to

E[Vµ(θλn+1)|θ̄λn] ≤ Vµ(θ̄
λ
n)e

(CM+µ2)λ

= e−µ2λVµ(θ̄
λ
n) +

(
e(CM+µ2)λ − e−µ2λ

)
Vµ(θ̄

λ
n)

≤ e−µ2λVµ(θ̄
λ
n) + e(CM+µ2)λVµ(θ̄

λ
n)
(
1− e−(2µ2−CM )λ

)
≤ e−µ2λVµ(θ̄

λ
n) + λC

where the last step was derived from the inequality 1 − e−t ≤ t. Putting all together one
deduces,

EVµ(θ̄λn+1) ≤ e−λµ2nEVµ(θ0) + C̄.

■

Proof of Lemma A.3. The proof starts by noticing that the function g(x) = (ln(x))2p is
concave for x ≥ e2p. As a result, for n ∈ N

E(µ|θ̄λn|+ 2p)2p ≤ Eg(eµ(1+|θ̄λ
n|

2)
1
2 +2p)

≤ g(Eeµ(1+|θ̄λ
n|

2)
1
2 +2p) (Jensen)

≤ 22p−1(lnEeµ(1+|θ̄λ
n|

2)
1
2 + 2p2p)

≤ 22p−1(lnC2p
µ + 2p2p)

■

B.3. Rigorous proofs of integral and derivative exchange.

Lemma B.1. Let λ < 1
4(2AC∗+2L+1)2 . Then, the following hold: Let k ∈ N and t ∈ [kλ, (k +

1)λ]. Then, there exist C, r, q such that
•

π̂t ≤ Ce−r|x|2 ∀x ∈ Rd

•
|∇ log π̂t(x)| ≤ C(1 + |x|q) ∀x ∈ Rd

•
||∇2 log π̂t(x)| ≤ C ′(1 + |x|q

′
) ∀x ∈ Rd.
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Proof. Let

ϕ(x) = x− (t− kλ)hλ(x) = x− (t− kλ)AR(x)− (t− κλ)fλ(x)

where R(x) = x

(1+|x|2)1−
a
2
, fλ = h(x)−AR(x)

gλ
and gλ = 1

1+
√
λ|x|2l . Since for the derivatives of

R there holds
||JR|| ≤ C∗

and for H := Jh, ||H|| ≤ gλL
1√
λ
,

(t− kλ)||AJR + Jfλ || ≤ λ(A||JR(x)||+ ||(H −AJR)gλ +∇gλ ⊗ (h(x)−AR(x))||
≤ λ(AC∗ + (||H||+AC∗)gλ + |∇gλ(x)||h(x)−AR(x)|)

≤ (2AC∗ + 2L+ 1)
√
λ ≤ 1

2
.

(B.4)

Thus,
1

2
Id ≤ Jϕ ≤ 3

2
Id.

In addition, using the fact that the high derivatives of h and R have at most polynomial
growth one can easily see that ||J (2)

ϕ || and ||J (3)
ϕ || have at most polynomial growth. From

then, on we proceed with same arguments as in Lemmas A.5-A.7 in Lytras & Sabanis
[22]. ■

Lemma B.1.

E
(
∂π̂t|Fkλ

(x|θkλ)
∂t

)
=
∂π̂t
∂t

(x).

Proof. Analysing the left hand side of the equation one deduces the following:
In a neighbourhood of t, for fixed x, ∂π̂t|Fkλ

(x|y)
∂t decays exponentially with y and since

π̂kλ(y) ≤ Ce−r|y|2 due to Lemma B.1 one can exchange the derivative with the integral in
the following expression

∂

∂t

∫
Rd

π̂kλ(y)π̂t|Fkλ
(x|y)dy =

∫
Rd

π̂kλ(y)
∂π̂t|Fkλ

(x|y)
∂t

dy.

Noticing that
∂π̂t
∂t

(x) =
∂

∂t

∫
Rd

π̂kλ(y)π̂t|Fkλ
(x|y)dy

and ∫
Rd

π̂kλ(y)
∂π̂t|Fkλ

(x|y)
∂t

dy = E
(
∂π̂t|Fkλ

(x|θkλ)
∂t

)
yields the result. ■

Lemma B.2.

E
(
divx

(
π̂t|Fkλ

(x|θkλ)hλ(θkλ)
))

= divx
(
π̂t(x)E

(
hλ(θkλ)

∣∣θt = x
))
.

Proof. Since π̂t decays exponentially with y and for fixed t, in a neighbourhood of x
∇π̂t|Fkλ

(x|y) is at most linear in y and hλ has at most linear growth, this enables the
interchange of integral and derivative with respect to x in the following expression∫

Rd

π̂kλ(y)divx
(
π̂t|Fkλ

(x|y)hλ(y)
)
dy = divx

∫
Rd

π̂kλ(y)π̂t|Fkλ
(x|y)hλ(y)dy

Since
E
(
div
(
π̂t|Fkλ

(x|θkλ)hλ(θkλ)
))

=

∫
Rd

π̂kλ(y)divx
(
π̂t|Fkλ

(x|y)hλ(y)
)
dy
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and due to Bayes theorem

divx

∫
Rd

π̂kλ(y)π̂t|Fkλ
(x|y)hλ(y)dy = divx

∫
Rd

π̂t(x)π̂θkλ|θt(y|x)hλ(y)dy

= divx
(
π̂t(x)E

(
hλ(θkλ)

∣∣θt = x
))

and the result immediately follows. ■

Lemma B.3.
E
(
∆xπ̂t|Fkλ

(x|θkλ)
)
= ∆π̂t(x).

Proof. Noting that by definition

E
(
∆xπ̂t|Fkλ

(x|θkλ)
)
=

∫
Rd

∆x(π̂t|Fkλ
(x|y))π̂kλ(y)dy

and
∆xπ̂t(x) = ∆x

∫
Rd

π̂t|Fkλ
(x|y)π̂kλ(y)dy

it suffices to prove that∫
Rd

∆x(π̂t|Fkλ
(x|y))π̂kλ(y)dy = ∆x

∫
Rd

π̂t|Fkλ
(x|y)π̂kλ(y)dy.

By simple computations for the Gaussian distribution one deduces that |∇x log π̂t|Fkλ
(x|y)|,

∆x log π̂t|Fkλ
(x|y) have at most linear growth with respect to y in a neighbourhood of x .

Writing

∆xπ̂t|Fkλ
(x|y) =

(
∆x log π̂t|Fkλ

(x|y) + |∇x log π̂t|Fkλ
(x|y)|2

)
π̂t|Fkλ

(x|y)

one deduces that in a neighbourhood of x, the integrand in the first term is dominated by a
function of the form C(1+ |y|2)e−c|y|2 . Applying the dominated convergence theorem enables
the exchange of the integral and the Laplacian which completes the proof. ■

Corollary 5.
∂π̂t
∂t

(x) = divx
(
π̂t(x)E

(
hλ(θkλ)

∣∣θt = x
))

+∆π̂t(x) ∀t ∈ [kλ, (k + 1)λ]

Proof. Taking expectations in (A.4) and combining Lemmas B.1,B.2 and B.3 yields the
result. ■

Lemma B.4. There exist C, k, r′ > 0 indepent of x, uniform in a small neighbourghood of t
such that

divx
(
π̂t(x)E

(
hλ(θkλ)

∣∣θt = x
))

+∆π̂t ≤ C(1 + |x|k)e−r′|x|2

Proof. Writing, due to Bayes’ theorem,

divx
(
π̂t(x)E

(
hλ(θkλ)

∣∣θt = x
))

=

∫
Rd

π̂kλ(y)divx
(
π̂t|Fkλ

(x|y)hλ(y)
)
dy

≤ Ce−c|x|2+|x|
∫
Rd

e−r|y|2 |y|dy

for some C, c, r > 0 where the last step is a result of the Gaussian expression of the conditional
density, the linear growth of hλ and the exponential decay of π̂kλ given in Lemma B.1.

For the second term, writing

∆π̂t = π̂t
(
|∇ log π̂t|2 +∆ log π̂t

)
the result follows due to Lemma B.1. ■
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Corollary 6.
d

dt
Hπ(π̂t) =

∫
Rd

∂π̂t(x)

∂t
(1 + log π̂t(x)− log π)dx

Proof. Noting that log π̂t, log π have polynomial growth, due to Lemma B.4,
∂π̂t(x)

∂t (1 + log π̂t(x) − log π) can be dominated by an L1 integrable function over small
neighbourhood of t, thus using the dominated convergence theorem one deduces the exchange
of derivative and integration i.e∫

Rd

∂π̂t(x)

∂t
(1 + log π̂t(x)− log π(x))dx =

∫
Rd

∂

∂t

(
π̂t(x) log

π̂t(x)

π(x)

)
dx

=
d

dt

∫
Rd

π̂t(x) log
π̂t(x)

π(x)
dx

=
d

dt
Hπ(π̂t).

■

Proof of Corollary A.1. Recall that from Lemma 6, there holds
d

dt
Hπ(π̂t) =

∫
Rd

∂π̂t(x)

∂t
(1 + log π̂t(x)− log π)dx. (B.5)

Let
Ft(x) = π̂t(x)E

(
hλ(θkλ)

∣∣θt = x
)
+∇π̂t(x)

and
gt(x) = 1 + log π̂t − log π.

Recall from Corollary 5 that
∂π̂t
dt

(x) = divx(Ft)(x)

Since ∇π̂t = π̂t∇ log π̂t using the Lemma B.1,B.4 one deduces that there exists constants C,
q ,r>0 independent of x, uniform in a small neighbourhood of t, such that

max{|Ft(x)gt(x)|, |div(Ft)(x)gt(x)|, |⟨Ft(x)∇gt(x)⟩|} ≤ C(1 + |x|q)e−r|x|2 . (B.6)

We drop the dependence of the constants on t since we want to integrate with respect to x.
Let R > 0 and v(x) the normal unit vector on ∂B(0, R). Due to (B.6)∫

∂B(0,R)

⟨gt(x)Ft(x), v(x)⟩dx ≤ RdC(1 + |R|q)e−r|R|2 . (B.7)

Since div(Ft)gt, ⟨Ft,∇xgt⟩ are integrable (in view of (B.6)) applying the divergence theorem
on B(0, R) there holds∫

B(0,R)

divx(Ft)(x)gt(x)dx =

∫
∂B(0,R)

⟨gt(x)Ft(x), v(x)⟩dx−
∫
B(0,R)

⟨Ft(x)∇xgt(x)⟩dx.

(B.8)
As a result,∫
Rd

div(Ft)(x)gt(x)dx = lim
R→∞

∫
B(0,R)

divx(Ft)(x)gt(x)dx

= lim
R→∞

(∫
∂B(0,R)

⟨gt(x)Ft(x), v(x)⟩dx−
∫
B(0,R)

⟨Ft(x)∇xgt(x)⟩

)
dx

= 0− lim
R→∞

∫
B(0,R)

⟨Ft(x)∇xgt(x)⟩dx = −
∫
Rd

⟨Ft(x)∇xgt(x)⟩dx.
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■

Proof of theorem 4. Using Proposition A.1, for all t ∈ [kλ, (k + 1)λ],

d

dt
Hπ(π̂t) = −

∫
Rd

⟨π̂t(x)E
(
hλ(θkλ)

∣∣θt = x
)
+∇π̂t(x),∇ log π̂t(x)−∇ log π(x)⟩dx

= −
∫
Rd

π̂t(x)⟨E
(
hλ(θkλ)

∣∣θt = x
)
+∇ log π̂t(x),∇ log π̂t(x)−∇ log π(x)⟩dx

= −
∫
Rd

π̂t(x)⟨E
(
hλ(θkλ)

∣∣θt = x
)
+∇ log π,∇ log π̂t(x)−∇ log π(x)⟩dx

−
∫
Rd

π̂t|∇ log π̂t(x)−∇ log π(x)|2dx

= −Iπ(π̂t)−
∫
Rd

π̂t(x)⟨E
(
hλ(θkλ)− h(x)

∣∣θt = x
)
,∇ log π̂t(x)−∇ log π(x)⟩dx

= −Iπ(π̂t)−
∫
Rd

π̂t(x)⟨E
(
hλ(θkλ)− h(θt))

∣∣θt = x
)
,∇ log π̂t(x)−∇ log π(x)⟩dx

≤ −Iπ(π̂t) +
∫
Rd

π̂t(x)
∣∣E (hλ(θkλ)− h(θt))

∣∣θt = x
)∣∣2 dx+

1

4
Iπ(π̂t)

= −3

4
Iπ(π̂t) +

∫
Rd

π̂t(x)

∣∣∣∣∫
Rd

π̂θkλ|θt(y|x)(hλ(y)− h(x))dy

∣∣∣∣2 dx
≤ −3

4
Iπ(π̂t) +

∫
Rd

π̂t(x)

∫
Rd

π̂θkλ|θt(y|x) |hλ(y)− h(x)|2 dydx

= −3

4
Iπ(π̂t) + E|hλ(θkλ)− h(θt)|2

where the first inequality was obtained using Young inequality and the second using Jensen’s.
■

Proof of Lemma A.4. Let t ∈ [kλ, (k + 1)λ]. First of all, one needs to bound the one step
error E|θt − θkλ|2p for different values of p ∈ N.

E|θt − θkλ|2p ≤ 22pλ2pE|hλ(θkλ)|2p + 2pλpE|Z|2p

≤ 2pλpE
(
4A2|θkλ|a + 4(L2 +A2)

)p
+ 2pλpE|Z|2p

≤ λpC1,p

where C1,p = O
(
dp(2l+1)

)
, which is derived by the moment bounds of the Gaussian, the fact

that L(θkλ) = L(θ̄λk ) and the moment bounds of the algorithm. ■

Proof of Lemma A.5. For every x ∈ Rd,

|hλ(x)− h(x)| =
∣∣∣∣(h(x)−A

x

(1 + |x|2)1− a
2
)(1− 1

1 +
√
λ|x|2l

)

∣∣∣∣2 ≤ λ
∣∣(|h(x)|+ |x|)|x|2l

∣∣2
so

E |h(θkλ)− hλ(θkλ)|2 ≤ λE
∣∣(|h(θ̄k)|+ |θ̄k|

)
|θ̄k|
∣∣2 ≤ 16

(
L2(C̄4l + 1) + C̄2l+1

)
λ. (B.9)
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where the constants are given in Lemma A.3. In addition, using Assumption (A1) one
deduces that

E|h(θkλ)− h(θt)|2 ≤ E(1 + |θkλ + |θt|)2l
′
|θt − θkλ|2

≤
√
34l′(1 + E|θ4l′kλ + E|θkλ − θt|4l′)

√
E|θkλ − θt|4

≤
√
34l′
√

1 + λ2l′C1,2l′ + sup
n

E|θ̄λn|4l
′λ
√
C2,p (Lemma A.4

≤
√
1 + λ2l′C1,2l′ + C2l′λ

√
C2,p

(B.10)

where the last step was derived by Lemma A.3. Combining (B.9) and (B.10), yields the
result. ■

Proof of Theorem 2.

d

dt
Hπ(π̂t) ≤ −3

4
Iπ(π̂t) + βE|hλ(θkλ − h(θt)|2

≤ −ċHπ(π̂t) + 2βE|hλ(θkλ)− h(θkλ)|2 + 2βE|h(θkλ)− h(θt)|2

≤ −ċHπ(π̂t) + βĈλ

where Ĉ = 2Conestep + 2Ctam where the first term has been bounded using the Log-Sobolev
inequality and the rest of the terms using the one-step error in Lemma A.4 and the taming
error in Lemma A.5. Splitting the terms one obtains(

d

dt
Hπ(π̂t) + ċHπ(π̂t)

)
eċt ≤ eċtβĈλ

Integrating over [kλ, t] yields

eċtHπ(π̂t)− eċkλHπ(π̂kλ) ≤
βĈ

ċ
λ(eċt − eċkλ)

which implies

Hπ(π̂t) ≤ eċ(kλ−t)Hπ(π̂kλ) +
βĈ

ċ
λ(1− eċ(kλ−t)). (B.11)

Setting t = nλ and k = (n− 1) leads to

Hπ(π̂nλ) ≤ e−ċλHπ(π̂(n−1)λ) +
βĈ

ċ
λ(1− e−ċλ)

so by iterating over n,

Hπ(π̂nλ) ≤ e−ċλ(n−1)Hπ(π0) +
βĈ

ċ
λ

which completes the proof. ■
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Proof of Lemma A.2. Let f = π/π̂t Then,

1

2

∫
(
√
π̂t −

√
π)2dx ≤

(
1− Eν(

√
f)
)(

1 + Eν(
√
f)
)

≤ 1−
(
Eν(
√
f)
)2

= Eν((
√
f)2)−

(
Eπ(

√
f)
)2

= V arπ(
√
f)

≤ 1

CP
Eπ|∇

√
f |2

≤ 1

4CP
Eπ|∇f |2/f

=
1

4CP

∫ (
πf |∇f

f
|2
)
dx

=
1

4Cp

∫ (
π̂t| − ∇ log

π̂t
π
|2
)
dx

=
1

Cp
Iπ(π̂t).

(B.12)

In addition, since both π̂t and π have finite polynomial moments, there holds

W 2
2 (L(θt), π) = 2

∫
|x|2|π(x)− π̂t(x)|dx

≤ 2

(∫
|x|4(

√
π +

√
π̂t)

2dx

) 1
2
(∫

(
√
π̂t −

√
π)2dx

) 1
2

≤ 4(
√
Eπ̂t

|x|4 +
√
Eπ|x|4)

√
Iπ(π̂t) derived from (B.12)

32(
√

supE|θ̄λn|4 +
√
E|θt − θkλ|4 +

√
Eπ|x|4)

√
Iπ(π̂t)

≤ C
√
Iπ(π̂t)

(B.13)

where the last step was derived from Lemmas A.4 and A.3 We are going to use our assumption
to connect the relative entropy to W2 distance. Since Assumption 3 holds and π has finite
second moments, the HWI can be applied, so

Hπ(π̂t) ≤
√
Iπ(π̂t)W2(L(θt), π) +

κ

2
W 2

2 (L(θ̄λn), π)

≤
√
2(
√
Eπ|x|2 +

√
E|θkλ − θt|2 +

√
E|θ̄λn|2)

√
Iπ(π̂t) +

κ

2
W 2

2 (L(θ̄λn), π).
(B.14)

Combining (B.13) with (B.14) yields the result. ■

Proof of Proposition A.3. Let ϕ(t, x) = −ċ0x2 + k2 where k2 := 2C1λ. Then, from Corollary
2 there holds

dHπ(π̂t)

dt
< ϕ(Hπ(π̂t), t).

Let δ < H−1
π (ρk)/2 Setting gδ(t) =

(
Hπ(ρk)

−1 − δ + ċ0(t− kλ)
)−1

+ k2(t− kλ) one deduces

g′δ(t) = −ċ0
(
Hπ(ρk)

−1 − δ + ċ0(t− kλ)
)−2

+ k2 (B.15)
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Since (H−1
π (ρk)− δ)2 ≤

(
Hπ(ρk)

−1 − δ + ċ0(t− kλ)
)2 one obtains

g′δ(t)− ϕ(gδ(t), t) ≥ 0 >
dHπ(π̂t)

dt
− ϕ(Hπ(π̂t), t) ∀t ∈ [kλ, (k + 1)λ] (B.16)

Using (B.16) and the fact that gδ(kλ) =
(
Hπ(ρk)

−1 − δ
)−1

> Hπ(ρk) = Hπ(π̂kλ) By
comparison theorem for differential inequalities, see McNabb [24], there holds

(Hπ(ρk)
−1 + ċ0λ)

−1 + 2C1λ
2 = lim

δ→0+
gδ((k + 1)λ) ≥ Hπ(ρk+1) (B.17)

■

Proof of theorem 6. We begin the proof by noticing that

Hπ(ρn) ≤
1

ċ0λ
∀n. (B.18)

This will be done by induction. Since for λ < λmax,

Hπ(ρ0) ≤
1

ċ0λ

it holds for n = 0. Suppose that

Hπ(ρk) ≤
1

ċ0λ
(B.19)

Then

Hπ(ρk+1) ≤
1

ċ0λ

(
ċ0λHπ(ρk)(1 + ċ0λHπ(ρk))

−1
)
+ 2C1λ

2

Since the function ϕ(x) = x
1+x is increasing, then ϕ(ċ0λHπ(ρk)) < ϕ(1) so

Hπ(ρk+1) ≤
1

2ċ0λ
+ 2C1λ

2 ≤ 1

ċ0λ
.

which proves (B.18) by induction.
We proceed with two cases:
Case 1: Hπ(ρk0) ≥ 4c1

ċ0

√
λ ∀k0 ≤ k:

Making use of (B.18) and the inequality 1
x+1 ≤ (1− x

2 ) for x ≤ 1, one obtains

Hπ(ρk+1) ≤ Hπ(ρk)(1−
ċ0
2
λHπ(ρk)) + 2C1λ

2 ≤ Hπ(ρk)(1− 2C1λ
3
2 ) + 2C1λ

2

Summing over k one deduces

Hπ(ρk) ≤ Hπ(ρ0)(1− 2C1)λ
3
2 )k +

√
λ. (B.20)

Case 2: There exist k0 ≤ k such that Hπ(k0) ≤
√

4c1
ċ0

√
λ. Suppose that 4c1

ċ0

√
λ ≥ Hπ(ρk0

) ≥
1
2
4c1
ċ0

√
λ. Then,

Hπ(ρk0+1) ≤ Hπ(ρk0
)− ċ0

2
λH2

π(ρk0
) + C1λ

2 ≤ Hπ(ρk0
)

On the other hand, if Hπ(k0) ≤ 1
2
4c1
ċ0

√
λ. it is easy to see that Hπ(ρk+1) ≤ 4c1

ċ0

√
λ.

This implies that

∃k0 < k : Hπ(ρk0) ≤
4c1
ċ0

√
λ =⇒ Hπ(ρk) ≤

4c1
ċ0

√
λ

Combining case 1 and case 2 together yields the result. ■
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Proof of Corollary 3. For the bound in total variation, using Theorem 6 and Pinsker’s
inequality gives the result.
For the bound in W1 distance, using Lemma A.2 and Corollary 2.3 in [6], one deduces that

CW :=
2

µ
(
3

2
+ logEeµ|θ̄

λ
n|) <∞

and
W1(L(θ̄λn), π) ≤ CW

(
Hπ(ρn) +Hπ(ρn)

1
2

)
.

Applying the bound on CW in Lemma A.2 and Theorem 6 yields the result. ■

C. Proofs for the convergence of regularized scheme

C.1. Properties for the regularized potential.

Proof of Lemma A.6. It is easy to see that the function G(x) = (r + 1)|x|2r is Locally
Lipschitz since

JG = (r + 1)|x|2rId + (r + 1)rxtx|x|2r−2

then,
||JG(x)|| ≤ (r + 1)2|x|2r.

Using the mean value theorem

|λG(x)− λG(y)| ≤ λ

∫ 1

0

||JG(tx+ (1− t)y|||x− y|dt ≤ λ(r + 1)2(1 + |x|+ |y|)2r|x− y|.

As a result,

|∇ureg,λ(x)−∇ureg,λ(y)| ≤ ((r + 1)2 + L)(1 + |x|+ |y|)2r|x− y| ∀x, y ∈ Rd.

It is also easy to see that the higher derivatives of ureg,λ have polynomial growth less than
2r + 1. With respect to the dissipativity it is easy to see that

⟨∇ureg,λ(x), x⟩ ≥ ⟨∇u(x), x⟩,
so Assumption (A2) is satisified with the same A and b. For the tamed scheme, by it is
definition it easy to see that

|∇ur,λ| ≤ A+
√
λ+A|x| a2 +

(L+ 1)√
λ

.

■

Proof of Lemma A.8. The proof starts by noticing that there exists R1 depending on A,B
of Assumption (A2) such that

⟨∇ureg,λ(x), x⟩ ≥
A

2
|x| ∀|x| ≥ R1.

In addition, picking a smooth Lyapunov function W ≥ 1 such

W = e
A
4 |x| ∀|x| ≥ R1,

one deduces that for generator of the Langevin SDE with drift coeffient the regularized
gradient,

LW (x) = ∆W (x)− ⟨∇W (x),∇ureg,λ(x) ≤
A

4
W

(
d− 1

|x|
+
A

4
− ⟨∇ureg,λ(x), x⟩}

)
≤ A

4
W (

d− 1

|x|
+
A

4
− A

4
|x|)
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So there exists R0 ≤ O(d) such that

LW ≤ −θW ∀|x| ≥ R2 := max{R0, R1}.
Setting B = B(0, R2) and B2 = B(0, R2 +2). Let a smooth function χ = ψ(|x|) (see Lemma
B.13 of Li & Erdogdu [20] for the construction) such that χ = 0 on B nad χ = 1 on Bc

2 and
|∇χ| ≤ 1. ∫

−LW
W

f2dπreg =

∫
Γ

(
f2

W
,W

)
dπreg

= 2

∫
f

W
Γ(f,W )dπreg −

∫
f2

W 2
Γ(W,W )dπreg

= −
∫ ∣∣∣∣ fW ∇W −∇f

∣∣∣∣2 dπreg + ∫ Γ(f, f)dπreg

≤
∫

Γ(f, f)dπreg

(C.1)

Writing for a smooth f ,∫
f2dπreg =

∫
(f(1− χ) + fχ)2dπreg

≤ 2

∫
f2(1− χ)2dπreg + 2

∫
f2χ2dπreg

≤ 2

θ

∫
−LW
W

f2(1− χ)2dπreg + 2

∫
B2

f2dπreg

≤ 2

θ

∫
Γ(f(1− χ), f(1− χ))dπreg + 2

∫
B2

f2dπreg

. Since Γ(fg, fg) ≤ 2
(
f2Γ(g, g) + g2Γ(f, f)

)
, we get:∫

f2dπreg ≤ 4

θ

∫
Γ(f, f)dπreg +

4

θ

∫
f2Γ(χ, χ)dπreg + 2

∫
B2

f2dπreg

≤ 4

θ

∫
Γ(f, f)dπreg +

(
4

θ
+ 2

)∫
B2

f2dπreg

(C.2)

Applying the previous inequality for f̃ = f −
∫
B2
fdπreg and using the fact that

V arπreg
(f) ≤

∫
f̃2dπreg

yields

V arπreg(f) ≤
∫
f̃2dπreg ≤ 4

θ

∫
Γ(f̃ , f̃)dπreg +

(
4

θ
+ 2

)∫
B2

f̃2dπreg

=
4

θ

∫
Γ(f, f)dπreg +

(
4

θ
+ 2

)∫
B2

f̃2dπreg

(C.3)

When restricted to the ball B2 ureg,λ is a bounded petrubation u on the same ball since

|u(x)− ureg,λ(x)| ≤ λ(R2 + 2)2r+2 ∀x ∈ B2.

Using Hooley-Strook pertubation theorem one deduces that πreg satisfies Poincare inequality
when resticted to B2 with constant k−1

B2
≤ e2λ(R2+2)2r+2

C−1
P ≤ 3CP−1. Thus,∫

B2

f̃2dπreg ≤ kB2

∫
Γ(f, f)dπreg.
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Applying this to (C.3) completes the proof. ■

Lemma C.1. The function u given by ur,λ(x) := u(x) + λ|x|2r+2 satisfies

⟨∇ur,λ(x)−∇ur,λ(y), x−y⟩ ≥
(
c1(|x|2r + |y|2r)− c2(|x|l

′
+ |y|l

′
)− c3

)
|x−y|2 ∀x, y ∈ Rd.

where c1 := λ(r + 1), c2 = c3 = L.

The proof follows by using Assumption (A1) and the fact that the regularized term 2r
dominates l for large values. This will yield a lower bound for the minimum eigenvalue of
∇2ureg,λ.

Proof. Let f(x) = |x|2r+2. Then ∇f(x) = 2(r + 1)|x|2rx. Writing

⟨∇f(x)−∇f(y), x− y⟩ = ⟨∇f(x), x⟩+ ⟨∇f(y), y⟩ − ⟨∇f(x), y⟩ − ⟨∇f(y), x⟩
= (2r + 2)(|x|2r+2 + |y|2r+2)− (r + 1)(|x|2r + |y|2r)2⟨x, y⟩
= (2r + 2)(|x|2r+2 + |y|2r+2)

+ (r + 1)(|x|2r + |y|2r)
(
|x− y|2 − |x|2 − |y|2

)
= (r + 1)

(
|x|2r+2 + |y|2r+2 − |x|2r|y|2 − |y|2r|x|2

)
+ (r + 1)(|x|2r + |y|2r)|x− y|2.

Since
|x|2r+2 + |y|2r+2 − |x|2r|y|2r+2 − |y|2r|x|2r+2 = |x|2(|x|2r − |y|2r)− |y|2(|x|2r − |y|2r)

= (|x|2 − |y|2)(|x|2r − |y|2r)
≥ 0,

one deduces

⟨∇f(x)−∇f(y), x− y⟩ ≥ (r + 1)(|x|2r + |y|2r)|x− y|2 ∀x, y ∈ Rd. (C.4)

Noting that by the gradient local Lipschitz assumption on g, there holds

⟨∇u(x)−∇u(y), x− y⟩ ≥ −L(1 + |x|l + |y|l)|x− y|2 ∀x, y ∈ Rd,

the result immediately follows. ■

Proof of Proposition A.4. It is easy to see that the regularized measure satisfies a 2− dissi-
pativity condition with constant Areg = λ

1
r+1 i.e

⟨∇ur,λ(x), x⟩ ≥ Areg|x|2 − (b+ 1). (C.5)

In addition, using Lemma C.1, it is easy to see that when |x|, |y| ≥ L
r+1 (

1
λ )

⟨∇ur,λ(x)−∇ur,λ(y), x− y⟩ ≥ 0

so one concludes that

⟨∇ur,λ(x)−∇ur,λ(y), x− y⟩ ≥ −Kλ|x− y|2 ∀x, y ∈ Rd

which leads to
∇2ur,λ(x) ≥ −KλId ∀x ∈ Rd. (C.6)

Let W := e
Areg|x|2

4 . Then, since ∇W =W
Areg

2 x and ∆W ≤ (
Aregd

2 +
A2

regd

4 )W one observes
that

LW = ∆W − ⟨∇ur,λ(x),∇W ⟩ = (
Aregd

2
+
A2

regd

4
− Areg

2
|x|2)W (C.7)
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Since πreg also satisfies a Poincare inequality with consant CP,r using Theorem 3.15 in [25],
it can be upgraded to a Log-Sobolev inequality with constant

1

CLS
≤ 2

√√√√ 1

Areg

(
1

2
+

+
A2

regd

4 − Areg

2 +
Areg

2 πreg (|x|2)
CP,reg

)

+
Kλ

Aregλ
+
Kλ

(
Aregd

2 +
A2

regd

4 +
Areg

2 πreg
(
|x|2
))

+ 2
Areg

2

CP,reg

(C.8)

where πreg(|x|2) is given by Lemma C.6. ■

Proof of A.7. The proof is the same, as in the proof of the moment bounds for the regularized
potential, since all we need is the a− dissipativity and the growth condition which are
almost the same. It is done through providing first exponential moments and then produce
polynomial. ■

Lemma C.2. There holds
E|xt − xkλ|2p ≤ O(λp)

Proof. The proof follows in the same way is the respective one for the unregulazized algorithm.
■

Lemma C.3. There holds

E|∇ur,λ(xkλ)− hr,λ(xkλ)|2 ≤ Creg
tamλ

where Creg
tam ≤ O(d4r+2).

Proof. Writing

|∇ur,λ(xkλ)− hr,λ(xkλ)|2 ≤ 2|h(xkλ)− hλ(xkλ)|2 + 2λ2
∣∣∣∣(r + 1)xkλ|xkλ|2r(1−

1

1 +
√
λ|xkλ|2r+1

∣∣∣∣2
≤ 2|h(xkλ)− hλ(xkλ)|2 + 2λ2(r + 1)2|xkλ|4r+2.

Taking expectations, the first term can be treated as in the proof of Lemma A.5 with the
moment bounds in Lemma A.7. ■

Lemma C.4. There holds

E|∇ur,λ(xt)−∇ur,λ(xkλ|2 ≤ Creg
onestepλ

Proof. The proof follows in the same way as the respective one for the unregularized algorithm
with the new moment bounds, and setting the Local Lipschitz constants as in Lemma A.6. ■

Lemma C.5. Let xt the continuous time interpolation of the algorithm. Then, for λ < λmax

and for every t ∈ [kλ, (k + 1)λ] ,k ∈ N, there holds

d

dt
Hπ(π̂

reg
t ) ≤ −3

4
Iπ(π̂

reg
t ) + E|∇ur,λ(xt)− hr,λ(xkλ)|2

.

Proof. Since the regularized potential has the same key properties as the unregularized, the
interpolation inequality holds with exactly the same arguments. ■
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Lemma C.6. Let p ∈ N. There holds

Eπ|x|2p ≤ Cπ

and
Eπreg

|x|2p ≤ Cπreg

where Cπreg
and Cπ are O(d2p).

Proof. Using the fact that both measures satisfy the dissipativity condition with constant
a we will proceed with the same arguments. We will show it only for π. Since π and πreg
satisfy a Poincare inequality they have finite polynomial moments of all orders.

|x|2p−1⟨h(x), x⟩ ≥ |x|2p−1(A|x|a − b) ≥ A|x|2p −A− b|x|2p−1. (C.9)

Setting V (x) = |x|2p one notices that ∇V (x) = 2p|x|2p−1x and ∆V = (2pd+4(p−1)p)|x|2p−2.
Since π is the invariant measure of the Langevin SDE with generator

LV = ∆V − ⟨V, h⟩,

there holds

(2pd+4(p−1)p)Eπ|x|2p−2 = Eπ∆V (x) = Eπ⟨V (x), h(x)⟩ ≥ 2p
(
AEπ|x|2p −A− bEπ|x|2p−1

)
.

Iterating over 2p yields the result. ■

Proof of Theorem 7. Setting ċ = 3
2CLSI one obtains

d

dt
Hπreg(π̂

reg
t ) ≤ −3

4
Iπreg(π̂

reg
t ) + E|hr,λ(xkλ −∇ur,λ(xt)|2

≤ −ċHπreg
(π̂reg

t ) + 2E|hr,λ(xkλ)−∇ur,λ(xkλ)|2 + 2E|∇ur,λ(xkλ)−∇ur,λ(xt)|2

≤ −ċHπreg
(π̂reg

t ) + Ĉλ

where Ĉ depends polynomially on the dimension, where the first term has been bounded
using the Log-Sobolev inequality and the rest of the terms using the one-step error and
taming, as in the unregularized case . Splitting the terms one obtains(

d

dt
Hπreg(π̂

reg
t ) + ċHπreg(π̂

reg
t )

)
eċt ≤ eċtĈλ

Integrating over [kλ, t] yields

eċtHπreg(π̂
reg
t )− eċkλHπreg(π̂

reg
kλ ) ≤ Ĉ

ċ
λ(eċt − eċkλ)

which implies

Hπreg
(π̂reg

t ) ≤ eċ(kλ−t)Hπreg
(π̂reg

kλ ) +
Ĉ

ċ
λ(1− eċ(kλ−t)). (C.10)

Setting t = nλ and k = (n− 1) leads to

Hπreg
(π̂reg

nλ ) ≤ e−ċλHπreg
(π̂reg

(n−1)λ) +
Ĉ

ċ
λ(1− e−ċλ)

so by iterating over n,

Hπreg
(π̂reg

nλ ) ≤ e−ċλ(n−1)Hπreg
(ρ0) +

Ĉ

ċ
λ
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Noticing that∫
log

ρregn

π
dρregn =

∫
log

ρregn

πreg
dρregn +

∫
log

πreg
π
dρregn

= Hπreg(ρ
reg
n ) +

∫
log

πreg
π
d(ρregn − π)−Hπreg(π)

≤ Hπreg(ρ
reg
n ) + λEρreg

n
[|x|2r+2] + λEπ[|x|2r+2].

The result follows by Lemma C.6. ■

Proof of Corollary 4. Using Pinsker’s inequality and the bound in Theorem 7 one obtains the
bound in total variation. Recall that for the W2 distance, since πreg satisfies a Log-Sobolev
inequality then, it satisfies a Talagrand inequality with same constant.

W2(L(x̄λn, π) ≤W2(L(x̄λn, πreg) +W2(π, πreg)

≤
√
2C−1

LSI(Hπreg(ρ
reg
n ) + 2C−1

LSI

√
Iπreg(π))

The first term can be bounded by Theorem 7 while the second term is√∫
|∇ log πreg(x)−∇ log π(x)|2dπ ≤ λ

√
Eπ[|x|4r+2].

Using the bound on the Log Sobolev constant and Lemma C.6 leads to the result. ■
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