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Abstract. In this paper, we examine the long-run behavior of regularized, no-regret
learning in finite games. A well-known result in the field states that the empirical
frequencies of no-regret play converge to the game’s set of coarse correlated equilibria;
however, our understanding of how the players’ actual strategies evolve over time
is much more limited – and, in many cases, non-existent. This issue is exacerbated
by a series of recent results showing that only strict Nash equilibria are stable and
attracting under regularized learning, thus making the relation between learning and
pointwise solution concepts particularly elusive. In lieu of this, we take a more general
approach and instead seek to characterize the setwise rationality properties of the
players’ day-to-day play. To that end, we focus on one of the most stringent criteria
of setwise strategic stability, namely that any unilateral deviation from the set in
question incurs a cost to the deviator – a property known as closedness under better
replies (club). In so doing, we obtain a far-reaching equivalence between strategic
and dynamic stability: a product of pure strategies is closed under better replies if
and only if its span is stable and attracting under regularized learning. In addition,
we estimate the rate of convergence to such sets, and we show that methods based
on entropic regularization (like the exponential weights algorithm) converge at a
geometric rate, while projection-based methods converge within a finite number of
iterations, even with bandit, payoff-based feedback.

1. Introduction

The question of whether players can learn to emulate rational behavior through
repeated interactions has been one of the mainstays of non-cooperative game theory, and
it has recently gained increased momentum owing to a surge of breakthrough applications
to machine learning and data science, from online ad auctions to multi-agent reinforcement
learning. Informally, this question can be stated as follows:
If every player follows an iterative procedure aiming to increase their individual payoff,

does the players’ long-run behavior converge to a rationally admissible state?
A natural setting for studying this question is to assume that each player is following a

no-regret algorithm, i.e., a policy which is asymptotically as good against a given sequence
of payoff functions as the best fixed strategy in hindsight. In this framework, the link
between learning and rationality is provided by a folk result which states that, under
no-regret learning, the empirical frequency of play converges to the game’s set of coarse
correlated equilibria (CCE) – also known as the game’s Hannan set [27]. This result has
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been of seminal importance to the field because no-regret play can be achieved via a
wide class of “regularized learning” policies, as exemplified by the “follow-the-regularized-
leader” (FTRL) family of algorithms [47, 48] and its variants – optimistic methods
[16, 29, 43, 44, 49], Hedge / EXP3 [4, 6, 10, 11], implicitly normalized forecasters [1, 3],
etc.

All these policies have (at least) one thing in common: they seek to provide the tightest
possible guarantees for each player’s individual regret, thus accelerating convergence to
the game’s Hannan set. As such, in games where the marginalization of coarse correlated
equilibria coincides with the game’s Nash equilibria (like two-player zero-sum games), we
obtain a positive equilibrium convergence guarantee: the long-run empirical frequency
of play evolves “as if” the players were rational to begin with – i.e., as if they had full
knowledge of the game, common knowledge of rationality, the ability to communicate
this knowledge, etc. On the other hand, the marginals of Hannan-consistent correlated
strategies may fail even the weakest axioms of rationalizability (such as the elimination
of strictly dominated strategies). In particular, a well-known example of Viossat &
Zapechelnyuk [51] (which we discuss in detail in Section 4) shows that it is possible
to have negative regret for all time, but still employ only strictly dominated strategies
throughout the entire horizon of play.

The reason for this disconnect is that no-regret play has significant predictive power
for the empirical frequency of play – that is, the long-run empirical distribution of pure
strategy profiles – but much less so for the players’ day-to-day sequence of play – i.e.,
the evolution of the players’ actual mixed strategies over time. In particular, even when
the marginalization of the Hannan set is Nash, the actual trajectory of play may – and,
in fact, often does – diverge away from the game’s set of equilibria [17, 25, 36–38] or
exhibits chaotic, unpredictable oscillations [13, 40]. Thus, especially in the context of
regularized learning – where players learn independently from one another, with no
common correlating device – the blanket guarantee of no-regret play may quickly become
irrelevant, providing the veneer of rational behavior but not the substance.

Motivated by the above, our paper seeks to understand the rationality properties of the
players’ actual sequence of play under regularized learning, as encoded by the following
question:

Which sets of mixed strategies are stable and attracting under regularized learning?
Are these sets robust to strategic deviations? And, if so, is the converse also true?

Our contributions in the context of related work. This question has attracted significant
interest in the literature, especially in its pointwise version, namely: Which mixed strategy
profiles are stable and attracting under regularized learning? Are the dynamics’ stable
states robust to unilateral deviations? And, if so, are these the only stable states of
regularized learning?

In the related setting of population games, the answer to this question is sometimes
referred to as the “folk theorem of evolutionary game theory” [15, 28, 53]. Somewhat
informally, this theorem states that, under the replicator dynamics (the continuous-
time analogue of the exponential /multiplicative weights algorithm, itself an archetypal
regularized learning method), the following is true for all games: only Nash equilibria are
(Lyapunov) stable, and a state is stable and attracting under the replicator dynamics if
and only it is a strict Nash equilibrium of the underlying game [28, 53].

In the context of regularized learning, [14, 21, 35] showed that a similar equivalence
holds for the dynamics of FTRL in continuous time: a state is stable and attracting
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under the FTRL dynamics if and only if it is a strict Nash equilibrium. Subsequently,
Giannou et al. [23, 24] extended this equivalence to an entire class of regularized learning
schemes, with different types of feedback and/or update structures – from optimistic
methods to algorithms run with bandit, payoff-based information. In all these cases, the
same principle emerges: under regularized learning, a state is asymptotically stable and
attracting if and only if it is a strict Nash equilibrium.

This is an important pointwise prediction but it does not cover cases where regularized
learning algorithms do not converge to a point, but to a set (such as a limit cycle or other
non-trivial attractor). In this case, the very definition of strategic stability is an intricate
affair, and there are several definitions that come into play [7, 18, 22, 45]. The first such
notion that we consider is that of “resilience to strategic deviations”, namely that every
unilateral deviation from the set under study is deterred by some other element thereof.
Our first contribution in this direction is a universal guarantee to the effect that, with
probability 1, in any game, and from any initial condition, the long-run limit of any
regularized learning algorithm is a resilient set.

This result is significant in its universality, but the notion of resilience is not sufficiently
strong to disallow irrational behavior – and, in fact, it is subject to similar shortcomings
as Hannan consistency. To account for this deficiency, we turn to a much more stringent
criterion of setwise strategic stability, that of closedness under better replies (club). This
notion, originally due to Ritzberger & Weibull [45], states that any deviation from a
product of pure strategies is costly, and it is one of the strictest setwise refinements in
game theory. In particular, it refines the notion of closedness under rational behavior
(curb) [7], and it satisfies all the seminal strategic stability requirements of Kohlberg &
Mertens [32], including robustness to strategic payoff perturbations.1

In this general context, we show that regularized learning enjoys a striking relation
with club sets: A product of pure strategies is closed under better replies if and only if
its span is stable and attracting under regularized learning. In fact, we show that this
equivalence can be refined to sets that are minimally closed under better replies (in the
sense that they do not contain a strictly smaller closed under better replies (club) set): a
product of puer strategies is minimally club (m-club) if and only if its span is irreducibly
stable and attracting (in that it does not contain a smaller asymptotically stable span of
strategies). Finally, we also estimate the rate of convergence to club sets, and we establish
convergence at a geometric rate for entropically regularized methods – like Hedge and
EXP3 – and in a finite number of iterations under projection-based methods.

In light of the above, our results can be seen both as a far-reaching setwise generalization
of the folk theorem of evolutionary game theory, as well as a bona fide algorithmic analogue
of a precursor result for the replicator dynamics, originally due to Ritzberger & Weibull
[45]. Importantly, our analysis covers several different update structures – “vanilla”
regularized methods, but also their optimistic variants – as well as a wide range of
information models – from full payoff information to bandit, payoff-based feedback.

2. Preliminaries

We start by recalling some basic facts and definitions from game theory, roughly
following the classical textbook of Fudenberg & Tirole [22]. First, a finite game in
normal form consists of a) a finite set of players i ∈ N ≡ {1, . . . , N}; b) a finite set of

1Roughly speaking, robustness to strategic payoff perturbations means that the set under study remains
stable even if the payoffs of the game are subject to small – but possibly adversarial – perturbations.
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actions – or pure strategies – Ai per player i ∈ N ; and c) an ensemble of payoff functions
ui :

∏
j Aj → R, each determining the reward ui(α) of player i ∈ N in a given action

profile α = (α1, . . . , αN ). Collectively, we will write A =
∏

j Aj for the game’s action
space and Γ ≡ Γ(N ,A, u) for the game with primitives as above.

During play, each player i ∈ N may randomize their choice of action by playing a
mixed strategy, i.e., a probability distribution xi ∈ Xi := ∆(Ai) over Ai that selects
αi ∈ Ai with probability xiαi

. To lighten notation, we identify αi ∈ Ai with the mixed
strategy that assigns all weight to αi (thus justifying the terminology “pure strategies”).
Then, writing x = (xi)i∈N for the players’ strategy profile and X =

∏
i Xi for the game’s

strategy space, the players’ payoff functions may be extended to all of X by setting

ui(x) := Eα∼x[ui(α)] =
∑

α∈A
ui(α)xα (1)

where, in a slight abuse of notation, we write xα for the joint probability of playing α ∈ A
under x, i.e., xα =

∏
i xiαi . This randomized framework will be referred to as the mixed

extension of Γ and we will denote it by ∆(Γ).
For concision, we will also write (xi;x−i) = (x1, . . . , xi, . . . , xN ) for the strategy profile

where player i plays xi ∈ Xi against the strategy profile x−i ∈
∏

j ̸=i Xj of all other players
(and likewise for pure strategies). In this notation, we also define each player’s mixed
payoff vector as

vi(x) = (ui(αi;x−i))αi∈Ai
(2)

so the payoff to player i ∈ N under x ∈ X becomes

ui(x) =
∑

αi∈Ai

ui(αi;x−i)xiαi
= ⟨vi(x), xi⟩. (3)

Moving forward, the best-response correspondence of player i ∈ N is defined as the
set-valued mapping bri : X ⇒ Xi given by

bri(x) = argmaxx′
i∈Xi

ui(x
′
i;x−i) for all x ∈ X . (4)

Extending this over all players, we will write br =
∏

i bri for the product correspondence
br(x) = br1(x)× · · · × brN (x), and we will say that x∗ ∈ X is a Nash equilibrium (NE)
if x∗ ∈ br(x∗). Equivalently, given that ui(x′i;x−i) is linear in x′i, we conclude that x∗ is
a Nash equilibrium if and only if

ui(x
∗) ≥ ui(αi;x

∗
−i) for all αi ∈ Ai and all i ∈ N . (NE)

As a final point of note, if x∗ is a Nash equilibrium where each player has a unique best
response – that is, bri(x∗) = {x∗i } for all i ∈ N – we will say that x∗ is strict because,
in this case, ui(x∗) > ui(xi;x

∗
−i) for all xi ̸= x∗i , i ∈ N . An immediate consequence

of this is that strict equilibria are pure, i.e., each x∗i is a pure strategy. Among Nash
equilibria, strict equilibria are the only ones that are “structurally robust” (in the sense
that they remain invariant to small perturbations of the underlying game), so they play
a particularly important role in game theory.

3. Regularized learning in games

Throughout our paper, we will consider iterative decision processes that unfold as
follows:

(1) At each stage n = 1, 2, . . . , every participating agent selects an action.
(2) Agents receive a reward determined by their chosen actions and their individual

payoff functions.
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(3) Based on this reward (or other feedback), the agents update their strategies and
the process repeats.

In this online setting, a crucial requirement is the minimization of the players’ regret,
i.e., the difference between a player’s cumulative payoff over time and the player’s best
possible strategy in hindsight. Formally, if the players’ actions at each epoch n = 1, 2, . . .
are collectively drawn by the probability distribution zn ∈ ∆(A), the regret of each player
i ∈ N is defined as

Regi(T ) = maxαi∈Ai

∑T

n=1
[ui(αi; z−i,n)− ui(zn)], (5)

and we will say that player i has no regret if Regi(T ) = o(T ).
One of the most widely used policies to achieve no-regret play is the so-called “follow-

the-regularized-leader” (FTRL) family of algorithms and its variants [47, 48]. To moti-
vate the analysis to come, we begin with an archetypal FTRL method, the exponen-
tial /multiplicative weights algorithm, also known as Hedge [4, 5, 11].

3.1. A gentle start. We begin our discussion with a “stimulus–response” approach in the
spirit of Erev & Roth [20]: First, at each stage n = 1, 2, . . . , every player i ∈ N employs
a mixed strategy xi,n ∈ Xi to select an action αi,n ∈ Ai. Subsequently, to measure the
performance of their pure strategies over time, each player further maintains a score
variable which is updated recursively as

yiαi,n+1 = yiαi,n + ui(αi;α−i,n) for all αi ∈ Ai. (6)

In words, yiαi,n simply tracks the cumulative payoff of the pure strategy αi ∈ Ai up to
time n (inclusive).2 As such, this score can be treated as a propensity to play a given pure
strategy at any given stage: the strategies αi ∈ Ai with the highest propensity scores
yiαi,n+1 should be played with higher probability at stage n+ 1.

The most widely used instantiation of this stimulus-response mechanism is the logit
choice rule

Λi(yi) ≡
(exp(yiαi))αi∈Ai∑

αi∈Ai
exp(yiαi

)
(7)

which means that each player selects an action with probability that is exponentially
proportional to its score. In this way, we obtain the exponential /multiplicative weights –
or Hedge – algorithm

yi,n+1 = yi,n + γnvi(αn) xi,n+1 = Λi(yi,n+1) αi,n+1 ∼ xi,n+1 (Hedge)

where γn is the algorithm’s “learning rate”. For an introduction to the literature on
(Hedge), see [2, 10, 11, 33, 47] and references therein.

The rest of the methods we discuss below will vary some – or even all – of the components
of (Hedge): the information used to update the players’ propensity scores, the way
that propensity scores are mapped to mixed strategies, and/or even the way that pure
actions are selected. However, all of the methods under study will be characterized by the
same “stimulus-response” reinforcement mechanism: actions that seem to be performing
better over time are employed with higher probability, up to some “regularization” that
incentivizes exploration of underperforming actions.

2Of course, updating these scores requires the knowledge of the “what if” pure payoffs ui(αi;α−i,n)
at each stage n, but we assume for the moment that this information is available (we will relax this
assumption later on).
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3.2. The regularized learning template. In the rest of our paper, we will work with an
abstract regularized learning (RL) template which builds on the same stimulus-response
principle as (Hedge), while allowing us to simultaneously consider different types of
feedback, strategy sampling policies, update structures, etc. To lighten notation below,
we will drop the player index i ∈ N when the meaning can be inferred from the context;
also, to stress the distinction between “strategy-like” and “payoff-like” variables, we will
write throughout Yi := RAi and Y :=

∏
i Yi for the game’s “payoff space”, in direct

analogy to Xi and X =
∏

i Xi for the game’s strategy space.
With all this in hand, consider the following general class of regularized learning

methods:
Aggregate payoff information (stimulus): Yi,n+1 = Yi,n + γnv̂i,n

Update choice probabilities (response): Xi,n+1 = Qi(Yi,n+1)
(RL)

In tune with (Hedge), the various elements of (RL) are defined as follows:
(1) Xi,n ∈ Xi denotes the mixed strategy of player i at time n = 1, 2, . . .

(2) Yi,n ∈ Yi is a “score vector” that measures the performance of the player’s actions
over time.

(3) Qi : Yi → Xi is a “regularized choice map” that maps score vectors to choice
probabilities.

(4) v̂i,n is a surrogate / approximation of the mixed payoff vector vi(Xn) of player i at
time n.

(5) γn > 0 is a step-size / sensitivity parameter of the form γn ∝ 1/nℓγ for some
ℓγ ∈ [0, 1].

In words, at each stage of the process, every player i ∈ N observes – or otherwise estimates
– a proxy v̂i,n of their individual payoff vector; subsequently, players augment their actions’
scores based on this information, they select a mixed strategy via the regularized choice
map Qi, and the process repeats. To streamline our presentation, we discuss in detail the
precise definition of v̂ and Q in Sections 3.3 and 3.4 below, and we present a series of
examples of (RL) in Section 3.5 right after.

3.3. Aggregating payoff information. As noted above, the main idea of regularized
learning is to track the players’ payoff vector v(Xn). Importantly, there are several
different modeling choices that can be made here: players may have direct access to their
payoff vectors (in the full information setting), or some noisy approximation obtained by
an inner randomization of the algorithm (e.g., when they receive information on their
pure actions); they may have to recreate their payoff vectors altogether (as in the bandit
setting), or their estimates may be based on a strategy other than the one they actually
played (as in the case of optimistic algorithms).

In all cases, we will represent the surrogate payoff vector v̂n as

v̂n = v(Xn) + Un + bn (8)

where
bn = E[v̂n | Fn]− v(Xn) and Un = v̂n − E[v̂n | Fn] (9)

respectively denote the offset and the random error of v̂n relative to v(Xn). To streamline
our presentation, we will also assume that ∥bn∥ = O(1/nℓb) and ∥Un∥ = O(nℓσ ) for some
ℓb, ℓσ ≥ 0; we discuss the specifics of these bounds later in the paper.
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3.4. From scores to strategies. Regarding the “scores-to-strategies” step of (RL), we
will follow the classical approach of Shalev-Shwartz [47] and assume that each player is
employing a regularized choice map of the general form

Qi(yi) = argmaxxi∈Xi
{⟨yi, xi⟩ − hi(xi)} for all yi ∈ Yi. (10)

In the above, the regularizer hi : Xi → R acts as a penalty that smooths out the “hard”
argmax correspondence yi 7→ argmaxxi∈Xi

⟨yi, xi⟩. Accordingly, instead of following the
“leader” (i.e., playing the strategy with the highest propensity score), players follow the
“regularized leader” – that is, they allow for a certain degree of uncertainty in their choice
of strategy [10, 35, 47, 48].

To ease notation, we will work with kernelized regularizers of the form

hi(xi) =
∑

αi∈Ai
θ(xiαi

) (11)

for some continuous function θ : [0, 1]→ R with infz∈(0,1] θ
′′(z) > 0. We will also say that

the players’ regularizers are steep if limz→0+ θ
′(z) = −∞, and non-steep otherwise.

Example 3.1. A standard family of kernelized regularizers is given by

θ(z) = zρ/[ρ(ρ− 1)] for ρ ∈ (0, 2], (12)

for ρ ∈ (0, 1) ∪ (1, 2] and θ(z) = z log z for ρ = 1 [10, 33, 35, 55]. This family includes:
• For ρ = 2, Eq. (12) boils down to the quadratic regularizer θ(z) = z2/2, which in

turn yields the Euclidean projection map

Qi(yi) = ΠXi
(yi) ≡ argminxi∈Xi

∥yi − xi∥2. (13)

• For ρ = 1, Eq. (12) yields the entropic regularizer θ(z) = z log z, which in turn leads
the logit choice map (7).
• For ρ = 1/2, we obtain the fractional power regularizer θ(z) = −4

√
z that underlies

the Tsallis-INF algorithm of [1, 55] (see also Section 3.5 below). ♢

3.5. Specific algorithms. We now proceed to discuss some archetypal examples of (RL).

Algorithm 1 (Follow the regularized leader). The standard “follow-the-regularized-leader”
(FTRL) method of Shalev-Shwartz & Singer [48] is obtained when players observe their full
payoff vectors, that is, v̂i,n = vi(Xn). In this case, (RL) boils down to the deterministic
update rule

Yi,n+1 = Yi,n + γnvi(Xn) Xi,n+1 = Qi(Yi,n+1)

or, more explicitly

Xi,n+1 = argmaxxi∈Xi

{∑n

k=1
γkui(xi;X−i,k)− hi(xi)

}
(FTRL)

For a detailed discussion of (FTRL), see [10, 33, 47]. We only note here that, as a special
case, when (FTRL) is run with the logit choice setup of Eq. (7), a standard calculation
yields the exponential /multiplicative weights (Hedge) [4, 34, 47, 52]. ♢

Algorithm 2 (Optimistic FTRL). A notable variant of FTRL – originally due to Popov
[42] and subsequently popularized by Rakhlin & Sridharan [43, 44] – is the so-called
optimistic FTRL method. This scheme employs an “optimistic” correction intended to
anticipate future steps, and it updates as

Yi,n+1 = Yi,n + γn[2vi(Xn)− vi(Xn−1)] (Opt-FTRL)
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with Xi,n = Qi(Yi,n). As a special case, if (Opt-FTRL) is run with the logit choice map
(7), we obtain the familiar update rule known as optimistic multiplicative weights (OMW)
[16, 43, 44, 49].

Compared to (FTRL), the gain vector v̂n = 2v(Xn) − v(Xn−1) of (Opt-FTRL) has
offset bn = v(Xn)− v(Xn−1) relative to v(Xn). Thus, even though (Opt-FTRL) assumes
full access to the players’ mixed payoff vectors, it uses this information differently than
(FTRL): in particular, the offset of (Opt-FTRL) is non-zero by design, not because of
some systematic error in the payoff measurement process. ♢

Now, up to this point, we have not detailed how players might observe their full, mixed
payoff vectors. This assumption simplifies the analysis immensely, but it is not realistic
in applications to e.g., online advertising and network science, where players may only be
able to observe their realized payoffs, and have no information about the strategies of
other players or actions they did not play. On that account, we describe below a range
of payoff-based policies where players estimate their counterfactual, “what-if” payoffs
indirectly.

The most common way to achieve this is via the importance-weighted estimator

IWEiαi(x) =
1{α̂i = αi}

xiαi

ui(α̂) for all αi ∈ Ai, i ∈ N , (IWE)

where x ∈ X is the players’ strategy profile, and α̂ ∈ A is drawn according to x. This
estimator is at the heart of the online learning literature [10, 11, 33, 47] and it leads to
the following methods:

Algorithm 3 (Bandit FTRL). Plugging (IWE) directly into (RL) yields the bandit FTRL
policy

Yi,n+1 = Yi,n + γn IWEi(X̂n) Xi,n+1 = Qi(Yi,n+1) (B-FTRL)
where (IWE) is sampled at the mixed strategy profile

X̂i,n = (1− δn)Xi,n + δn unifAi (14)

for some “explicit exploration” parameter δn ∝ 1/nℓδ , ℓδ > 0, which specifies the mix
between Xi,n and the uniform distribution unifAi

on Ai. As we discuss in the sequel,
this combination of (IWE) with the explicit exploration mechanism (14) means that the
surrogate payoff vector v̂n = IWE(X̂n) used to update (B-FTRL) has offset and noise
bounded respectively as bn = O(δn) and Un = O(1/δn).

Two special cases of (B-FTRL) that have attracted significant attention in the literature
are:

(1) The exponential weights algorithm for exploration and exploitation (EXP3) [6, 11,
33], obtained by running (B-FTRL) with the logit choice map (7).

(2) The Tsallis implicitly normalized forecaster (Tsallis-INF) [1, 3, 54, 55] that was
proposed as a more efficient alternative to EXP3, and which updates as

Xi,n = argmaxxi∈Xi

{
⟨Yi,n, xi⟩+ 4

∑
αi∈Ai

√
xiαi

}
(Tsallis-INF)

i.e., as (B-FTRL) with the fractional power regularizer θ(z) = −4
√
z of Exam-

ple 3.1. ♢

For illustration purposes, we provide some more examples of (RL) in Appendix B.
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4. First results: resilience to strategic deviations

We are now in a position to begin our analysis of the rationality properties of the
players’ long-run behavior under (RL). To that end, we should first note that no-regret
play may still lead to counterintuitive and highly non-rationalizable outcomes, e.g., with
all players selecting dominated strategies for all time. The example below is adapted
from Viossat & Zapechelnyuk [51].

Example 4.1. Consider the 4× 4 symmetric 2-player game with payoff bimatrix

A B C D
A (1, 1) (1, 2/3) (0, 0) (0,−1/3)
B (2/3, 1) (2/3, 2/3) (−1/3, 0) (−1/3,−1/3)
C (0, 0) (0,−1/3) (1, 1) (1, 2/3)
D (−1/3, 0) (−1/3,−1/3) (2/3, 1) (2/3, 2/3)

In this game, B and D are strictly dominated for both players by their stronger “twins”
(A and C respectively). However, it is easy to check that if both players choose between
(B,B) and (D,D) with probability 1/2 each, the resulting distribution of play z ∈ ∆(A)
satisfies ui(αi; z−i) − ui(z) ≤ −1/6 for all αi ∈ {A,B,C,D}, i = 1, 2. As a result, the
players’ regret under zn ≡ z is negative, even though both players play strictly dominated
strategies at all times. ♢

The example above shows unequivocally that

No-regret play does not suffice to exclude non-rationalizable outcomes.

In addition, Example 4.1 also shows that predictions based on correlated play are not
always appropriate for describing the players’ behavior under (RL): the end-state of any
regularized learning algorithm will be a closed connected set of mixed strategies, so it
is not possible to play only (B,B) or (D,D) in the long run. We are thus led to the
following natural questions:

What are the rationality properties of long-run play under (RL)?
Is the players’ behavior robust to strategic deviations?

To study these questions formally, we will focus on the limit set L(X) of Xn under
(RL), viz.

L(X) :=
⋂

n
cl{Xk : k ≥ n} ≡ {x̂ ∈ X : Xnk

→ x̂ for some subsequence Xnk
of Xn}.

(15)
In words, L(X) is the set of limit points of Xn or, equivalently, the smallest subset of X
to which Xn converges. Clearly, the simplest instance of a limit set is when L(X) is a
singleton, i.e., when Xn converges to a point. This case has attracted significant interest
in the literature: for example, if L(X) = {x∗} then, for certain special cases of (RL), it
is known that x∗ is a Nash equilibrium of Γ [36]. However, beyond this relatively simple
regime, the structure of the limit sets of (RL) could be arbitrarily complicated and their
rationality properties are not well-understood.

With this in mind, as a first attempt to study whether the long-run behavior of (RL)
is “robust to strategic deviations”, we will consider the following notion of resilience to
strategic deviations:
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Definition 1. A closed subset S of X is said to be resilient to strategic deviations – or
simply resilient – if, for every deviation xi ∈ Xi of every player i ∈ N , we have

ui(x
∗) ≥ ui(xi, x∗−i) for some x∗ ∈ S. (16)

Informally, S is resilient if every unilateral deviation from S is deterred by some
(possibly different) element thereof. In particular, if S is a singleton, we immediately
recover the definition of a Nash equilibrium; beyond this case however, other examples
include the set of undominated strategies of a game, the support face of the equilibria of
two-player zero-sum games, etc. Importantly, as we show below, the limit sets of (RL)
are resilient in all games:

Theorem 1. Let Xn, n = 1, 2, . . . , be the sequence of play generated by (RL) with step-
size / gain parameters ℓγ > 2ℓσ and ℓb > 0. Then, with probability 1, the limit set L(X)
of Xn is resilient.

Corollary 1. With assumptions as above, if L(X) = {x∗}, x∗ is a Nash equilibrium w.p.1.

Proof sketch. The proof of Theorem 1 boils down to two interleaved arguments that
we detail in Appendix C. The first hinges on showing that, if P(L(X) = S) > 0
for some non-random S ⊆ X , S must be resilient. This is argued by contradic-
tion: if pi ∈ Xi is a unilateral deviation violating Definition 1, we must also have
lim infn→∞[ui(pi;X−i,n)− ui(Xn)] > 0 with positive probability. However, the existence
of a strategy that consistently outperforms Xn runs contrary to the fact that strategies
that (RL) selects against underperforming strategies. We make this intuition precise
via an energy argument that leverages a series of results from martingale limit theory
(which is where the requirements for γn, bn and Un come in). Then, to get the stronger
statement that the random set L(X) is resilient w.p.1, we show that the above remains
true if pi is replaced by a deviation qi which is close enough to pi and has rational entries.
Since there is a countable number of such profiles, we can use a union bound on an
enumeration of the rationals to isolate a deviation witnessing the negation of Definition 1;
our claim then follows by applying our argument for non-random sets. ■

Theorem 1 is our first universal guarantee for (RL), so some remarks are in order.
First, we should point out that the requirements ℓb > 0 and 2ℓσ < ℓγ are a priori implicit
because they depend on the offset and magnitude statistics of the feedback sequence v̂n.
However, in most learning algorithms, these quantities are under the explicit control of
the players: for example, as we show in Appendix B, Algorithm 2 has ℓb = ℓγ while, for
Algorithm 3, we have ℓb = ℓσ = ℓδ. In this way, when instantiated to Algorithms 1–3
(and special cases thereof), Theorem 1 yields the following corollary:

Corollary 2. Suppose that Algorithms 1–3 are run with ℓγ ∈ (0, 1] and, for Algorithm 3,
ℓδ ∈ (0, ℓγ/2). Then, with probability 1, the limit set L(X) of Xn is resilient.

Now, since Theorem 1 applies to all games, it would seem to provide a universally
positive answer to whether (RL) is robsut to strategic deviations. However, this is not
so: a direct calculation shows that the face of X that is spanned by the dominated
strategies (B,B) and (D,D) of Example 4.1 is resilient, so Theorem 1 cannot exclude
convergence to a set where dominated strategies survive. Thus, just like no-regret play,
the notion of resilience does not suffice by itself to capture the idea of rational behavior.
This is because, albeit natural, resilience is too lax to provide a meaningful link between
robustness to unilateral deviations – a game-theoretic requirement – and stability under
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regularized learning – a dynamic requirement. We address this question in detail in the
next section.

5. A characterization of strategic stability under regularized learning

Similar to the set of pure strategies that arise from no-regret play, the main limitation
of resilience is that a payoff-improving deviation may be countered by an action profile
where the deviator also switched to a different strategy; in other words, resilience is not
a self-enforcing barrier to deviations. In view of this, we will focus below on a much
more stringent criterion of strategic stability, namely that any deviation from the set in
question incurs a cost to the deviating agent.

Club sets. To make all this precise, define the better-reply correspondence of player i ∈ N
as

btri(x) = {x′i ∈ Xi : ui(x
′
i;x−i) ≥ ui(x)} (17)

and write btr =
∏

i btri for the product correspondence btr(x) = btr1(x)×· · ·×btrN (x).
[In words, btri assigns to each x ∈ X those strategies of player i that are (weakly) better
against x than xi.] In addition, given a product of pure strategies C =

∏
i∈N Ci with

Ci ⊆ Ai for all i ∈ N , let S = ∆(C) denote the span of C, and let P(X ) denote the
collection of all such sets. We then say that S ∈ P(X ) is closed under better replies –
a club set for short – if it is closed under btr, i.e., btr(S) ⊆ S; finally, S is said to be
minimally club (m-club) if it does not admit a proper club subset. 3

Of course, the entire strategy space X is closed under better replies so, a priori, club
sets could also contain dominated strategies and / or other non-rationalizable outcomes.
By contrast, minimal club sets are much more rigid in their relation to rational behavior
because any unilateral deviation from an m-club set is costly, and m-club sets are minimal
in this regard. On that account, m-club sets can be seen as the closest setwise analogue
to strict Nash equilibria.

This analogy is accentuated further by the following properties of m-club sets, all due
to Ritzberger & Weibull [45], who introduced the concept:

(1) Every game admits an m-club set; and if this set is a singleton, then it is a strict
Nash equilibrium.

(2) Any m-club set S is fixed under better replies, that is, btr(S) = S (implying
in turn that S cannot contain any dominated strategies, including iteratively
dominated ones).

(3) Any m-club set S contains an essential equilibrium component, i.e., a component
of Nash equilibria such that every small perturbation of the game admits a nearby
equilibrium; in addition, this component has full support on S, i.e., it employs all
pure strategy profiles that lie in S.4

3Analogously to club sets, S ∈ P(X ) is said to be closed under rational behavior (curb) if it is closed
under best replies, i.e., br(S) ⊆ S [7]. Clearly, club sets are also curb, but the converse does not hold, cf.
[45].

4Formally, a component X ∗ of Nash equilibria of Γ is essential if, for all ε > 0, there exists δ > 0 such
that any perturbation of the payoffs of Γ by at most δ produces a Nash equilibrium that is ε-close to X ∗

[50]. This property – known as “essentiality” – has a long history as one of the strictest setwise solution
refinements in game theory; in particular, it satisfies all the seminal strategic stability requirements
of Kohlberg & Mertens [32], including robustness to strategic payoff perturbations. For an in-depth
discussion, see van Damme [50].
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Going back to our online learning setting, the above leads to the following natural set
of questions:

Are club sets (minimal or not) stable under the dynamics of regularized learning?
Are they attracting? And, if so, are they the only such sets?

Any answer to these questions – positive or negative – would be an important step in
delineating the relation between strategic stability (in the above sense) and dynamic
stability under (RL). To that end, we start by formalizing some notions of dynamic
stability that will be central in the sequel:

Definition 2. Fix some subset S of X and a tolerance level ε > 0. We then say that S is:
(1) Stochastically stable if, for every neighborhood U of S in X , there exists a neigh-

borhood U1 of S such that

P(Xn ∈ U for all n = 1, 2, . . . ) ≥ 1− ε whenever X1 ∈ U1. (18)

(2) Stochastically attracting if there exists a neighborhood U1 of S such that

P(limn→∞ dist(Xn,S) = 0) ≥ 1− ε whenever X1 ∈ U1. (19)

(3) Stochastically asymptotically stable if it is stochastically stable and attracting.
(4) Irreducibly stable if S is stochastically asymptotically stable and it does not admit

a strictly smaller stochastically asymptotically subset S ′ with supp(S ′) ⊊ supp(S).

With all this in hand, our main result below provides a sharp characterization of
strategic stability in the context of regularized learning:

Theorem 2. Fix some set S ∈ P(X ) and suppose that (RL) is run with a steep regularizer
and step-size / gain parameters ℓγ ∈ [0, 1], ℓb > 0, and ℓσ < 1/2. Then:

(1) S is stochastically asymptotically stable under (RL) if and only if it is a club set.
(2) S is irreducibly stable under (RL) if and only if it is an m-club set.

In addition, we also get the following convergence rate estimates for club sets:

Theorem 3. Let S ∈ P(X ) be a club set, and let Xn, n = 1, 2, . . . , be the sequence of play
generated by (RL) with parameters ℓγ ∈ [0, 1], ℓb > 0, and ℓσ < 1/2. Then, for all ε > 0,
there exists an (open, unbounded) initialization domain D ⊆ Y such that, with probability
at least 1− ε, we have

dist(Xn,S) ≤ Cφ(c1 − c2
∑n

k=1 γk) whenever Y1 ∈ D (20)

where C, c1, c2 are constants (C, c2 > 0), and the rate function φ is given by φ(z) =
(θ′)−1(z) if z > limz→0+ θ

′(z), and φ(z) = 0 otherwise.

Specifically, if we instantiate Theorem 3 to Algorithms 1–3, we get the explicit estimates:

Corollary 3. Suppose that Algorithms 1–3 are run with ℓγ ∈ [0, 1] and, for Algorithm 3,
ℓδ ∈ (0, 1/2). Then, with notation as in Theorem 3, Xn converges to S at a rate of

dist(Xn,S) ≤ C ·


[1− c

∑n
k=1 γk]+ if θ(z) = z2/2 #Euclid. proj.

exp
(
−c
∑n

k=1 γk
)

if θ(z) = z log z # logit choice

1
/(
c+

∑n
k=1 γk

)2 if θ(z) = −4
√
z #Tsallis maps

(21)

for positive constants C, c > 0. In particular, the projection-based variants of Algo-
rithms 1–3 converge to m-club sets in a finite number of steps.
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Figure 1: The long-run behavior of EXP3 (Algorithm 3) in four representative
2×2×2 games. In all cases, the dynamics converge to m-club sets, either strict
equilibria themselves, or spanning an essential component of Nash equilibria.
The details of the numerics and the games being played are provided in the
appendix.

Proof sketch. The proof of Theorems 2 and 3 is quite involved so we defer it to Appendix D.
At a high level, it hinges on constructing a family of “primal-dual” energy functions, one
per pure deviation from the set S under study. If unilateral deviations from S incur a cost
to the deviator (that is, if S is club), these energy functions can be “bundled together”
to produce a suitable Lyapunov-like function for S. In more detail, the minimization
of each individual energy function implies that the score variable Yn of (RL) diverges
along an “astral direction” in the payoff space Y – i.e., it escapes to infinity along the
interior of a certain convex cone of Y [19]. Because this minimization occurs at infinity,
the aggregation of offsets and random errors in (RL) affords some extra “wiggle room”
in our martingale analysis, so we are able to show that Xn = Q(Yn) remains close to
S under a much wider range of parameters compared to Theorem 1. Then, a series of
convex analysis arguments in the spirit of [35] coupled with the definition of Q allows us
to show that the escape of Yn along the intersection of all these cones implies convergence
to S at the specified rate.

On the converse side, if an asymptotically stable set is not club, we can find a non-
costly (and possibly profitable) deviation z from S which is selected against by (RL).
However, this extinction runs contrary to the reinforcement of better replies under (RL),
an argument which can be made precise by applying the martingale law of large numbers
to ⟨Yn, z⟩ [26]. The irreducible stability of m-club sets then follows by invoking this
criterion reductively for any potentially stable subset S ′ of S. ■

6. Discussion and concluding remarks

Theorems 2 and 3 are our main results linking dynamic and strategic stability, so we
conclude with a series of remarks.

First, we should note that Theorem 2 can be summed up as follows: a product of pure
strategies is (minimally) closed under better replies if and only if its span is (irreducibly)
stable under regularized learning. Importantly, this equivalence is based solely on the
game’s payoff data: it does not depend on the specific choices underlying (RL), including
the choice map employed by each player, whether some players are using an optimistic
adjustment or not, if they have access to their full payoff vectors, etc. As such, this
equivalence provides a crisp operational criterion for identifying which pure strategy
combinations ultimately persist under regularized learning – and, via Theorem 3, how
fast this identification takes place.



14 V. BOONE AND P. MERTIKOPOULOS

In this light, Theorem 2 essentially states that the only robust prediction that can be
made for the outcome of a regularized learning process is (minimal) closedness under
better replies. This interpretation has significant cutting power for the emergence of
rational behavior. To begin, in terms of equilibrium play, it readily implies that a pure
strategy profile is stochastically asymptotically stable under (RL) if and only if it is
a strict Nash equilibrium. A version of this equivalence was only recently proved in
[21] and [23] (in continuous and discrete time respectively), so Theorem 2 can be seen
as a far-reaching generalization of these recent results. More to the point, since every
m-club set S contains an essential equilibrium component that is fully supported in S,
Theorem 2 also provides an important link between dynamic and structural stability:
if an equilibrium – or a component of equilibria – is not robust to perturbations of the
underlying game, it cannot be robustly identified by a regularized learning process (and
vice versa). This remark is of particular importance for extensive-form games as such
games often have non-generic equilibrium components that cannot be treated otherwise
by the existing theory.

The above also places severe restrictions on which components of Nash equilibria
can be stable and attracting under (RL): if an equilibrium component does not span
a club set, it cannot be asymptotically stable (a fact which explains the behavior seen
in the Entry Deterrence game in Fig. 1). This observation goes a long way toward
explaining why regularized learning correctly identifies the support of Nash equilibria
in 2-player zero-sum games (but cannot go further), and also serves to illustrate why
the convergence of optimistic methods is destroyed in the presence of randomness and
uncertainty [12, 30]. By this token, Theorem 2 can be seen as a trade-off between how
robust versus how informative a learning prediction is from a strategic perspective. We
find this interpretation of Theorem 2 particularly appealing as it opens the door to several
fruitful research directions.

Finally, we should stress that Theorems 2 and 3 guarantee convergence even with a
constant step-size. Together with the finite-time convergence guarantees of Corollary 3
for projection-based methods, this feature is a testament to the robustness of club sets as,
in the presence of uncertainty, convergence invariably requires a vanishing step-size which
can slow things down to a crawl. We find this robust convergence landscape particularly
intriguing for future research on the topic.
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Appendix A. Auxiliary results

In this appendix we collect some basic properties of the regularized choice maps and
some results from probability theory that will be useful in the sequel.
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A.1. Regularized choice maps and their properties. Thoughout this appendix, we will
suppress the player index i ∈ N , and we will follow standard conventions in convex
analysis [46] that treat h as an extended-real-valued function h : V → R ∪ {∞} with
h(x) = ∞ for all x ∈ V \ X . With this in mind, the subdifferential of a h at x ∈ X is
defined as

∂h(x) := {y ∈ Y : h(x′) ≥ h(x) + ⟨y, x′ − x⟩ for all x′ ∈ X}, (A.1)

where Y denotes here the algebraic dual V∗ of V. Accordingly, the domain of subdiffer-
entiability of h is dom ∂h := {x ∈ domh : ∂h ̸= ∅}, and the convex conjugate of h is
defined as

h∗(y) = max
x∈X
{⟨y, x⟩ − h(x)} (A.2)

for all y ∈ Y. We then have the following basic results.

Lemma A.1. Let h be a regularizer on X , and let Q : Y → X be the induced choice map.
Then:

(1) Q is single-valued, and, for all x ∈ X , y ∈ Y, we have x = Q(y) ⇐⇒ y ∈ ∂h(x).
(2) For all x ∈ riX , we have

∂h(x) = {(θ′(xα) + µ)α∈A : µ ∈ R}. (A.3)

(3) The prox-domain Xh := imQ of h satisfies riX ⊆ Xh ⊆ X .
(4) For all y ∈ Y, we have Q(y) = ∇h∗(y). and Q is (1/K)-Lipschitz continuous

with K := inf(0,1] θ
′′(z). In particular, as a special case, the logit choice map Λ is

1-Lipschitz continuous in the (L1, L∞) pair of norms on Y and X respectively.
(5) If yα − yα′ → −∞ for some α′ ̸= α, then Qα(y)→ 0.

Remark. Some of the properties presented in Lemma A.1 are well known in the literature
on regularized learning methods (see e.g., [35] and references therein), but we provide a
proof of the entire lemma for completeness. ♢

Proof of Lemma A.1. For the first property of Q, note that the maximum in (10) is
attained for all y ∈ Y because h is lower-semicontinuous (l.s.c.) and strongly convex.
Furthermore, x solves (10) if and only if y − ∂h(x) ∋ 0, i.e., if and only if y ∈ ∂h(x).

For our second claim, if x ∈ ri(X ), the first-order stationarity conditions for the convex
problem (10) that defines Q become

yα − θ′(xα) = µ for all α ∈ A, (A.4)

because the inequality constraints xα ≥ 0 are all inactive (recall that x ∈ ri(X ) by
assumption). Now, by the first part of the theorem we have x = Q(y) if and only if
y ∈ ∂h(x), so we conclude that ∂h(x) = {(θ′(xα) + µ)α∈A : µ ∈ R}, as claimed.

For the fourth item, the expression Q = ∇h∗ is an immediate consequence of Danskin’s
theorem, while the Lipschitz continuity of Q follows from standard results, see e.g., [46,
Theorem 12.60(b)].

For our last claim, let yn be a sequence in Y such that yα,n − yα′,n → −∞ and
let xn = Q(yn). Then, by descending to a subsequence if necessary, assume there
exists some ε > 0 such that xα,n ≥ ε > 0 for all n. Then, by the defining relation
Q(y) = argmax{⟨y, x⟩ − h(x)} of Q, we have:

⟨yn, xn⟩ − h(xn) ≥ ⟨yn, x′⟩ − h(x′) (A.5)
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for all x′ ∈ X . Therefore, taking x′n = xn + ε(eα′ − eα), we readily obtain

ε(yα,n − yα′,n) ≥ h(xn)− h(x′n) ≥ minh−maxh (A.6)

which contradicts our original assumption that yα,n − yα′,n → −∞. With X compact,
the above shows that x∗α = 0 for any limit point x∗ of xn, i.e. Qα(yn)→ 0. ■

The second collection of results concerns the Fenchel coupling, an energy function that
was first introduced in [35, 36] and is defined as follows:

F (p, y) = h(p) + h∗(y)− ⟨y, p⟩ for all p ∈ X and y ∈ Y. (A.7)

This coupling will play a major role in the proofs of Theorem 1, so we prove two of its
most basic properties below.

Lemma A.2. For all p ∈ X and all y, y′ ∈ Y, we have:
a) F (p, y) ≥ 1

2K ∥Q(y)− p∥2. (A.8a)

b) F (p, y′) ≤ F (p, y) + ⟨y′ − y,Q(y)− p⟩+ 1
2K ∥y

′ − y∥2∞. (A.8b)
In particular, if h(0) = 0, we have

(K/2)∥Q(y)∥2 ≤ h∗(y) ≤ −minh+ ⟨y,Q(y)⟩+ (2/K)∥y∥2∞ for all y ∈ Y. (A.9)

Proof of Lemma A.2. By the strong convexity of h relative to ∥·∥ (cf. Lemma A.1), we
have

h(x) + t⟨y, p− x⟩ ≤ h(x+ t(p− x))
≤ th(p) + (1− t)h(x)− 1

2Kt(1− t)∥x− p∥
2, (A.10)

leading to the bound
1
2K(1− t)∥x− p∥2 ≤ h(p)− h(x)− ⟨y, p− x⟩ = F (p, y) (A.11)

for all t ∈ (0, 1]. The bound (A.8a) then follows by letting t→ 0+ in (A.11).
For our second claim, we have

F (p, y′) = h(p) + h∗(y′)− ⟨y′, p⟩

≤ h(p) + h∗(y) + ⟨y′ − y,∇h∗(y)⟩+ 1

2K
∥y′ − y∥2∞ − ⟨y′, p⟩

= F (p, y) + ⟨y′ − y,Q(y)− p⟩+ 1

2K
∥y′ − y∥2∞, (A.12)

where the inequality in the second line follows from the fact that h∗ is (1/K)-strongly
smooth [46, Theorem 12.60(e)]. ■

A.2. Basic results from probability theory. We conclude this appendix with some useful
results from probability theory that we will use freely throughout the sequel. For a
complete treatment, we refer the reader to Hall & Heyde [26].

Lemma A.3 (Azuma-Hoeffding inequality). Let Mn ∈ R, n = 1, 2, . . . , be a martingale
with ∥Mn −Mn−1∥∞ ≤ σn (a.s.). Then, for all η > 0, we have

P
(
|Mn| ≤

(
2 log(2n2/η)

∑n

k=1
σ2
k

)1/2
for all n

)
≥ 1− η. (A.13)
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Lemma A.4 (Kolmogorov’s inequality). Let Zn ∈ R, n = 1, 2, . . . , be a martingale
difference sequence that is bounded in L2. Then:

P
(
max
k≤n

∑k

ℓ=1
Zℓ ≥ ε

)
≤ 1

ε2
E
[(∑n

k=1
Zk

)2]
for all ε > 0. (A.14)

Lemma A.5 (Doob’s maximal inequality). Let Zn ∈ R, n = 1, 2, . . . , be a martingale
difference sequence that is bounded in Lp for some p ≥ 1. Then

P
(
max
k≤n
|Zk| > ε

)
≤ 1

εp
E
[
|Zn|p

]
for all ε > 0. (A.15)

Lemma A.6 (Burkholder–Davis–Gundy inequality). Let Zn, n = 1, 2, . . . , be a martingale
difference sequence in Rn. Then, for all p > 1, there exist constants cp, Cp that depend
only on p and are such that

cp E

[
n∑

k=1

∥Zk∥22

]p/2
≤ E

[
max
k≤n

∥∥∥∥∥
k∑

ℓ=1

Zℓ

∥∥∥∥∥
p

2

]
≤ Cp E

[
n∑

k=1

∥Zk∥22

]p/2
. (A.16)

Lemma A.7 (Robbins–Siegmund). Let Fn, n = 1, 2, . . . , be a filtration on a complete
probability space (Ω,F ,P), and suppose that the sequences Xn, Ln and Kn Fn-measurable,
nonnegative, and such that

E[Xn+1 | Fn] ≤ Xn(1 + Ln) +Kn with probability 1. (A.17)

Then, Xn converges to some random variable X∞ with probability 1 on the event{ ∞∑
n=1

Ln <∞ and
∞∑

n=1

Kn <∞

}
. (A.18)

Appendix B. Specific algorithms and their properties

B.1. Known algorithms as special cases of (RL). To complement our analysis in the
main part of our paper, we detail below how Algorithms 1–3 can be recast in the
general framework of (RL). To lighten notation, we will assume that bn, Un and v̂n are
respectively bounded as

∥bn∥∞ ≤ Bn ∥Un∥∞ ≤ σn and ∥v̂n∥∞ ≤Mn (B.1)

and we will set
G := max

i∈N
max
α∈A
|vi(α)| (B.2)

so we can take Mn = G+Bn + σn in (B.1). We will also make free use of the fact that
v is Lipschitz continuous on X , and we will write L for its Lipschitz modulus in the
(L1, L∞) pair of norms on X and Y respectively, viz.

∥v(x′)− v(x)∥∞ ≤ L∥x′ − x∥1 for all x, x′ ∈ X . (B.3)

We now proceed to establish the required bounds for Algorithms 1–3:
Algorithm 1. Since v̂n = v(Xn), we readily get bn = Un = 0 by definition, so Algorithm 1
fits the scheme (RL) for free with ℓb =∞, ℓσ = 0. ♢
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Algorithm 2. For the case of (Opt-FTRL), we have v̂n = 2v(Xn) − v(Xn−1) so bn =
v(Xn)− v(Xn−1), which is Fn-measurable. We thus get

∥bn∥∞ = ∥E[v̂n | Fn]− v(Xn)∥∞
≤ E[∥v(Xn)− v(Xn−1)∥∞ | Fn]

≤ LE[∥Xn −Xn−1∥ |Fn] # by (B.3)
= LE[∥Q(Yn)−Q(Yn−1)∥∞ | Fn] # by (Opt-FTRL)
≤ (L/K)E[∥Yn − Yn−1∥∞ | Fn] # by Lemma A.1
≤ γn(L/K)E[2v(Xn)− v(Xn−1) | Fn] # by (Opt-FTRL)
≤ 3LG/K · γn # by (B.2)

= O(γn) = O(1/nℓγ ) (B.4)

Moreover, given that v̂ is Fn-measurable, we readily get Un = 0. ♢

Algorithm 3. Since α̂n is sampled according to X̂n = (1−δn)Xi,n+δn unifAi (cf. Eq. (14)
in Section 3), we readily obtain E[v̂i,n | Fn] = vi(X̂n), and hence, by (B.3), we get

Bn = O(∥X̂n −Xn∥) = O(δn) = O(1/nℓδ). (B.5)

Moreover, since X̂iαi,n ≥ δn/Ai, it follows that ∥v̂n∥∞ = O(1/δn) = O(nℓδ). ♢

For comparison purposes, we illustrate the algorithms’ behavior in a simple 2× 2× 2
game in Fig. 2 in Appendix E.

B.2. Further algorithms and illustrations. To demonstrate the breadth of (RL) as an
algorithmic template, we provide below some more examples of algorithms from the
game-theoretic literature that can be recast as special cases thereof (see also Table 1 for
a recap).

Algorithm 4 (Mirror-prox). A progenitor of (Opt-FTRL) is the so-called mirror-prox
(MP) algorithm [31, 39], which updates as:

Ỹn = Yn + γnv(Xn) Yn+1 = Yn + γnv(X̃n)

X̃n = Q(Ỹn) Xn+1 = Q(Yn+1).
(MP)

The main difference between (MP) and (Opt-FTRL) is that the former utilizes two
surrogate gain vectors per iteration – meaning in particular that the interim, leading
state X̃n is generated with payoff information from Xn, not X̃n−1. This method has
been used extensively in the literature for solving variational inequalities and two-player,
zero-sum games, cf. Juditsky et al. [31] and references therein.

A calculation similar to that for (Opt-FTRL) shows that Algorithm 4 has Bn =
O(1/nℓγ ) and σn = 0 because the algorithm has no further randomization. ♢

Algorithm 5 (Clairvoyant multiplicative weights). A recent variant of (Hedge) is the
so-called clairvoyant multiplicative weights (CMW) algorithm [41]

Yi,n+1 = Yi,n + γnvi(Xn+1) Xi,n+1 = Λi(Yi,n+1). (CMW)

The main difference between (CMW) and (Hedge) is that the proxy payoff vector v̂n in
(CMW) is based on the future state Xn+1 and not the current state Xn. To perform this
“clairvoyant” update, the players of the game must coordinate to solve an implicit fixed
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Representative Regularizer (θ) Feedback Bias (Bn) Variance (σn)

Algorithm 1 Hedge z log z full info 0 0

Algorithm 2 OMW z log z full info O(1/nℓγ ) 0

Algorithm 3 EXP3 z log z payoff O(1/nℓδ ) O(nℓδ )

Algorithm 3 Tsallis-INF −4
√
z payoff O(1/nℓδ ) O(nℓδ )

Algorithm 4 MP general full info O(1/nℓγ ) 0

Algorithm 5 CMW z log z full info O(1/nℓδ ) 0

Table 1: A range of algorithms adhering to the general template (RL) and
their bias and variance characteristics when run with a step-size sequence of
the form γn = γ/nℓγ , ℓγ ∈ (0, 1], and, where applicable, a sampling parameter
δn = δ/nℓδ .

point problem, so (CMW) is only meaningful when one has access to the payoff function
v(·). In this regard, (CMW) can be seen as a Bregman proximal point method in the
general spirit of Bauschke et al. [8].

To cast (CMW) as an instance of the generalized template (RL), simply note that the
sequence of input signals is given by v̂n = v(Xn+1), so Un = 0 and bn = v(Xn+1)−v(Xn) =
O(γn) = O(1/nℓγ ). ♢

Appendix C. Proof of Theorem 1

Our main goal in this appendix will be to prove Theorem 1 on the resilience properties
of (RL). For convenience, we restate below the relevant result for ease of reference:

Theorem 1. Let Xn, n = 1, 2, . . . , be the sequence of play generated by (RL) with step-
size / gain parameters ℓγ > 2ℓσ and ℓb > 0. Then, with probability 1, the limit set L(X)
of Xn is resilient.

Proof. Our proof that L(X) is resilient hinges on an energy-based technique that we will
employ repeatedly in other parts of our analysis. To begin, introduce a player-strategy
deviation pair (i, zi), and say that a set is resilient to (i, zi) if there exists an element of
the set, say x∗, which counters said deviation, i.e., such that ui(x∗) ≥ ui(zi;x∗−i). In this
specific case, our proof proceeds by contradiction, namely by assuming that, with positive
probability, L(X) is not resilient to (i, zi). The main steps of our proof unfold as follows:

Step 1. Assume that L(X) is not resilient to (i, zi) with positive probability. Then there
exists c, ϵ, n0 > 0 such that

P(ui(zi;Xn,−i) ≥ ui(Xn) + c for all n ≥ n0) ≥ ϵ. (C.1)

Proof of Step 1. The function f : x ∈ X 7→ ui(zi;x−i) − ui(x) is continuous and X is
compact, so there is a definite function η ≡ η(δ) such that if ∥x − x′∥ ≤ η(δ), then
|f(x)− f(x′)| ≤ δ. Now, by assumption, {∀x∗ ∈ L(X), ui(zi;x

∗
−i) > ui(x

∗)} is of positive
probability. We thus get

0 < P
{
∀x∗ ∈ L(X), ui(zi;x

∗
−i) > ui(x

∗)
}

= P
{

inf
x∗∈L(X)

(
ui(zi;x

∗
−i)− ui(x∗)

)
> 0

}
(C.2a)
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= P

( ⋃
m>0

{
inf

x∗∈L(X)

(
ui(zi;x

∗
−i)− ui(x∗)

)
> 2−m

})
(C.2b)

≤ 1

2
P
{
∀x∗ ∈ L(X), ui(zi;x

∗
−i)− ui(x∗) > 2c

}
(C.2c)

for some c > 0 in (C.2c), and where (C.2a) is because L(X) is closed – hence compact –
almost surely. Therefore, by definition of η(·),

0 < P
{
∀x∗ ∈ X ,dist(x∗,L(X)) ≤ η(c)⇒ ui(zi;x

∗
−i)− ui(x∗) > c

}
= 2ϵ (C.2d)

Now, let n0 such that P{∀n ≥ n0,dist(Xn,L(X)) ≤ η(c)} > 1− ϵ
2 . Then by construction,

we get
P{∀n ≥ n0, ui(zi;Xn,−i) > ui(Xn) + c} > ϵ. (C.3)

and our proof is complete. ■

Intuitively, the existence of an action that consistently outperforms Xn runs contrary
to the behavior that one would expect from any regularized learning algorithm. We will
proceed to make this intuition precise below by means of an energy argument. To that
end, consider the Fenchel coupling

Fi,n = hi(zi) + h∗i (Yi,n)− ⟨Yi,n, zi⟩ (C.4)

Then, by Lemma A.2 in Appendix A, we readily get that

Fi,n+1 ≤ Fi,n − γn⟨v̂i,n, zi −Xi,n⟩+
γ2n
2κh
∥v̂i,n∥2∞. (C.5)

where, in obvious notation, we are identifying zi ∈ Ai with the corresponding vertex
ezi of Xi = ∆(Ai). To proceed, the main idea will be to relate γn⟨v̂i,n, zi −Xi,n⟩ to its
“perfect” counterpart γn⟨vi(Xn), zi −Xi,n⟩. We formalize this below.

Step 2. If L(X) is not resilient to (i, zi), there exists n1 ≥ n0 such that, with probability
ε′/2 > 0, and for all n ≥ n1, we have

Fi,n ≤ Fi,n0 −
c

2

n∑
k=n0

γk. (C.6)

Proof of Step 2. With probability ε′ and for all n ≥ n0, we have

γn⟨v̂i,n, zi −Xi,n⟩ = γn⟨vi(Xn), zi −Xi,n⟩+ γn⟨Ui,n, zi −Xi,n⟩+ γn⟨bi,n, zi −Xi,n⟩
≥
[
c+ ⟨Ui,n, zi −Xi,n⟩+ ⟨bi,n, zi −Xi,n⟩

]
γn. (C.7)

The combination of Eqs. (C.5) and (C.7) then provides the following upper bound of
Fi,n+1:

Fi,n+1 ≤ Fi,n − cγn + γn⟨Ui,n, zi −Xi,n⟩+ γn⟨bi,n, zi −Xi,n⟩+
γ2n
2κh
∥v̂i,n∥2∞

≤ Fi,n0
− c

n∑
k=n0

γk +

n∑
k=n0

∥v̂k,i∥2∞
2κh

γ2k

+

n∑
k=n0

γk⟨Uk,i, zi −Xk,i⟩︸ ︷︷ ︸
EU,n

+

n∑
k=n0

γk⟨bk,i, zi −Xk,i⟩︸ ︷︷ ︸
Eb,n

. (C.8)
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We are thus left to show is that c
∑n

k=n0
γk is the dominant term above. To do so, we

proceed to examine each term individually:

• Second-order term: We first deal with the second-order term
∑n

k=n0

∥v̂k,i∥2
∞

2κh
γ2k. By

expanding the ∥v̂k,i∥2∞, we readily get∑n
k=n0
∥v̂k,i∥2∞γ2k
τn

= O
(∑n

k=1 γ
2
k(1 +B2

k + σ2
k)∑n

k=1 γk

)
. (C.9)

However, by our assumptions on the parameters of (RL), we readily get

lim
n→∞

γ2n(1 +B2
n + σ2

n)

γn
= 0 (C.10)

so we conclude that

lim
n→∞

∑n
k=1 γ

2
k(1 +B2

k + σ2
k)∑n

k=1 γk
= 0 (C.11)

by the Stolz-Cesàro theorem.

• Bias term: By far the most immediate, the bias term Eb,n is bounded as

Eb,n ≤ 2

n∑
k=n0

∥bi,n∥∞γk ≤ 2

n∑
k=n0

Bkγk = o

(
n∑

k=n0

γk

)
as n→∞. (C.12)

• Noise term: Finally, the noise term EU,n is bounded by means of the Azuma-
Hoeffding inequality, cf. Lemma A.3 in Appendix A. Specifically, with probability
at least 1− ε′/2, we have

EU,n :=

n∑
k=n0

γk⟨Uk,i, zi −Xk,i⟩

≤ 2

(
n∑

k=n0

∥Uk,i∥2∞γ2k

)1/2√
2 log

(
4n2

ε′

)

≤ 2

(
n∑

k=n0

σ2
kγ

2
k

)1/2√
2 log

(
4n2

ε′

)
. (C.13)

for all n ≥ n0. To proceed, note that a second application of the Stolz-Cesàro
theorem yields

∑n
k=n0

σ2
kγ

2
k = o(

∑n
k=n0

γk) and, moreover, note that log(4n2/ε′) =

O(
∑n

k=n0
γk). Taking square roots and multiplying then yields that

EU,n = o

(
n∑

k=n0

γk

)
(C.14)

with probability at least 1− ε′/2.
We are now in a position to establish the bound Eq. (C.6). Indeed, putting Eqs. (C.11),

(C.12) and (C.14) together, we readily infer that there exists n1 ≥ n0 such that, with
probability at least 1− ε′/2, we have

n∑
k=n0

γk⟨Uk,i, zi −Xk,i⟩+
n∑

k=n0

γk⟨bk,i, zi −Xk,i⟩+
n∑

k=n0

∥v̂k,i∥2∞
2κh

γ2k ≤
c

2

n∑
k=n0

γk (C.15)
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for all n ≥ n1. This proves Eq. (C.6) and concludes our proof. ■

Summarizing the above, we have shown that, with probability at least 1− ε′/2, we
have

Fi,n+1 ≤ Fn0
− c

2

n∑
k=n0

γk → −∞ as n→∞. (C.16)

Since F is nonnegative (by Lemma A.2), we have established that the event where
L(X) is not resilient to (i, zi) is an event of probability zero. However, since there
are uncountably many strategic deviations, the proof is not yet complete; the last step
involves an approximation by deviations with rational entries.

Step 3. L(X) is almost-surely resilient.

Proof of Step 3. The key point of the proof is the observation that a closed set is resilient
if and only if it is rationally resilient, i.e., it nullifies all rational deviations zi ∈ Xi ∩QAi

(which are countably many). Indeed, if L(X) is not resilient with positive probability, then,
likewise, L(X) will not be rationally resilient with positive probability either. Because
there are countably many rational deviations, there must be a rational strategic deviation
(i, zi) (with zi ∈ Xi ∩QAi) to which L(X) is not resilient. This comes in contradiction
with the conclusions of Step 2. ■

This concludes the last required step, so the proof of Theorem 1 is now complete. ■

Appendix D. Proof of Theorems 2 and 3

In this last appendix, our goal is to prove our characterization of club sets, namely:

Theorem 2. Fix some set S ∈ P(X ) and suppose that (RL) is run with a steep regularizer
and step-size / gain parameters ℓγ ∈ [0, 1], ℓb > 0, and ℓσ < 1/2. Then:

(1) S is stochastically asymptotically stable under (RL) if and only if it is a club set.
(2) S is irreducibly stable under (RL) if and only if it is an m-club set.

Theorem 3. Let S ∈ P(X ) be a club set, and let Xn, n = 1, 2, . . . , be the sequence of play
generated by (RL) with parameters ℓγ ∈ [0, 1], ℓb > 0, and ℓσ < 1/2. Then, for all ε > 0,
there exists an (open, unbounded) initialization domain D ⊆ Y such that, with probability
at least 1− ε, we have

dist(Xn,S) ≤ Cφ(c1 − c2
∑n

k=1 γk) whenever Y1 ∈ D (20)

where C, c1, c2 are constants (C, c2 > 0), and the rate function φ is given by φ(z) =
(θ′)−1(z) if z > limz→0+ θ

′(z), and φ(z) = 0 otherwise.

Our proof strategy will be to construct a sheaf of “linearized” energy functions which,
when bundled together, yield a suitable Lyapunov-like function for S. To do so, let
C =

∏
i Ci denote the support of S (cf. the definition of club sets), and let

Zi = {eiα′
i
− eiαi

: αi ∈ Ci, α′
i ∈ Ai \ Ci} (D.1)

and
Z =

⋃
i∈N
Zi (D.2)

denote the set of all pure strategic deviations from S. Then, our ensemble of candidate
energy functions will be given by

Ez(y) = ⟨y, z⟩ for z ∈ Z, y ∈ V∗. (D.3)
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The motivation for this definition is given by the following lemma.

Lemma D.1. Suppose that the sequence yn ∈ V∗, n = 1, 2, . . . , has Ez(yn)→ −∞ for all
z ∈ Z as n→∞. Then the sequence xn = Q(yn) converges to S as n→∞.

Proof. Let z = eiα′
i
−eiαi

for some i ∈ N , αi ∈ Ci, and α′
i ∈ Ai \Ci. Since Ez(yn)→ −∞

by assumption, we get yiα′
i,n
− yiαi,n → −∞ and hence, by Lemma A.1, we conclude that

Qiα′
i
(xn)→ 0 as n→∞. In turn, given that this holds for all i ∈ N and all α′

i ∈ Ai \ Ci,
we conclude that xn = Q(yn) converges to S. ■

In view of the above, we will focus on showing that Ez(Yn)→ −∞ for all z ∈ Z. As a
first step, we establish a basic template inequality for the evolution of Ez under (RL).

Lemma D.2. Fix some z ∈ Z and let En := Ez(Yn). Then, for all n = 1, 2, . . . , we have

En+1 ≤ En + γn⟨v(Xn), z⟩+ γnξn + γnψn (D.4)

where the error terms ξn and ψn are given by

ξn = ⟨Un, z⟩ and ψn = 2Bn. (D.5)

Proof. Simply set y ← Yn+1 in Ez(y), invoke the definition of the update Yn ← Yn+1 in
(RL), and note that |⟨bn, z⟩| ≤ ∥z∥∥bn∥∞ ≤ 2Bn by the definition of Z. ■

The key take-away from (D.4) is that, if Xn is close to S and αi ∈ Ci, α′
i ∈ Ai \ Ci, we

will have

⟨v(Xn), z⟩ = viα′
i
(Xn)− viαi(Xn) = ui(α

′
i;X−i,n)− ui(αi;X−i,n) < 0 (D.6)

by the continuity of ui and the assumption that S is a club set. More concretely, by the
definition of the better-reply correspondence, we have

⟨v(x∗), z⟩ < 0 for all x∗ ∈ S and all z ∈ Z (D.7)

and hence, by continuity, there exists a neighborhood B of S such that

⟨v(x), z⟩ < 0 for all x ∈ B and all z ∈ Z. (D.8)

In other words, as long as Xn is sufficiently close to S, (D.4) exhibits a consistent negative
drift pushing En towards −∞.

To exploit this “dynamic consistency” property of S, it will be convenient to introduce
the family of sets

D(ε) = {y ∈ V∗ : ⟨y, z⟩ < −ε for all z ∈ Z} (D.9)
As we show below, these sets are mapped under Q to neighborhoods of S, so they are
particularly well-suited to serve as initialization domains for (RL). This is encoded in
the following properties:

Lemma D.3. Let x = Q(y) for some y ∈ V∗. Then, for all αi, α
′
i, i ∈ N , we have

xiαi
≤ φ

(
θ(1−) + yiα′

i
− yiαi

)
(D.10)

with φ defined as per Theorem 3, i.e.,

φ(z) =


0 if z ≤ θ′(0+),
(θ′)−1(z) if θ′(0+) < z < θ′(1−),

1 if z ≥ θ′(1−).
(D.11)
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Corollary D.1. For all δ > 0 there exists some εδ ∈ R such that, for all ε > εδ and all
y ∈ Dε, we have

Qiα′
i
(yi) < δ for all α′

i ∈ Ai \ Ci and all i ∈ N . (D.12)

Proof of Lemma D.3. Suppressing the player index for simplicity, the first-order station-
arity conditions for the convex problem (10) readily give

yα − θ′(xα) = µ− να, (D.13)

where µ is the Lagrange multiplier for the equality constraint
∑

α xα = 1, and να is
the complementary slackness multiplier of the inquality constraint xα ≥ 0 (so να = 0
whenever xα > 0). Thus, rewriting (D.13) for some α ∈ A, we get

yα′ − yα = θ′(xα′)− θ′(xα) + να − να′ (D.14)

and hence

θ′(xα′) = θ′(xα) + να′ − να + yα′ − yα ≤ θ′(1−) + να′ + yα′ − yα, (D.15)

where we used the fact that να ≥ 0. Now, if θ′(1−) + yα′ − yα < θ′(0+) and xα′ > 0
(so να′ = 0), we will have θ′(xα′) < θ′(0+), a contradiction. This shows that xα′ = 0 if
θ′(1−) + yα′ − yα < θ′(0+), so (D.10) is satisfied in this case. Otherwise, if xα′ > 0, we
must have να′ = 0 by complementary slackness, so (D.10) follows by applying the second
branch of (D.11) to (D.15). ■

The above provides us with a fairly good handle on the local geometric and dynamic
properties of S. On the flip side however, the various error terms in (D.5) may be positive,
so En may fail to be decreasing and Xn may drift away from S. On that account, it will
be convenient to introduce the aggregate error processes

In =

n∑
k=1

γkξk and IIn=

n∑
k=1

γkψk. (D.16)

Intuitively, the aggregates (D.16) measure the total effect of each error term in (D.4), so
we will establish a first series of results under the following general requirements:

(1) Subleading error growth:

lim
n→∞

In/τn = 0 (Sub.I)

lim
n→∞

IIn/τn = 0 (Sub.II)

where τn =
∑n

k=1 γk and both limits are to be interpreted in the almost sure sense.

(2) Drift dominance:

P(In ≤ Cταn /2 for all n) ≥ 1− η (Dom.I)

P(IIn ≤ Cταn /2 for all n) ≥ 1− η (Dom.II)

for some C > 0 and α ∈ [0, 1).
In a nutshell, (Sub) posits that the aggregate error processes In and IIn of (D.16) are

subleading relative to the long-run drift of (D.4), while (Dom) goes a step further and
asks that said errors are asymptotically dominated by the drift in (D.4). Accordingly,
under these implicit error control conditions, we obtain the interim convergence result
below:
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Proposition D.1. Let S be a club set, fix some confidence threshold η > 0, and let
Xn = Q(Yn) be the sequence of play generated by (RL). If (Sub) and (Dom) hold, there
exists an unbounded initialization domain D ⊆ V∗ such that

P(Xn converges to S | Y1 ∈ D) ≥ 1− 2η. (D.19)

Proof of Proposition D.1. Fix some z ∈ Z, let En = Ez(Yn), and pick α ∈ [0, 1) so
that (Dom) holds for some C > 0. In addition, set c = − supx∈B⟨v(x), z⟩ > 0, let
n0 = inf{n : cτn > Cταn }, and write ∆E = maxn{Cταn − cτn}. Then, if Y1 is initialized in
D ← D(ε+∆E) where ε is such that D(ε) ⊆ B, we will have Yn ∈ D(ε) for all n. Indeed,
this being trivially the case for n = 1, assume it to be the case for all k = 1, 2, . . . , n.
Then, by (D.4) and our inductive hypothesis, we get

En+1 ≤ E1 −
n∑

k=1

γk⟨v(Xk), z⟩+ In + IIn

≤ −ε−∆E − cτn + Cταn /2 + Cταn /2

≤ −ε−∆E +∆E = −ε (D.20)

i.e., En+1 ∈ D(ε), as claimed.
Now, since En ∈ D(ε) for all n, we conclude that

En+1 ≤ E1 − cτn + In + IIn for all n = 1, 2, . . . (D.21)

Thus, if (Sub) holds, we readily get En → −∞ with probability 1 on the event that
(Dom.I) and (Dom.II) both hold. This implies that En → −∞, and since z ∈ Z above is
arbitrary, we conclude that Xn → S with probability at least 1− 2η, as claimed. ■

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Our proof will hinge on showing that (Sub) and (Dom) hold under
the stated step-size and sampling parameter schedules. Our claim will then follow by a
direct application of Proposition D.1 and a reduction to a suitable subface of X .

First, regarding (Sub), the law of large numbers for martingale difference sequences
[26, Theorem 2.18] shows that In/τn → 0 with probability 1 on the event{∑

n

γ2n E[ξ2n | Fn]/τ
2
n <∞

}
. (D.22)

However
E[ξ2n | Fn] ≤ 22 E[∥Un∥2∞ | Fn] ≤ 22σ2

n = O(n2ℓσ ) (D.23)

so, in turn, we get∑
n

γ2n E[ξ2n | Fn]

τ2n
= O

(∑
n

γ2nσ
2
n

τ2n

)
= O

(∑
n

n−2ℓγn2ℓσ

n2(1−ℓγ)

)
= O

(∑
n

1

n2−2ℓσ

)
<∞

(D.24)
given that ℓσ < 1/2. This establishes (Sub.I); the remaining requirement (Sub.II) follows
trivially by noting that

∑n
k=1 γkBk

/∑n
k=1 γk → 0 if and only if Bn → 0, which is

immediate from the theorem’s assumptions.
Second, regarding (Dom), since Bn is deterministic and Bn = O(1/nℓb) for some ℓb > 0,

it is always possible to find C > 0 and α ∈ (0, 1) so that (Dom.II) holds. We are thus left
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to establish (Dom.I). To that end, let I∗n = sup1≤k≤n|In| and set Pn := P(I∗n > Cταn /2) so

Pn ≤
E[|In|q]

(C/2)qταqn
≤ cq

E[
(∑n

k=1 γ
2
k∥Uk∥2∞

)q/2
]

ταqn
(D.25)

where cq is a positive constant depending only on C and q, and we used Kolmogorov’s
inequality (Lemma A.4) in the first step and the Burkholder–Davis–Gundy inequality
(Lemma A.6) in the second.

To proceed, we will require the following variant of Hölder’s inequality [9, p. 15]:(
n∑

k=1

akbk

)ρ

≤

(
n∑

k=1

a
λρ
ρ−1

k

)ρ−1 n∑
k=1

a
(1−λ)ρ
k bρk (D.26)

valid for all ak, bk ≥ 0 and all ρ > 1, λ ∈ [0, 1). Then, substituting ak ← γ2k, bk ← ∥Uk∥2∞,
ρ← q/2 and λ← 1/2− 1/q, (D.25) gives

Pn ≤ cq
(
∑n

k=1 γk)
q/2−1∑n

k=1 γ
1+q/2
k E[∥Uk∥q∞]

ταqn
≤ cq

∑n
k=1 γ

1+q/2
k σq

k

τ
1+(α−1/2)q
n

(D.27)

We now consider two cases, depending on whether the numerator of (D.27) is summable
or not.
Case 1: ℓγ(1 + q/2) ≥ 1 + qℓσ. In this case, the numerator of (D.27) is summa-

ble under the theorem’s assumptions, so the fraction in (D.27) behaves as
O(1/n(1−ℓγ)(1+(α−1/2)q)).

Case 2: ℓγ(1 + q/2) < 1 + qℓσ. In this case, the numerator of (D.27) is not sum-
mable under the theorem’s assumptions, so the fraction in (D.27) behaves as
O
(
n1−ℓγ(1+q/2)+qℓσ

/
n(1−ℓγ)(1+(α−1/2)q)

)
.

Thus, working out the various exponents, a tedious – but otherwise straightforward –
calculation shows that there exists some α ∈ (0, 1) such that Pn is summable as long as
ℓσ < 1/2− 1/q and 0 ≤ ℓγ < q/(2 + q). Hence, if γ is sufficiently small relative to η, we
conclude that

P(In ≤ Cταn /2 for all n) ≥ 1−
∑

n Pn ≥ 1− η/2. (D.28)

Finally, if ℓγ > 1/2 + ℓσ, (Dom.I) is a straightforward consequence of (D.25) for q = 2.
With all this in hand, the final steps of our proof proceed as follows:

Closedness =⇒ Stability. Our assertion follows by invoking Proposition D.1.
Stability =⇒ Closedness. Suppose that S is not club. Then there exists some pure
strategy α ∈ C and some deviation α′ ̸∈ C such that the deviation from α to α′ is not
costly to the deviating player. Thus, if we consider the restriction of the game to the face
spanned by α and α′ (a single-player game with two strategies), the corresponding score
difference will be

yα′,n − yα,n ≥
∑
k=1

γkbk +
∑
k=1

γkUk (D.29)

By our standing assumptions for bn and Un (and Doob’s martingale convergence theorem
for the latter), both

∑
k=1 γkbk and

∑
k=1 γkUk will be bounded from below by some

(a.s.) finite random variable A0. Since θ is steep, it follows that, with probability 1,
lim infn→∞(yα,n) > 0, so C cannot be stable.
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Minimality =⇒ Irreducible Stability. Suppose that S is m-club. Then, by our previous
claim, S is stochastically asymptotically stable. If S contains a proper subface S ′ ⊊ S that
is also stochastically asymptotically stable, S ′ must be club by the converse implication
of the first part of the theorem. However, in that case, S would not be m-club, a
contradiction which proves our claim.
Irreducible Stability =⇒ Minimality. For our last claim, assume that S is irreducibly
stable. By the first part of our theorem, this implies that S is club. Then, if it so
happens that S is not m-club, it would contain a proper club subface S ′ ⊊ S; by the
first part of our theorem, this set would be itself stochastically asymptotically stable, in
contradiction to the irreducibility assumption. This shows that S is m-club and concludes
our proof. ■

We are only left to establish the convergence rate estimate of Theorem 3.

Proof of Theorem 3. Going back to (D.21) and invoking Lemma D.3 shows that there
exist constants c1 > 0 and c2 ∈ R such that, for all αi ∈ Ai \ Ci, i ∈ N , we have

Xiαi,n ≤ φ
(
θ(1−) + En

)
≤ φ(c2 − c1τn) (D.30)

with probability 1 on the events of (Dom). We thus get

dist1(Xn,S) ≤
∑
i∈N

∑
αi∈Ai\Ci

φ(c2 − c1τn), (D.31)

and our proof is complete. ■

As for the rate estimates of Corollary 3, the proof boils down to a simple derivation of
the corresponding rate functions:

Proof of Corollary 3. By a straightforward calculation, we have:
(1) If θ(z) = z log z then φ(z) = exp(1 + z).
(2) If θ(z) = −4

√
z then φ(z) = 4/z2.

(3) If θ(z) = z2/2 then φ(z) = [z]10.
Our claims then follow immediatly from the rate estimate (20) of Theorem 2. ■

Appendix E. Numerical experiments

In all our experiments, we ran the EXP3 variant of bandit FTRL (B-FTRL) (cf.
Algorithm 3) with step-size and sampling radius parameters γn = 0.2 × n−1/2 and
δn = 0.1 × n−0.15 respectively. The algorithm was run for T = 104 iterations and, to
reduce graphical clutter, we plotted only every third point of each trajectory. Trajectories
have been colored throughout with darker hues indicating later times (e.g., light blue
indicates that the trajectory is closer in time to its starting point, darker shades of blue
indicate proximity to the termination time). The algorithm’s initial conditions were taken
from a uniform initialization grid of the form y1 ∈ {−1, 0, 1}3 and perturbed by a uniform
random number in [−0.1,−0.1] to avoid non-generic initializations.

In general, the two defining elements of (RL) are a) the regularizer of the method; and
b) the feedback available to the players. From our experiments, we conclude that methods
with Euclidean regularization tend to have faster identification rates (i.e., converge to the
support of an equilibrium / club set faster), but they are more “extreme” than methods
with an “entropy-like” regularizer (in the sense that players tend to play pure strategies
more often). As for the feedback available to the players, payoff-based methods tend
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Figure 2: The long-run behavior of Algorithms 1–3 in a 2× 2× 2 game. Algo-
rithms 1 and 2 were run with a logit choice map as per (Hedge); Algorithm 3
was run with both variants, EXP3 and Tsallis-INF. All algorithms were
run for 5× 105 iterations with γn = 1/n0.4 and δn = 0.1/n0.15; color indicates
time, with darker hues indicating later iterations. The face to the left is closed
under better replies, so Xn converges quickly to said face (as per Theorems 2
and 3).

to have higher variance (and hence a slower rate of convergence) relative to methods
with full information; otherwise, from a qualitative viewpoint, there are no perceptible
differences in their limiting behavior.

Finally, optimistic / extra-oracle methods with full information exhibit better con-
vergence properties in two-player zero-sum games (relative to standard FTRL policies);
however, this is a fragile advantage that evaporates in the presence of noise and/or uncer-
tainty (in which case "vanilla" and "optimistic" methods are essentially indistinguishable).
We illustrate these findings in Fig. 2.

Regarding Fig. 1, the payoffs of the chosen games were normalized to [−1, 1] and
players are assumed to choose between two actions labeled “O” and “1”. The specific
tableaus are shown in the table below, next to the respective portrait (all taken from
Fig. 1.
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