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Abstract. In this paper, we investigate how randomness and uncertainty influence
learning in games. Specifically, we examine a perturbed variant of the dynamics of “follow-
the-regularized-leader” (FTRL), where the players’ payoff observations and strategy
updates are continually impacted by random shocks. Our findings reveal that, in a
fairly precise sense, “uncertainty favors extremes”: in any game, regardless of the noise
level, every player’s trajectory of play reaches an arbitrarily small neighborhood of a
pure strategy in finite time (which we estimate). Moreover, even if the player does not
ultimately settle at this strategy, they return arbitrarily close to some (possibly different)
pure strategy infinitely often. This prompts the question of which sets of pure strategies
emerge as robust predictions of learning under uncertainty. We show that (a) the only
possible limits of the FTRL dynamics under uncertainty are pure Nash equilibria; and
(b) a span of pure strategies is stable and attracting if and only if it is closed under better
replies. Finally, we turn to games where the deterministic dynamics are recurrent—such
as zero-sum games with interior equilibria—and show that randomness disrupts this
behavior, causing the stochastic dynamics to drift toward the boundary on average.

1. Introduction

The surge of breakthrough applications of game theory to machine learning and data
science—from multi-agent reinforcement learning to online ad auctions and recommender
systems—has brought to the forefront the fundamental question of “as if” rationality: whether
selfishly-minded, myopic agents may eventually learn to behave “as if” they were fully rational.
This question dates back to Nash [53, p. 21] who observed that, in the presence of uncertainty,
“the players of the game may not have full knowledge of [the game’s] structure, or the ability
and inclination to go through any complex reasoning process to calculate an equilibrium.
But the participants are still supposed to adapt by accumulating empirical information on
the relative advantages of the various pure strategies at their disposal.”

A natural context to study this question is that of no-regret learning algorithms and
dynamics—and, in particular, the family of learning dynamics known as “follow-the-regularized-
leader” (FTRL). The leading example of this class is the replicator dynamics of Taylor
& Jonker [63], the continuous-time limit of the exponential /multiplicative weights (EW)
algorithm [4, 5, 40, 64], and a central object of study in a rich literature at the intersection
of learning theory, games, and optimization, cf. the textbook treatments of Hofbauer &
Sigmund [25], Weibull [66] and Sandholm [59]. The FTRL dynamics enjoy a broad range
of appealing properties—from (near-)optimal regret guarantees [33, 62] and convergence to
equilibrium in potential games [23, 43], to a version of the folk theorem of evolutionary game
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theory [26, 42]—so, together with their many variants and extensions, they have become
virtually synonymous with sequential learning in games.

At the same time, many of the most powerful and widely used results of FTRL rely—often
implicitly—on having access to perfect, deterministic information and exact knowledge of
the players’ payoffs. This level of precision is often difficult to justify in real-world decision-
making scenarios, whether due to imperfect observations, stochastic fluctuations in the
players’ environment, or intrinsic variabilities in the observed outcomes. In view of this, we
ask the question:

What is the impact of noise, randomness,
and uncertainty on the FTRL dynamics?

Our contributions in the context of related work. Our findings can be summarized by a
disarmingly simple mantra:

“Uncertainty favors extremes.”
By this, we mean that, irrespective of the structure of the game or the level of noise and
uncertainty, the FTRL dynamics tend to favor pure over mixed strategies.

In more detail, our model for noise and uncertainty in the dynamics hinges on the
introduction of a catch-all, martingale noise term, which is flexible enough to capture all
sources of observational uncertainty, stochastic disturbances, and/or any other elements
of randomness in the players’ learning dynamics. This leads to a stochastic differential
equation (SDE) driven by possibly correlated noise, which we refer to as the stochastic
FTRL dynamics. Earlier dynamics of this type have been considered by Foster & Young [20]
(in the context of the replicator dynamics as a model of pairwise proportional imitation),
Fudenberg & Harris [21] (in the context of population dynamics), and Mertikopoulos &
Moustakas [41] (for learning in games with exponential / multiplicative weights), with follow-
up works by Bravo & Mertikopoulos [13], Cabrales [14], Engel & Piliouras [17], Hofbauer
& Imhof [24], Imhof [28], and many others. We review the relevant literature in Section 3
and Appendix F.

Our first main result establishes a universal property of the stochastic FTRL dynamics,
marking a clear departure from the noiseless, deterministic regime. To state it informally:

In any game, for any noise level,
every player approaches a pure strategy in finite time.

Even though the dynamics may not settle at this strategy, they will return arbitrarily close
to some (possibly different) pure strategy infinitely often, ultimately leading to the following
important consequence:

The only possible limits of the stochastic
FTRL dynamics are pure Nash equilibria.

The contrapositive of this statement is also significant, because it shows that, unless the
underlying game admits a pure Nash equilibrium, the stochastic FTRL dynamics cannot
converge. In turn, this prompts the question of which pure strategies are present in sets that
are stable and attracting under the stochastic FTRL dynamics. As it turns out, there is a
third universal principle at play here:

A span of pure strategies is stable and attracting
iff it is closed under better replies.

This echoes earlier results for the replicator dynamics in continuous [56] or discrete time [12],
but it otherwise sets the stochastic FTRL dynamics apart from other models of randomness
and uncertainty—namely the stochastic dynamics of Foster & Young [20] and Fudenberg &
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Harris [21] which do not satisfy this principle. In particular, it encompasses as a special case
the following equivalence: a state is stochastically asymptotically stable if and only if it is
a strict Nash equilibrium. This principle is sometimes referred to as the “folk theorem” of
evolutionary game theory, and it mirrors the deterministic version of [18], and the discrete-
time analogue of [22]. Still, it is important to underline that this equivalence fails outright
in other stochastic models of learning, indicating that the way that uncertainty enters the
process has a critical impact on the dynamics’ rationality properties.

Finally, we analyze the impact of uncertainty in cases where the deterministic FTRL
dynamics are recurrent—that is, they return infinitely often arbitrarily close to where
they started. This class of games includes two-player zero-sum games with a fully mixed
equilibrium [48, 55] and, more broadly, the class of harmonic games [1, 15, 34]. In stark
contrast to the deterministic case, uncertainty causes the dynamics to drift on average toward
the boundary, escaping from any compact set of fully mixed strategies in finite time, and
taking infinite time to return to it once outside.

All these results underline the central mantra that “uncertainty favors extremes”. Specifi-
cally, in the presence of randomness and uncertainty, players are much more likely to alternate
indefinitely—and randomly—between their pure strategies instead of staying close to a mixed
equilibrium. This conclusion has important consequences for predicting the outcome of a
learning process as it underscores the fragility of mixed equilibria in an unequivocal manner.

2. Preliminaries

2.1. Basic definitions from game theory. Throughout our paper, we will work with finite
games in normal form. A game of this type consists of the following primitives:

(1) A finite set of players indexed by i ∈ N = {1, . . . , N}.
(2) For each player i ∈ N , a finite set of actions—or pure strategies—indexed by αi ∈
Ai = {1, . . . , ni}.

(3) For each player i ∈ N , an associated payoff function ui : A → R, where A =
∏

j Aj

denotes the game’s space of action profiles α = (α1, . . . , αN ).

A finite game as above will be denoted by Γ ≡ Γ(N ,A, u).
When playing the game, each player i ∈ N may randomize their choice of action by means

of a mixed strategy, that is, a probability distribution xi over Ai. In terms of notation, we
will write xiαi

for the probability with which player i ∈ N selects αi ∈ Ai, and Xi :=∆(Ai)
for the strategy space of player i ∈ N (that is, the probability simplex over Ai). Also, in a
slight—but useful—abuse of notation, we will identify αi ∈ Ai with the mixed strategy that
assigns all probability weight to αi, thus justifying the terminology “pure strategies” for the
elements of Ai.

Moving forward, we will write x = (x1, . . . , xN ) for the players’ mixed strategy profile and
X ≡

∏
i Xi for the game’s strategy space. We will also employ the standard game-theoretic

shorthand (xi;x−i) = (x1, . . . , xi, . . . , xN ) for the strategy profile where player i plays xi ∈ Xi

against the mixed strategy x−i ∈
∏

j ̸=i Xj of all other players. Accordingly, the associated
mixed payoff of player i ∈ N in the mixed strategy profile x ∈ X is given by

ui(x) :=Eα∼x[ui(α)] =
∑

α∈A
ui(α)xα (1)

where xα denotes the joint probability of playing α ∈ A under x ∈ X . To distinguish between
“strategy-like” and “payoff-like” variables, we will write Yi :=RAi and Y =

∏
i Yi for the

game’s “payoff space”, in direct analogy with the game’s strategy space X =
∏

i Xi.
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More concisely, a game in normal form can be fully described by its payoff field v(x) =
(vi(x))i∈N where

vi(x) :=(ui(αi;x−i))αi∈Ai
= ∇xi

ui(x) (2)
denotes the mixed payoff vector of player i ∈ N , that is, the vector of payoffs to pure
strategies of player i against the mixed strategy profile x−i of i’s opponents. The game’s
mixed payoffs may then be recovered from (2) as

ui(x) =
∑

αi∈Ai

ui(αi;x−i)xiαi = ⟨vi(x), xi⟩ (3)

so v(x) captures all relevant payoff information in the game.

2.2. Nash equilibria. The leading solution concept in game theory is that of a Nash equilibrium
(NE). Formally, x∗ ∈ X is said to be a Nash equilibrium if it is unilaterally stable in the
sense that

ui(x
∗) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

Writing supp(x∗i ) = {αi ∈ Ai : x
∗
iαi

> 0} for the support of x∗i , it follows that x∗ is a Nash
equilibrium if and only if

ui(αi;x
∗
−i) ≥ ui(βi;x∗−i) (4)

for all αi ∈ supp(x∗i ) and all βi ∈ Ai. In turn, this characterization leads to the following
taxonomy for Nash equilibria:

(1) x∗ is called strict if inequality (4) is strict for all βi ̸= αi.
(2) x∗ is called pure if supp(x∗) is a singleton.
(3) If x∗ is not pure, we say that it is mixed ; and if supp(x∗) = A, we say that x∗ is fully

mixed.
We will revisit this classification several times in the sequel.

2.3. Regret and regularized learning. A fundamental requirement in online learning is the
minimization of the player’s regret, i.e., the aggregate payoff difference between a player’s
chosen strategy over time and the best fixed strategy in hindsight. Formally, assuming that
play evolves in continuous time, the (external) regret of player i ∈ N relative to a trajectory
of play x(t), t ∈ [0,∞) is defined as

Regi(T ) = max
pi∈Xi

∫ T

0

[ui(pi;x−i(t))− ui(x(t))] dt (5)

and we say that the player has no regret under x(t) if Regi(T ) = o(T ) as T →∞.
The most widely used method to attain no regret is the family of policies known as

“follow-the-regularized-leader” (FTRL) [42, 60, 61]. The main idea behind FTRL is that, at
all times t ≥ 0, each player i ∈ N plays a “regularized” best response to their cumulative
payoff vector up to time t, thus leading to the dynamics

ẏi(t) = vi(x(t))︸ ︷︷ ︸
aggregate payoffs

xi(t) = Qi(yi(t))︸ ︷︷ ︸
strategy update

(FTRL)

where
Qi(yi) = argmaxxi∈Xi

{⟨yi, xi⟩ − hi(xi)} (6)
denotes the regularized best response map of player i ∈ N .

In the above, yi ∈ Yi = RAi plays the role of an auxiliary “score vector” that encodes
the empirical performance of each strategy of player i ∈ N over time. As for the function
hi that appears in the definition of Qi, it is known as the method’s regularizer, and it
aims to “temper” the best-response correspondence yi 7→ argmaxpi∈Xi

⟨yi, xi⟩ in a way that
incentivizes exploration.
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The precise assumptions for hi in the literature can be somewhat varied. For our purposes—
and to streamline our presentation—we will assume that hi decomposes as

hi(xi) =
∑

αi∈Ai

θi(xiαi
) (7)

for some smooth kernel function θi : (0, 1) → R such that limz→0+ θ
′
i(z) = −∞ and

infz θ
′′
i (z) > 0 (so θi is strongly convex and steep at 0). Finally, to simplify some ex-

pressions in the sequel, we will assume that θ′′′i (z) < 0 for all z ∈ (0, 1); however, we stress
that this assumption is only made to render some expressions more transparent, and it does
not affect the gist of our results.

For concreteness, we present below two prime examples of (FTRL).

Example 1 (Entropic regularization). The go-to setup for (FTRL) is the entropic kernel
θi(z) = z log z. By standard results, (6) yields the so-called logit choice map

Λi(yi) :=
(exp(yiαi

))αi∈Ai∑
αi∈Ai

exp(yiαi
)
, (8)

and the resulting instance of (FTRL) is known as the exponential—or multiplicative—weights
algorithm, cf. [3–5, 40, 64] and references therein. By another standard calculation, the
evolution of x(t) under (FTRL) follows the replicator dynamics of Taylor & Jonker [63], viz.

ẋiαi
= xiαi

[viαi
(x)− ui(x)] . (RD)

This is one of the most widely studied models for learning in games, and it will play a major
role in our analysis. ❦

Example 2 (Log-barrier regularization). Another standard example is the log-barrier kernel
θi(z) = − log z. In this case, a direct derivation (which we omit) yields the affine scaling
dynamics

ẋiαi
= x2iαi

viαi
(x)− 1

∥xi∥22

∑
βi∈Ai

x2iβi
viβi

(x)

 . (AS)

These dynamics have a long and celebrated history in optimization going back to the interior-
point algorithms of Dikin [16] and Karmarkar [30, 31]; for a series of recent applications to
online learning and multi-armed bandit problems, see [65] and references therein. ❦

Going back to the general case, Kwon & Mertikopoulos [33] showed that (FTRL) enjoys
the constant regret bound

Regi(T ) ≤ maxhi −minhi . (9)
This guarantee justifies the popularity of (FTRL) as a no-regret policy and, in view of this,
it will be our dynamics of choice for the sequel.

3. The stochastic FTRL dynamics

The dynamics (FTRL) have been studied extensively in the literature, but their applica-
bility to real-world decision-making is constrained by the fact that they explicitly rely on
perfect, deterministic information and exact knowledge of the players’ payoffs. This level
of precision is often difficult to attain in practice, whether due to imperfect observations,
stochastic fluctuations in the players’ environment, or intrinsic variabilities in the observed
outcomes. To address this limitation, we provide below a stochastic version of (FTRL) which
explicitly incorporates the effects of randomness and uncertainty, leading in this way to a
more robust and realistic model for learning under noisy, uncertain conditions.
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3.1. Learning under uncertainty. To put all this on a solid footing, we will consider the
stochastic FTRL dynamics

dYi(t) = vi(X(t)) dt+ dMi(t)

Xi(t) = Qi(Yi(t)),
(S-FTRL)

which should be seen as a rigorous formulation of the informal model

ẏi(t) = vi(x(t)) + “noise” . (10)

In more detail, Mi(t), t ≥ 0, denotes a continuous square-integrable martingale with values
in the payoff space Yi = RAi of player i ∈ N , so (S-FTRL) itself represents an ordinary
(Itô) stochastic differential equation.1 In this regard, Mi(t) plays the role of a catch-all,
“colored noise” term intended to capture all sources of observational uncertainty, stochastic
disturbances, and/or any other elements of randomness in the players’ learning model.

More concretely, by the martingale representation theorem [54, Theorem 4.3.4], Mi(t)
can be written as dMi(t) = Ai(t) · dW(t) where W(t) = (Wk(t))1≤k≤m is an m-dimensional
Brownian motion and Ai(t) is a matrix-valued process in Rni×m.2 Our only assumption
here will be that the diffusion matrices Ai are state-dependent, that is, they only depend
on time through X(t) as Ai(t) ≡ σi(X(t)) for some Lipschitz function σi : X → Rni×m. On
that account, (S-FTRL) can be expressed in components as

dYiαi(t) = viαi(X(t)) dt+

m∑
k=1

σiαik(X(t)) dWk(t) (11)

or, more compactly, as

dY(t) = v(X(t)) dt+ σ(X(t)) · dW(t) (12)

where we set σ ≡ (σ1, . . . , σm)⊤ ∈ Rn×m for the overarching diffusion matrix of the process.
This system will serve as our main model for learning in the presence of uncertainty, so some
remarks are in order.

The first concerns the structure of the diffusion matrices σi, which, in their simplest,
diagonal form, yield the system

dYiαi
(t) = viαi

(X(t)) dt+ σiαi
(X(t)) dWiαi

(t) (13)

where each Wiαi(t), αi ∈ Ai, i ∈ N , is a Brownian motion in R, assumed independent across
all αi ∈ Ai and all i ∈ N . This uncorrelated model of uncertainty was first considered by
Bravo & Mertikopoulos [13] and it can be derived as a special case of our general framework
by taking Mi = (σiαiWiαi

)αi∈Ai
in (S-FTRL); see also [44, 45].

From a modeling standpoint, while relevant in a wide range of applications, the uncorrelated
model (13) overlooks important cases where the players’ payoffs are influenced by a common
source of randomness – for example, the outcome of the coin toss in Matching Pennies, or
the choice of routing path in a congestion game (where the delays along overlapping routes
are inherently correlated over their common edges), etc. Capturing such scenarios requires
the full extent of our framework, so we will work throughout with general diffusion matrices,
and we will only zoom in on the uncorrelated case when it helps make some quantitative
estimates more transparent and easier to state.

Finally, from a technical perspective, we should note that the stated assumptions guarantee
that the system (S-FTRL) is well-posed, that is, for any initial condition Y(0) ∈ Y , it admits

1For the requisite background to stochastic differential equations and stochastic analysis, we refer the
reader to Øksendal [54].

2Formally, W(t), Ai(t) and Mi(t) are all assumed to be adapted to some common, underlying filtration
F• = (Ft)t≥0.
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a unique strong solution that exists for all time. We state and prove this result formally in
Appendix C using the property that the players’ regularized best response maps Qi : Yi → Xi

are Lipschitz continuous.

3.2. Strategy dynamics and other stochastic models. Before moving forward with our analysis,
we proceed to describe the exact way in which the players’ strategies evolve over time under
(S-FTRL). The relevant result is as follows:

Proposition 1. The solutions of (S-FTRL) satisfy the stochastic differential equation

dXiαi = giαi

viαi −
∑

βi∈Ai

χiβiviβi

 dt (14a)

+ giαi

 dMiαi −
∑

βi∈Ai

χiβi dMiβi

 (14b)

+ giαi

m∑
k=1

ψ2
iαik −

∑
βi∈Ai

χiβiψ
2
iβik

 dt (14c)

where we set giαi = 1/θ′′i (xiαi), χiαi = giαi

/∑
βi∈Ai

giβi
, and ψ2

iαik
= − 1

2θ
′′′
i (xiαi)g

2
iαi

[
σiαik−∑

βi∈Ai
χiβiσiβik

]2.
The proof of Proposition 1 is an arduous combination of Itô’s lemma with elements

of convex analysis in the spirit of [13], so we defer it to Appendix C. From a conceptual
viewpoint, what is worth noting is that, despite the complicated form of (14), each term
admits a relatively simple interpretation:

(1) The term (14a) represents the evolution of the players’ strategies under (FTRL), i.e.,
the noiseless regime σ = 0.

(2) The martingale term (14b) captures the direct impact of the noise on the evolution of
X(t) under (S-FTRL).

(3) Finally, the term (14c) represents the second-order Itô correction that is propagated
to X(t) through the players’ regularized best response maps Qi : Yi → Xi. This term
also vanishes when σ = 0 but, in contrast to the martingale term (14b), it directly
affects the drift of (14) and induces a measurable bias component in the dynamics.

To facilitate the comparison of these dynamics with other models in the literature, we
will specialize to the replicator dynamics induced by the entropic setup of Example 1, with
uncorrelated noise of the form (13). Here, a straightforward computation gives

giαi
= χiαi

= xiαi
(15)

and, in a slight abuse of notation

ψ2
iαi

=

σiαi
−
∑

βi∈Ai

xiβi
σiβi

2

. (16)
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We thus obtain the stochastic replicator dynamics of exponential weights

dXiαi
= Xiαi

[
viαi
−
∑

βi∈Ai

Xiβi
viβi

]
dt

+Xiαi

σiαi
dWiαi

−
∑

βi∈Ai

σiβi
Xiβi

dWiβi


+
Xiαi

2

σ2
iαi

(1− 2Xiαi
)−

∑
βi∈Ai

σ2
iβi
Xiβi

(1− 2Xiβi
)

 dt .
(SRD-EW)

These dynamics were first studied by Mertikopoulos & Moustakas [41] and they should be
contrasted to the biological model of the stochastic replicator dynamics with aggregate shocks
of Fudenberg & Harris [21], viz.

dXiαi = Xiαi

viαi −
∑

βi∈Ai

Xiβiviβi

 dt
+Xiαi

σiαidWiαi −
∑

βi∈Ai

σiβiXiβi dWiβi


−Xiαi

σ2
iαi
Xiαi −

∑
βi∈Ai

σ2
iβi
X2

iβi

 dt .
(SRD-AS)

Finally, a third related model is the stochastic replicator dynamics of pairwise imitation of
Foster & Young [20]:

dXiαi
= Xiαi

viαi
−
∑

βi∈Ai

Xiβi
viβi

 dt
+Xiαi

σiαi
dWiαi

−
∑

βi∈Ai

σiβi
Xiβi

dWiβi

 .
(SRD-PI)

The origins of the latter two models are quite distinct from (S-FTRL), and they do not
stem from learning considerations: (SRD-AS) was originally derived as a biological model of
population evolution under “aggregate shocks” to the population’s reproductive fitness, while
(SRD-PI) is based on economic microfoundations involving revision protocols in population
games [46]. These models only coincide in the noiseless, deterministic regime; otherwise, in
the presence of noise and uncertainty, the drift is distinct (because of the Itô correction), and
as we show in the next section, this leads to drastically different behaviors in the long-run.

4. Analysis and results

We now proceed to state our main results for the stochastic dynamics (S-FTRL). To fix
notation, we will assume throughout that (S-FTRL) is initialized at some fixed x ∈ X , and
we will write Px and Ex for the law of the process starting at X(0) ← x and the induced
expectation thereof. Also, to quantify the level of noise and uncertainty in (S-FTRL), we
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Figure 1: Trajectories of play under (FTRL) and (S-FTRL) in four different
games (each game’s payoffs are reported on the corresponding plot). Deterministic
orbits are plotted in red, stochastic trajectories in shades of blue, with darker
hues indicating later points in time. In all cases, the trajectories of (S-FTRL)
drift toward the boundary, even when the corresponding deterministic orbits of
(FTRL) do not.

will consider the metrics
σ2
i,min :=min

x∈X
λmin(Σi(x)) σ2

min :=min
x∈X

λmin(Σ(x))

σ2
i,max :=max

x∈X
λmax(Σi(x)) σ2

max :=max
x∈X

λmax(Σ(x))
(17)

where Σi ≡ σiσ
⊤
i and Σ ≡ σσ⊤ are the quadratic covariation matrices of the noise in

(S-FTRL), and λmin (resp. λmax) denote the minimum (resp. maximum) eigenvalues thereof.
To state our results, we will require the assumptions below:

Assumption 1. The noise in (S-FTRL) has σ2
min > 0.

Assumption 2. The kernel functions θi enjoy the bound

sup0<z<1|θ′′′i (z)|
/
[θ′′i (z)]

2 <∞ for all i ∈ N . (18)

Finally, for some—but not all—of our results, we will require the following boundedness
assumption:

Assumption 3. The kernel functions θi are bounded, i.e., supz∈(0,1)|θi(z)| <∞ for all i ∈ N .

Of the above, Assumption 1 simply serves as a “certificate of uncertainty” that differentiates
the stochastic dynamics (S-FTRL) from their deterministic counterpart (the case σ = 0).
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As for Assumption 2, this is a technical requirement which is satisfied by all standard
regularizers used in practice (negentropy, Tsallis, log-barrier, etc.), so it is also very mild.
Finally, Assumption 3 is also technical in nature, and it is used to facilitate certain bounds
in the sequel; of all the examples mentioned so far, only the log-barrier kernel is excluded by
this requirement.

4.1. Playing almost pure strategies infinitely often. Our first result for (S-FTRL) indicates
a radical departure from the deterministic setting: it shows that, in any game, regardless
of initialization, every player reaches an arbitrarily small neighborhood of one of their pure
strategies in finite time.

Theorem 1. Suppose Assumptions 1 and 2 hold, fix a sufficiently small accuracy threshold
ε > 0, and let

τi,ε = inf{t ≥ 0 : maxαi∈Ai
Xiαi

(t) ≥ 1− ε} (19)

denote the time player i ∈ N takes to reach an ε-neighborhood of one of their pure strategies.
Then τi,ε is finite with probability 1, and we have

Ex[τi,ε] ≲ eλ/λ (20)

where λ > 0 is a positive constant that scales as

λ = Θ

(
1 + σ2

i,max

σ2
i,min

θ′′i

(
ε

ni − 1

)2
)
. (21)

We stress here that (i) Theorem 1 applies to any game; and (ii) the behavior described
in the theorem is intimately tied to the stochastic nature of (S-FTRL). Indeed, in the
noiseless, deterministic regime, the assertion of Theorem 1 is patently false: for example,
in the 2 × 2 game of Matching Pennies, it is well known that the deterministic replicator
dynamics—and, more generally, (FTRL)—cycle periodically at a constant distance from the
game’s unique Nash equilibrium [48, 55], so the conclusion of Theorem 1 does not hold in
this case (cf. Fig. 1).

From a technical standpoint, the proof of Theorem 1 hinges on crafting a suitable Lyapunov
function in the spirit of Imhof [28], and then bounding the action of the infinitesimal generator
of the strategy dynamics (14) on said function in order to apply Dynkin’s formula on τi,ε.
These estimates and the resulting calculations are fairly delicate and involved, so we defer
all relevant details to Appendix D.

From a more high-level, conceptual viewpoint, Theorem 1 shows that, in a fairly pre-
cise sense, uncertainty favors pure strategies. This is further reinforced by the following
consequences of Theorem 1:

Corollary 1. Suppose that Assumptions 1 and 2 hold. Then, for every player i ∈ N , the limit
set of Xi(t) contains a pure strategy with probability 1: specifically, there exists a (possibly
random) sequence of times tn ↗∞ such that Xi(tn) converges to some pure strategy αi ∈ Ai.

Intuitively, under (S-FTRL), Xi(t) reaches a neighborhood of some pure strategy in finite
time. Even if Xi(t) does not settle there, the strong Markov property of X(t) and a repeated
application of Theorem 1 shows that Xi(t) approaches some other pure strategy, and so on
ad infinitum, which ultimately yields the stated result. In fact, arguing in a similar way, we
have the following guarantee:

Corollary 2. Suppose Assumptions 1 and 2 hold. Then, with probability 1, there exists a
(random) sequence tn ↗∞ such that X(tn) converges to the boundary bd(X ) of X .
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As in the case of Theorem 1, this assertion is demonstrably false in a deterministic context:
focusing again on Matching Pennies, periodicity implies that the orbits of (FTRL) are
bounded away from the boundary of X , so the conclusion of Corollary 2 is false in this
case. In fact, putting everything together, we obtain a much stronger characterization of the
possible limits of the players’ learning process:

Corollary 3. Suppose Assumptions 1 and 2 hold. If

Px(limt→∞X(t) = x̂) > 0 (22)

then x̂ must be pure; in words, the only possible limits of (S-FTRL) are pure strategies.

A revealing illustration of Corollary 3 is the Entry Deterrence game in Fig. 1: in the
deterministic case, around half of the initializations of (FTRL) converge to non-pure states;
however, under the slightest degree of uncertainty, convergence to non-pure profiles is no
longer possible.

All this prompts the following important questions:
(1) Are all pure strategies valid candidates for convergence?
(2) More generally, which pure strategies are present in sets that are stable and attracting

under (S-FTRL)?
We devote the rest of this section to these two questions; all relevant proofs are deferred to
Appendix D.

4.2. The support of stable attractors. We begin with the second question, which is more
general. To that end, we first need to define the notion of “stable and attracting”:

Definition 1. A subset S ⊆ X is said to be stochastically asymptotically stable under (S-FTRL)
if, for every tolerance level δ > 0 and every neighborhood U of S, there exists a neighborhood
Uδ of S such that X(0) = x ∈ Uδ implies

Px
(
X(t) ∈ U for all t ≥ 0 and X(t) −−−→

t→∞
S
)
≥ 1− δ (23)

With this in mind, let B =
∏

i Bi, Bi ⊆ Ai, be the set of pure strategies contained in some
stable attractor of (S-FTRL), and let S =

∏
i ∆(Bi) denote the span of B, i.e., the smallest

face of X that contains all strategies in B. We then ask:
When is S stochastically asymptotically

stable under (S-FTRL)?
As it turns out, this question admits a remarkably simple and compelling answer that hinges
on a criterion of strategic stability known as closedness under better replies. To make this
precise, following Ritzberger & Weibull [56], the set of better replies to x ∈ X is defined as

btr(x) = {q ∈ X : ui(qi;x−i) ≥ ui(x) for all i ∈ N} (24)

and S is closed under better replies (club) if btr(S) ⊆ S. We then have the following striking
equivalence:

Theorem 2. Suppose Assumption 3 holds. Then, with notation as above, S is stochastically
asymptotically stable under (S-FTRL) if and only if it is closed under better replies. If this
is so, there exists an open initialization domain U0 ⊆ X such that, whenever X(0) ∈ U0, we
have with arbitrarily high probability

dist1(X(t),S) ≲ Φ
[
c1 − c2t+O

(
σmax

√
t log log t

)]
(25)

where c1 and c2 are constants (c2 > 0), and the rate function Φ is given by Φ(z) =
maxi∈N (θ′i)

−1(z).
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Theorem 2 provides a sharp characterization of which spans of pure strategies are stable
attractors of regularized learning, and how fast the dynamics converge to such sets. In this
regard, Theorem 2 echoes (i) a classical finding by Ritzberger & Weibull [56] for (RD) in a
deterministic, noiseless context;3 and (ii) a more recent result by Boone & Mertikopoulos
[12] for a range of regularized learning algorithms in discrete time.4

In this regard, Theorem 2 might appear unsurprising, but this is not so. The stochastic
dynamics (SRD-AS) and (SRD-PI) are also stochastic variants of (RD), but Theorem 2
is false in both cases: in the former because any pure strategy may be stochastically
asymptotically stable depending on the profile of the noise [24, 28]; in the latter because, in
any game, all pure strategies are stochastically asymptotically stable for high enough noise
[46]. This disconnect has to do with the Itô correction term that appears in the dynamics:
in the case of (14), this term is “just right” so, even though uncertainty draws the dynamics
toward the boundary, there is sufficient information remaining to identify the rationally
admissible parts thereof.

Our proof strategy involves working directly with the score variables Y(t), and hinges on
establishing a sort of local “domination” result for those strategies that are not supported in
S versus those that are. This has to be established in a neighborhood of S, and doing this
requires Assumption 3 in order to establish a lower and upper bounds for the distance from
S relative to the ensuing score differences. This also requires using a different set of energy
functions associated to S, a step which in turn involves several fairly technical estimates. To
streamline our presentation, we defer all relevant details to Appendix D.2.

4.3. Nash equilibria and convergence. We now turn to our first question, namely the
characterization of the possible limits of (S-FTRL). Our main result here is as follows:

Theorem 3. Suppose Assumptions 1–3 hold. Then:

(1) x∗ ∈ X is stochastically asymptotically stable under (S-FTRL) if and only if it is a
strict equilibrium.

(2) If Px(limt→∞X(t) = x∗) > 0, then x∗ is a pure Nash equilibrium; in words, the only
possible limits of (S-FTRL) are pure Nash equilibria.

Since a pure profile is closed under better replies if and only if it is a strict Nash equilibrium,
the first part of Theorem 3 is an immediate corollary of Theorem 2. Importantly, as was
shown in [18], a similar conclusion holds under the noiseless dynamics (FTRL)—see also
[22] for a discrete-time analogue. On that account, the more interesting part of Theorem 3
is the second one, which represents a drastic departure from the deterministic regime: it
complements Corollary 3 in an essential way, showing that the possible limits of (S-FTRL)
are not just pure strategies, but pure Nash equilibria. In other words:

If a game does not admit a pure Nash equilibrium,
the dynamics (S-FTRL) do not converge.

This assertion is unique to the stochastic setting and it offers a vivid demonstration of how
“uncertainty favors extremes”.

3Importantly, Theorem 2 also covers the deterministic case σ = 0; we are not aware of another source for
this result in the literature.

4We note here in passing that there is a technical gap in the proof of [12] regarding stochastic asymptotic
stability (and, more precisely, on establishing convergence for a neighborhood of initial conditions). We detail
the issue in Appendix D.
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5. Consequences for recurrent dynamics

The results of the previous section show that, in the presence of noise, the dynamics
of regularized learning tend to drift toward the boundary. This behavior comes into stark
contrast with the deterministic regime where, in several classes of games, the dynamics of
(FTRL) are known to be Poincaré recurrent – that is, almost all trajectories return infinitely
often arbitrarily close to their starting point. In this last section, our aim is to understand
this disparity in greater depth, by zooming in on the behavior of (S-FTRL) in cases where
the deterministic dynamics are Poincaré recurrent.

To provide some context, Poincaré recurrence was first established for (RD) in two-player
zero-sum games with a fully mixed Nash equilibrium [55]. This result was subsequently
extended to all FTRL dynamics, always for zero-sum games with a fully mixed Nash
equilibrium [48], and finally, in a very recent paper [34], to a much more general class
of games known as harmonic games [15]. This is the widest class of games known to
exhibit recurrent behavior under (FTRL), and they can be characterized as follows (cf.
Proposition E.1 in Appendix E): a game is harmonic whenever it admits a collection of
positive weights mi > 0, i ∈ N , and a fully mixed strategy profile q ∈ riX – the game’s
harmonic center – such that∑

i∈N
mi⟨vi(x), xi − qi⟩ = 0 for all x ∈ X . (26)

A key property of harmonic games is that (FTRL) admits a constant of motion given by
the expression

H(x) =
∑

i∈N
miDi(qi, xi) (27)

where Di(qi, xi) = hi(qi) − hi(xi) − ⟨∇hi(xi), qi − xi⟩ is the so-called Bregman divergence
of the regularizer of player i ∈ N . To streamline our presentation, we defer a detailed
presentation of Bregman divergences to Appendix A; for our purposes, it suffices to keep in
mind that Di can be seen as an asymmetric measure of distance between qi and xi, with
Di(qi, xi) = 0 if and only if xi = qi, and Di(qi, xi) → ∞ whenever xi → bd(Xi). As was
shown in [34], the energy H(x(t)) of an orbit x(t) of (FTRL) remains constant, so the
trajectories of (FTRL) in harmonic games are contained away from the boundary bd(X ) of
X , cf. Fig. 1.

By contrast, the behavior of (S-FTRL) in harmonic games is drastically different, even
with the least amount of noise:

Theorem 4. Suppose Assumption 1 holds. Then, in any harmonic game, we have

limt→∞ Ex[H(X(t))] =∞ . (28)

Moreover, the time τM := inf{t ≥ 0 : H(X(t)) > M} that X(t) takes to reach an energy level
M > 0 is finite with probability 1 and bounded in expectation as

Ex[τM ] ≤ 2
M −H(x)

σ2
minε(M)

(29)

where ε(M) = min{
∑

imi tr(JacQ(y)) : xi = Qi(yi), H(x) ≤M} is a positive constant.

In particular, if applied to the entropic regularization setup of Example 1, Theorem 4
yields the following estimate.

Corollary 4. Under (SRD-EW), we have:

Ex[τM ] ≲MeλM/(λσmin) for some λ > 0. (30)
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Theorem 4 shows that (S-FTRL) exhibits a markedly different behavior than its deter-
ministic counterpart in harmonic games (and hence, in two-player zero-sum games with a
fully mixed equilibrium): In the presence of noise, the energy H(x) diverges to infinity on
average, indicating in this way a mean drift towards the boundary bd(X ) of X .

From a technical standpoint, this involves using Dynkin’s lemma on the energy function
H(x). More precisely, even though H(x) is a constant of motion in the deterministic case,
its Itô correction under (S-FTRL) leads to a constant positive drift, which only vanishes at
the boundary of the game’s strategy space. This implies that the limit limt→∞ E[H(X(t))]
exists, and the rest of the proof follows by a contradiction argument in case this limit is
assumed finite (this is where Dynkin’s lemma and the infinitesimal generator of the process
are evoked).

Moving forward, we should stress that Theorem 4 does not necessarily mean that the
orbits of (S-FTRL) converge to the boundary with probability 1. Nonetheless, as we show
below, (S-FTRL) reaches any neighborhood of the boundary in finite time on average, and
takes infinite time to escape.

Theorem 5. Suppose Assumption 1 holds, let K be a compact subset of X , and let τK =
inf{t ≥ 0 : X(t) /∈ K} be the time it takes X(t) to escape K starting at x ∈ K. Then, for any
harmonic game, we have:

(1) Ex[τK] <∞ whenever K is disjoint from bd(X ).
(2) Ex[τK] =∞ whenever K contains bd(X ).

While Theorem 5 states that the average return time to K is infinite, individual trajectories
of (S-FTRL) may still reach it in finite time on a positive probability event. This distinction,
based on return times to compact subsets, is known as the transience/recurrence dichotomy
and, in this context, Theorem 5 implies that (S-FTRL) is not positive recurrent for a detailed
discussion, cf. Appendix B.

The proof of Theorem 5, like that of Theorem 4, hinges on an application of Dynkin’s
lemma to the energy function H(x)—but this time, we require its bona fide, stopping time
version. This involves lower- and upper-bounding the action of the generator of X(t) on
H(x), and then integrating the result; we defer the relevant details to Appendix E.

In view of all this, it is natural to ask if at least some pure strategies are attracting. This
is not the case:

Theorem 6. Suppose Assumption 3 holds. If the game is harmonic, there is no proper face S
of X that is stochastically asymptotically stable under (S-FTRL).

In words, this shows that (S-FTRL) is irreducible in harmonic games: even though orbits
tend to drift toward the boundary in average, they do not collapse to any proper face thereof,
so any stable attractor must span the entire strategy space of the game (cf. Fig. 1).

We should also stress here that the trajectories of (S-FTRL) do not necessarily converge
to the boundary with probability 1; instead, they resemble a standard Brownian motion in
this regard. This behavior stands in sharp contrast to (SRD-AS) and (SRD-PI) in zero-sum
games, where orbits typically converge to the boundary with a nonzero drift, even under
small perturbations [17, 24]. A detailed comparison of the dynamics’ long-run behavior is
provided in Appendix F.

6. Concluding remarks

Our aim in this paper was to quantify the impact of noise and uncertainty on the
dynamics of regularized learning. Our findings can be summarized by the informal mantra
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that “uncertainty favors extremes”, in the sense that the dynamics exhibit a tendency to
drift toward the boundary of the players’ strategy space: (a) every player reaches an almost
pure strategy in finite time; (b) every player’s limit set contains a pure strategy; (c) the
only possible limits of the dynamics are pure Nash equilibria; and (d) game dynamics that
are recurrent in the noiseless regime escape in expectation toward the boundary under
uncertainty. We conjecture that there is an even stronger principle at play, namely that the
only stochastically asymptotically stable limit sets of (S-FTRL) are entirely contained on the
boundary of the game’s strategy space; we pose this as an open problem for the community.

Several important directions remain open in the general context of stochastic FTRL
dynamics. The first is what happens if the dynamics are run with a vanishing learning rate,
as in [13]. In this case, we conjecture that an analogue of Theorem 2 continues to hold, but
Theorem 4 fails: in games where the deterministic dynamics are recurrent (e.g., harmonic
games), (S-FTRL) will most likely result in the sequence of play converging to some constant
(Bregman) distance from a “central” equilibrium of the game (the game’s strategic center in
the case of harmonic games).

Another major extension of our work involves examining the impact of uncertainty in games
with continuous action spaces—which, arguably, are more relevant for many applications of
game theory to data science and machine learning—and, also, undertaking a discrete-time
analysis that goes beyond the vanishing step-size considerations that are common in the
stochastic approximation literature applied to learning in games [6, 8–10, 27, 37, 38, 47, 50].
Both of these directions would require significantly different tools and techniques (especially
in the discrete-time setting), so we defer all this to the future.

A. Regularizers, mirror maps, and related notions

In this appendix, we collect a number of standard properties concerning regularizers,
their associated mirror maps, and Bregman/Fenchel distances; we closely follow [42, 47] for
notation and conventions.

A.1. Preliminary definitions.

Remark. All the constructions described in the following apply to each player of a finite
game Γ = Γ(N ,A, u); to simplify notation, we suppress throughout the player index i ∈ N .

Given a finite game, each player has effectively n− 1 degrees of freedom in the choice of a
mixed strategy x ∈ X , due to the constraint

∑n
α=1 xα = 1. In light of this, we denote in

the following by V the finite-dimensional vector space Rn−1, equipped with the Euclidean
norm ∥·∥, and denote with slight abuse of notation each player’s effective strategy set as
X = {x ∈ Rn−1 :

∑n−1
α=1 xα ≤ 1}; with this convention, X is a closed convex subset of V with

non-empty interior. We will furthermore write Y :=V∗ for the dual space of V , ⟨y, x⟩ for the
canonical linear pairing between x ∈ V and y ∈ V∗, and ∥y∥∗ = max{⟨y, x⟩ : ∥x∥ ≤ 1} for
the dual norm induced on Y.

Following standard conventions in convex analysis, functions will take values in the
extended real line R ∪ {∞}, and a convex function f : X → R will be identified with the
extended-real-valued function f̄ : V → R ∪ {∞} that agrees with f on X and is identically
equal to∞ on V\X ; we will denote the effective domain of a convex function f : V → R∪{∞}
on V as dom f :={x ∈ V : f(x) <∞} .

For the scope of this work, a regularizer on X is a convex function of Legendre type
on int(X ), namely a closed proper convex function h : X → R ∪ {∞} with the following
properties:

(i) int(X ) = int(domh);
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(ii) Steepness – h is smooth on int(X ), and limn→∞∥∇h(xn)∥ → ∞ for any sequence
(xn)

∞
n=1 in int(X ) converging to a boundary point of int(X );

(iii) h is K-strongly convex on int(X ):

h(p) ≥ h(x) + ⟨∇h(x), p− x)⟩+ K

2
∥p− x∥2 for all p ∈ X , x ∈ int(X ) . (A.1)

Following Alvarez et al. [2, Proposition 4.10], a regularizer h of Legendre type can be obtained
as

h(x) =
∑n−1

α=1
θ(xα) + θ

(
1−

n−1∑
α=1

xα

)
for all x ∈ X , (A.2)

where θ : [0,∞) → R ∪ {∞} is a convex function of Legendre type, called kernel of the
regularizer, fulfilling

(i) θ(z) <∞ for all z > 0;
(ii) Steepness – θ is smooth on (0,∞), and limz→0+ θ

′(z) = −∞;
(iii) θ is strongly convex on (0,∞), namely infz>0 θ

′′(z) > 0.

A.2. Regularized best response map and Fenchel coupling. In what follows, we will need
the following fundamental objects:

(1) The convex conjugate h∗ : Y → R of h:

h∗(y) = max
x∈X
{⟨y, x⟩ − h(x)} for all y ∈ Y. (A.3)

(2) The regularized best response map – or mirror map – Q : Y → X induced by h:

Q(y) = argmax
x∈X

{⟨y, x⟩ − h(x)} for all y ∈ Y. (A.4)

(3) The associated Bregman distance D : X × int(X )→ R of h:

D(p, x) = h(p)− h(x)− ⟨∇h(x), p− x⟩ for all p ∈ X , x ∈ int(X ). (A.5)

(4) The Fenchel coupling F : X × Y → R of h:

F (p, y) = h(p) + h∗(y)− ⟨y, p⟩ for all p ∈ X , y ∈ Y. (A.6)

Remark. The terminology “Fenchel coupling” is due to [42].

The proposition below provides some basic properties concerning the first two objects
above:

Proposition A.1. Let h be a regularizer on X . Then:
(a) The convex conjugate h∗ : Y → R of h is differentiable, and

Q(y) = ∇h∗(y) for all y ∈ Y. (A.7)

(b) ∇h is one-to-one from int(X ) to Y, and Q = (∇h)−1 namely

x = Q(y) ⇐⇒ y = ∇h(x) . (A.8)

for all x ∈ int(X ) and y ∈ Y.
(c) Q is (1/K)-Lipschitz continuous, that is,

∥Q(y′)−Q(y)∥ ≤ (1/K)∥y′ − y∥∗ for all y, y′ ∈ Y. (A.9)

Proof. Since these fact are relatively well-known, we only provide a specific pointer to the
literature.
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(a) The equality Q = ∇h∗ follows from Danskin’s theorem, see e.g., Shalev-Shwartz [60,
Section 2.7.2].

(b) See Rockafellar [57, Theorem 26.5].
(c) See Rockafellar & Wets [58, Theorem 12.60(b)]. ■

Lemma A.1. The trace of the Jacobian matrix of the mirror map (A.4) fulfills

tr JacQ(y) > 0 for all y ∈ Y . (A.10)

Proof.

tr JacQy = tr Jac
[
∇h−1

]
y

# by (A.8)

= tr [Jac∇h]−1
Q(y)

= tr [Hessh]
−1
Q(y)

=

n−1∑
α=1

1

eigα[Hessh(Q(y))]
, (A.11)

where eigα[Hessh(Q(y))] is the α-th eigenvalue of the Hessian matrix of h at Q(y). By
strong (in particular, strict) convexity of h, Hessh(x) is symmetric an positive-definite for
all x ∈ int(X ) = imQ, which concludes our proof. ■

Next, we collect some basic properties of the Fenchel coupling.

Proposition A.2. Let h be a regularizer on X . Then, for all p ∈ X and all y, y′ ∈ Y, we
have:

(a) F (p, y) ≥ 0 with equality if and only if p = Q(y). (A.12a)
(b) F (p, y) = D(p,Q(y)) . (A.12b)

(c) F (p, y) ≥ 1
2K ∥Q(y)− p∥2 . (A.12c)

Proof. (a) By the Fenchel–Young inequality, we have h(p) + h∗(y) ≥ ⟨y, p⟩ for all p ∈ X ,
y ∈ Y , with equality if and only if y = ∇h(p), so our claim is immediate by Item (b)
in Proposition A.1.

(b) Fix p ∈ X and y ∈ Y, and let x = Q(y); then, by the definition of F , we have

F (p, y) = h(p) + h∗(y)− ⟨y, p⟩ (A.13)
= h(p) + ⟨y, x⟩ − h(x)− ⟨y, p⟩ # because x = Q(y)

= h(p)− h(x)− ⟨∇h(x), p− x⟩ . # because y = ∇h(x)

(c) By the previous point and Eq. (A.1), Eq. (A.12c) follows immediately. ■

Remark. In view of Proposition A.2, D(p, x) can be seen as an anti-symmetric measure
of divergence between p ∈ X and x ∈ intX , and F (p, y) as a “primal-dual” measure of
divergence between p ∈ X and y ∈ Y, with F (p, y) = 0 if and only if Q(y) = p, and
F (p, y)→∞ whenever Q(y)→ bd(X ).

B. Elements of stochastic analysis

In this appendix, we review standard results from stochastic analysis and apply them to
(S-FTRL) to classify the long-term behavior of its trajectories into two mutually exclusive
categories: transience and recurrence.
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B.1. Infinitesimal generator and the transience/recurrence dichotomy. Throughout this
section, let us consider the time-homogeneous diffusion on Rn given by

dZ(t) = b(Z(t)) dt+Σ(Z(t))dW (t) (SDE)

where W (t) is an m-dimensional standard Brownian motion, and b : Rn → Rn, Σ: Rn →
Rn×m are Lipschitz continuous bounded functions. The infinitesimal generator associated
to (SDE) is defined as the differential operator L acting on smooth functions f : Rn → R
through

Lf(z) =
n∑

i=1

bi(z)
∂f

∂zi
(z) +

1

2

n∑
i,j=1

aij(z)
∂2f

∂zi∂zj
(z) for every z ∈ Rn, (B.1)

where a(z) :=Σ(z)Σ(z)T denotes the principal symbol of (SDE). Equivalently, L can also be
characterized as the only operator such that the stochastic process Mf (t) given by

Mf (t) := f(Z(t))− f(Z(0))−
∫ t

0

Lf(Z(s)) ds (B.2)

is a local martingale for every smooth function f : Rn → R (this follows from an application
of Itô’s formula). In practise, the representation from Eq. (B.2) is commonly used to estimate
hitting times through what is often referred to as Dynkin’s lemma:

Lemma B.1 (Dynkin’s lemma [54, Theorem 7.4.1]). For every bounded stopping time τ and
every smooth function f : Rn → R,

Ez[f(Z(τ))] = f(z) + Ez

[∫ τ

0

Lf(Z(s)) ds
]
. (B.3)

Following classical notations, the infinitesimal generator L is said to be uniformly elliptic
if there exists a constant c > 0 such that uTa(z)u ≥ c∥u∥2 for every u, y ∈ Rn. Intuitively, it
means that the noise coefficient matrix is uniformly bounded away from zero or, in other
words, that the noise does not vanish across the state space. More precisely, it also implies
that every point of the space is explored with positive probability by trajectories of (SDE)
(cf. Subsection 3.3.6.1 of [51], albeit in a much more general setting), in the sense that

Pz(Z(t) = z′ for some t ≥ 0) > 0 for every z, z′ ∈ Rd. (B.4)

Uniform ellipticity enables a full classification of the long-term behavior of (SDE) into
two fundamental classes of processes: recurrent and transient processes. These behaviors
are generally defined as follows:

Definition 2. Let Z(t) be a solution orbit of (SDE).
• Z(t) is said to be recurrent at a compact subset K ⊆ Rn if the hitting time τK = inf{t ≥

0 : Z(t) ∈ K} is almost-surely finite for some initial condition z ∈ Rn \ K. Moreover, if
Ez[τK] <∞, then the process is further called positive recurrent, while it is called null
recurrent if the expectation is infinite.
• Z(t) is said to be transient from z ∈ Rn if it definitely exits every compact subsets in

finite time when starting from z, i.e., if

Pz(there exists t0 <∞ such that Z(t) /∈ K for every t ≥ t0) = 1 (B.5)

for every compact subset K ⊆ Rn.

Under uniform ellipticity, it can then be shown that recurrence and transience are the
only behaviors that may happen in the long-run, and that they are perfect complementaries
to one another:
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Lemma B.2 (Transience/recurrence dichotomy in Rn [11, 32]). Let (SDE) be a diffusion on
Rn with uniformly elliptic generator. Then,

(1) If trajectories of (SDE) are positive recurrent (resp. null recurrent) for some compact
subset K ⊆ Rn and initial condition z ∈ Rn, then they are positive recurrent (resp.
null recurrent) for every compact subsets and every initial conditions.

(2) If trajectories of (SDE) are transient for some initial condition z ∈ Rn, then they are
transient for every initial conditions.

(3) Trajectories of (SDE) are either all recurrent or all transient.

Remark 1. The uniform ellipticity condition can be relaxed while preserving the transience/re-
currence dichotomy and its significant implications. This is typically achieved through the
use of Hörmander conditions, which require that a specific family of vector fields spans
the entire space. However, these considerations go beyond the scope of this paper, and we
instead refer interested readers to [7, 19, 51] for more concrete results on this topic.

B.2. The transience/recurrence dichotomy in X . Instead of the Euclidean diffusion consid-
ered in Appendix B.1, we now turn our attention to the more intricate constrained diffusion
(S-FTRL), which we recall is given by

dYi(t) = vi(X(t)) dt+ σi(X) · dW (t),

Xi = Qi(Yi).
(FTRL-S)

A natural question that arises is whether a similar dichotomy result to Lemma B.2 also
holds for the player’s choices within the (constrained) polyhedron X . The goal of this
subsection is to motivate and establish such a result.

One might be tempted to first consider the stochastic differential equation

dYi = vi(Qi(Y )(t)) dt+ σi(Qi(Y )) · dW (t), (B.6)

which is of the form given in Appendix B.1 with uniformly elliptic generator, and so should
verify the transience / recurrence dichotomy. However, even if Y (t) were itself recurrent
(or transient), this would not necessarily imply that X(t) = Q(Y (t)) is also recurrent (or
transient). Indeed, the inverse of the choice map Q−1 is generally neither single-valued nor
continuous, meaning that a compact subset of X does not necessarily remain compact in Y
when mapped through Q−1.

To bypass this issue, we will instead study the dynamics of (S-FTRL) in a third space Z,
sometimes referred to as the space of payoff differences.

Following the notations of Legacci et al. [34], let Γ = Γ(N ,A, u) be a given finite game,
and let α̂i ∈ Ai be a fixed benchmark strategy for each player i ∈ N . We then consider the
hyperplane Zi = {zi ∈ Rni : ziα̂i = 0}, which is evidently isomorphic to Rni−1. Elements of
each player’s strategy space Yi can then be mapped onto Zi through the linear operator

Πi : Yi → Zi, Πi(yi) = {yiαi
− yiα̂i

: αi ̸= α̂i.} (B.7)

The product space Z =
∏

i∈N Zi is called the game’s payoff differences space, and we denote
by Π the product projection map Π =

∏
i∈N Πi.

Importantly, if we define the payoff-adjusted choice map Q̂ :=
∏

i∈N Q̂i : Z → X by

Q̂i(zi) = Qi(yi) for any yi ∈ Π−1
i (zi), (B.8)

then we obtain the following regularity result:

Lemma B.3. For every player i ∈ N , strategy xi ∈ Xi and action αi ̸= α̂i,

ziαi
:=
[
Q̂−1

i (xi)
]
αi

= θ′i(xiαi
)− θ′i(xiα̂i

). (B.9)
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In particular, Q̂−1 : riX → Z is a single-valued continuous map.

Proof. The proof is immediate by the Karush-Kuhn-Tucker conditions applied to the convex
problem posed in Q, stating that yiαi

= θ′i(xiαi
) + µ for some multiplier µ ∈ R, and the

definition of Q̂ through payoff differences. ■

Consequently, any compact subset living in riX is mapped through Q̂−1 to a compact
subset of Z. Therefore, to establish a dichotomy result for stochastic dynamics within riX ,
it suffices to demonstrate that the diffusion on Z, obtained by mapping (S-FTRL) through
Π, is uniformly elliptic.

Interpreting Π as a full-rank matrix (which is possible because it is a linear function), it
is easy to show that Z(t) :=ΠY (t) verifies the stochastic differential equation

dZ(t) = Πv(Q̂(Z(t)))dt+Πσ(Q̂(Z(t))) · dW (t) (FTRL-Z)

where σ(x) =
[
σ1(x) · · ·σN (x)

]T denotes the overarching diffusion matrix over all players.
Accordingly, the principal symbol of (FTRL-Z) is given by

a(z) :=Πσ(Q̂(z))
[
Πσ(Q̂(z))

]T
= Πσ(Q̂(z))σ(Q̂(z))TΠT ≽ σ2

minΠΠT ≽ σ2
minπ

2
minI, (B.10)

where σmin denotes the smallest singular of σ, which is assumed to be positive (cf. As-
sumption 1), and πmin denotes the smallest singular value of Π (positive because Π is
full-rank). Consequently, the infinitesimal generator of (FTRL-Z) is uniformly elliptic, and
thus Lemma B.2 holds true for its trajectories.

The arguments developed above naturally lead to the following definition of recurrence
and transience for trajectories of (S-FTRL) evolving within the space riX :

Definition 3. Let X(t) be a solution orbit of (S-FTRL).
• X(t) is said to be recurrent in riX if, for every relatively compact subsets K ⊆ riX

and every initial condition x ∈ riX , the hitting time τK = inf{t ≥ 0 : X(t) ∈ K} is
almost-surely finite. Moreover, if Ex[τK] <∞, then the process is further called positive
recurrent in riX , while it is called null recurrent is the expectation is infinite.
• X(t) is said to be transient in riX if, for every initial condition x ∈ riX , X(t) converges

to bdX almost-surely.

Furthermore, Lemma B.2 can be applied to derive a transience/recurrence dichotomy for
such trajectories:

Theorem 7 (Transience/recurrence dichotomy in riX ). Trajectories of (S-FTRL) are either
all positive recurrent or all null recurrent or all transient in riX .

Proof. In virtue of Lemma B.3, any compact included in riX is mapped through Q̂−1 to
a compact in Z. Accordingly, X(t) is recurrent (resp. transient) in riX whenever Z(t)
is recurrent (resp. transient) in Z. But the stochastic differential equation (FTRL-Z)
defining Z(t) is uniformly elliptic, so either all trajectories of (FTRL-Z) are recurrent or all
trajectories are transient (cf. Lemma B.2). Consequently, trajectories of (S-FTRL) are also
either all recurrent or all transient in riX . The same logic can also be adapted to show that
either all trajectories are positive recurrent or all are null recurrent. ■

B.3. Additional standard results. We conclude this appendix by reviewing several results
from stochastic analysis, which are typically stated in classical textbooks for the specific case
of Brownian motion, but that are more difficult to find in their full generality:
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Lemma B.4 (Law of iterated logarithm for martingales [36]). Let M(t) be a continuous
square-integrable local martingale. Then, the trajectories of M(t) verify

lim sup
t→∞

M(t)√
[M ](t) log log[M ](t)

= 1 (B.11)

on the event {limt→∞[M ](t) =∞}.

Lemma B.5 (Strong law of large numbers [39]). Let M(t) be a continuous square-integrable
local martingale and let us define

ρM (t) =

∫ t

0

d[M ](s)

(1 + s)2
. (B.12)

If limt→∞ ρM (t) <∞ (a.s.), then M(t)/t→ 0 (a.s.).

C. Omitted proofs from Section 3

In this appendix, we provide the proofs from Section 3 that were omitted in the main
text. Specifically, we demonstrate that the stochastic differential equation defining (S-FTRL)
admits a unique strong solution, and we present an explicit computation of the stochastic
differential equation governing the evolution of the player’s strategies in X .

We recall that the stochastic dynamics under study is given by the stochastic differential
equation

dYi(t) = vi(X(t)) dt+ dMi(t)

Xi(t) = Qi(Yi(t)),
(FTRL-S)

where Mi = σi(X(t))dW (t) for some underlying m-dimensional Brownian motion.

Proposition C.1. The stochastic differential equation (S-FTRL) admits a unique strong
solution Y (t) for every initial condition Y (0) ∈ Y.

Proof. The existence and uniqueness of a strong solution can be proved using a classical
Picard’s iteration argument (see e.g., Øksendal [54, Theorem 5.2.1]). To do so, we only need
to show that the drift and diffusion coefficients verify a mild growth condition and that
they are Lipschitz continuous on Y. First, notice that Q is (1/K)-Lipschitz on Y where
K > 0 denotes the smallest strong convexity constant among the regularizer functions hi,
i ∈ N (cf. Proposition A.1). As such, the composition of v (resp. σ) with Q remains
Lipschitz-continuous. Furthermore, as Q takes values into the compact set X , it is immediate
that the growth condition is verified (the coefficients are in fact all uniformly bounded on the
state space). The stochastic dynamics (S-FTRL) therefore admits a unique strong solution
as required. ■

Remark 2. The uniqueness mentioned in Proposition C.1 should be understood in the sense
of equivalence up to evanescence, meaning that any two solutions of (S-FTRL) must be equal
at any time with probability 1; i.e., they should be indistinguishable from one another as
stochastic processes.

Proposition 1. The solutions of (S-FTRL) satisfy the stochastic differential equation

dXiαi
= giαi

viαi
−
∑

βi∈Ai

χiβi
viβi

 dt (14a)

+ giαi

 dMiαi
−
∑

βi∈Ai

χiβi
dMiβi

 (14b)
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+ giαi

m∑
k=1

ψ2
iαik −

∑
βi∈Ai

χiβiψ
2
iβik

 dt (14c)

where we set giαi
= 1/θ′′i (xiαi

), χiαi
= giαi

/∑
βi∈Ai

giβi
, and ψ2

iαik
= − 1

2θ
′′′
i (xiαi

)g2iαi

[
σiαik−∑

βi∈Ai
χiβi

σiβik

]2.
Proof of Proposition 1. For simplicity (and without loss of generality), let us suppress the
player’s index i ∈ N in the remaining of the proof. Due to h being assumed steep and
decomposable as h(x) =

∑
α θ(xα) (see Appendix A for the collection of assumptions verified

by θ), the Karush-Kuhn-Tucker conditions applied to the convex optimization problem of
Eq. (6) posed to define Q leads to yα = θ′(xα) + λ for some Lagrange multiplier λ ∈ R
whenever x = Q(y). In particular, applying this identity to the solution orbits Y (t) and X(t)
of (S-FTRL) yields the existence of a continuous stochastic process λ(t) such that

Yα(t) = θ′(Xα(t)) + λ(t) for every t ≥ 0. (C.1)

Applying the classical Itô’s formula (see e.g., Section 3.3 of Karatzas & Shreve [29]) on both
sides of the equality therefore gives

dλ = dYα − θ′′(Xα)dXα −
1

2
θ′′′(Xα)d[Xα], (C.2)

where [Xα](t) denotes the quadratic variation process of X(t). Before proceeding with the
proof, let us introduce some notation that will be useful for simplifying the subsequent
computations:

θ′′α := θ′′(Xα), θ′′′α := θ′′(Xα); (C.3)

gα := 1/θ′′α, G :=
∑

β
gβ , χα := gα/G. (C.4)

If we rearrange the terms of Eq. (C.2) and take the sum over all α ∈ A, we get

0 =
∑

α
dXα =

∑
α
gαdYα −

1

2

∑
α
gαθ

′′′
α d[Xα]−Gdλ, (C.5)

where the first equality comes from the simplex constraint
∑

αXα = 1. Consequently, λ(t)
is given explicitly by

dλ =
∑

α
χαdYα −

1

2

∑
α
χαθ

′′′
α d[Xα]. (C.6)

By inserting this expression into Eq. (C.2), we therefore get

dXα = gα

(
dYα −

∑
β
χβdYβ

)
− 1

2
gα

(
θ′′′α d[Xα]−

∑
β
χβθ

′′′
β d[Xβ ]

)
(C.7)

= gα

(
vα −

∑
β
χβvβ

)
dt+ gα

∑
k

(
σαk −

∑
β
χβσβk

)
dWk

− 1

2
gα

(
θ′′′α d[Xα]−

∑
β
χβθ

′′′
β d[Xβ ]

)
. (C.8)

The quadratic variation of Xα(t) can thus be computed as

d[Xα] = g2α
∑

kl

(
σαk −

∑
β
χβσβk

)(
σαl −

∑
β
χβσβl

)
d[Wl,Wl]

= g2α
∑

k

(
σαk −

∑
β
χβσβk

)2
dt, (C.9)

which ultimately proves the stochastic differential equation stated in Proposition 1 upon
substituting d[Xα] with its expression in Eq. (C.8). ■
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D. Omitted proofs from Section 4

In this appendix, we collect the proofs of the results presented in Section 4.

D.1. Proof of Theorem 1. Our aim in this appendix is to prove Theorem 1, which we restate
below for convenience.

Theorem 1. Suppose Assumptions 1 and 2 hold, fix a sufficiently small accuracy threshold
ε > 0, and let

τi,ε = inf{t ≥ 0 : maxαi∈Ai Xiαi(t) ≥ 1− ε} (19)

denote the time player i ∈ N takes to reach an ε-neighborhood of one of their pure strategies.
Then τi,ε is finite with probability 1, and we have

Ex[τi,ε] ≲ eλ/λ (20)

where λ > 0 is a positive constant that scales as

λ = Θ

(
1 + σ2

i,max

σ2
i,min

θ′′i

(
ε

ni − 1

)2
)
. (21)

To facilitate a more modular proof of Theorem 1, we reformulate its results as two distinct
propositions detailed below:

Proposition D.1. The hitting time τi,ε is finite with probability 1.

Proposition D.2. The expectation of τi,ε is upper-bounded by

Ex[τi,δ] ≲ eλ/λ (D.1)

where λ > 0 is a positive constant that scales as

λ = Θ

(
1 + σ2

i,max

σ2
i,min

θ′′i

(
δ

ni − 1

)2
)
. (D.2)

Before proving any of these results, let us restate the stochastic differential equation
defining the evolution of X(t) (cf. Proposition 1) as

dXiαi =
∑

βi

giαi

[
δαiβi −G−1

i giβi

]
(viβi+Siβi)dt+

∑
βi

giαi

[
δαiβi −G−1

i giβi

]
dMiβi , (D.3)

where:
a) giαi = 1/θ′′i (xiαi);
b) Gi =

∑
β giβi

;

c) Siαi
= −1

2

θ′′′i (xiαi
)

[θ′′i (xiαi
)]2

m∑
k=1

[
σiαik −

∑
βi

G−1
i giβi

σiβik

]2
.

Borrowing the idea from Imhof [28] – who has studied the same type of property for
the replicator dynamics with aggregate shocks (SRD-AS) in symmetric games – we aim to
construct a well-behaved Lyapunov function ϕi for the collection Ai of pure strategies of
player i ∈ N . More precisely, such a function should verify the following properties:

(1) ϕi(x) ≥ 0 for every x ∈ X , with equality reached only when xi is a pure strategy;
(2) Away from pure strategies of Xi, ϕi decreases in average along trajectories of (S-FTRL).
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Intuitively, the existence of such a function would suggest that the solution orbits of (S-FTRL)
converge on average toward a neighborhood of pure strategies in Xi, which in turn would
imply that the time required to reach such a neighborhood is finite.

For the sake of readability, let us drop completely the reference to the player’s index i in
the remainder of this appendix. This can be done without any loss of generality, as we are
focusing solely on the hitting time of a single player.

Accordingly, let us propose ϕ of the parametric form

ϕ(x) = n− 1 + eλ −
∑

α
eλxα (D.4)

with λ > 0 a positive parameter that will be chosen afterwards (depending on the parameters
of interest of the problem).

Claim 1. ϕ(x) ≥ 0 with equality reached only when x is a pure strategy.

Proof. This claim follows from the inequality ea + eb ≤ ea+b + 1 holding for every a, b ≥ 0
(this is easily shown by fixing b and taking derivative with respect to a). Indeed, iterating
this inequality on every elements λxα ≥ 0, we get∑

α
eλxα ≤ eλ

∑
α xα + n− 1 = eλ + n− 1, (D.5)

where the right-hand side is reached exclusively for pure strategies. Consequently, we readily
obtain

ϕ(x) ≥ n− 1 + eλ − eλ − (n− 1) = 0 (D.6)

as required. ■

Claim 2. Away from pure strategies, ϕ decreases in average along trajectories of (S-FTRL).

Proof. More precisely, we will show that outside the neighborhood Uε = {x ∈ X : xα >
1− ε for some α ∈ A}, there exists a parameter λ big enough such that

d

dt
Ex[ϕ(X(t)))] =:Lϕ(x) < 0 for every x ∈ X \ Uε. (D.7)

To do so, let us first notice that ϕ ∈ C2(X ) and that its partial derivatives are given by

∂ϕ

∂xα
= −λeλxα and

∂2ϕ

∂xα∂xβ
= −λ2eλxαδαβ . (D.8)

As such, Itô’s lemma and the stochastic differential equation from Eq. (D.3) can be used to
obtain

Lϕ(x) = −λ
∑

αβ
gα
[
δαβ −G−1gβ

]
(vβ + Sβ)e

λxα︸ ︷︷ ︸
(I)

− λ2

2

∑
α
g2αe

λxα

∑
βγ

[
δαβ −G−1gβ

][
δαγ −G−1gγ

]
Σβγ︸ ︷︷ ︸

(II)

, (D.9)

where we recall that Σ = σσT denotes the quadratic covariation matrix of the noise (for
player i).
• Lower bound for (I): From the definition of gα and G, and the fact θ is strongly convex

and steep, it is evident that 0 ≤ G−1gα ≤ 1 for every α ∈ A. Furthermore, by
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Assumption 2, we have |θ′′′(xα)/[θ′′(xα)]2| ≤M for some constant M <∞. As such,
we can already bound the absolute value of Sα by

|Sα| ≤
M

2

m∑
k=1

[
σ2
αk +

(∑
β
G−1gβσβk

)2]
≤ M

2

m∑
k=1

(σ2
max + σ2

max) = mMσ2
max (D.10)

where we recall that σ2
max denotes the maximal eigenvalue of Σ uniformly on x ∈ X .

Using this bound in tandem with |vα(x)| ≤Mv <∞ for every α ∈ A, x ∈ X (holding
from continuity of vα on the compact X ), then leads to

(I) ≥ −
∑

α
n
(
Mv +mMσ2

max

)
gαe

λxα = −B
2

∑
α
gαe

λxα (D.11)

where B = 2n(Mv +mMσ2
max).

• Lower bound for (II): Notice that Σ ≽ σ2
minI with σmin > 0 by Assumption 1, which

allows us to bound (II) as

(II) ≥
∑

α
g2αe

λxασ2
min

∑
β

[
δαβ −G−1gβ

]2
= σ2

min

{∑
α
g2α(1−G−1gα)

2eλxα +
∑

α̸=β
g2α
[
G−1gβ

]2
eλxα

}
≥ σ2

min

∑
α
g2α(1−G−1gα)

2eλxα . (D.12)

Combining the bounds for both (I) and (II) therefore leads to

Lϕ(x) ≤ λ

2

∑
α
gαe

λxα
[
B − λσ2

mingα(1−G−1gα)
2
]
. (D.13)

Now, let us consider the region of interest Rε = X \ Uε. Any x ∈ Rε thus verifies xα ≤ 1− ε
for every α ∈ A. Furthermore, notice that there always exists at least one action α ∈ A such
that xα ≥ 1/n.

Accordingly, let us the decompose the set of actions as A+(x) = {α ∈ A : xα ≥ 1/n}
and A−(x) = A \ A+(x). We also define the following quantities, which will be useful in
establishing the bound:

a) Hmax = maxx≤1/n 1/θ
′′(x) <∞ and Hmin = minx≥1/n 1/θ

′′(x) > 0;
b) cε = min

{
gα(x)(1−G−1(x)gα(x))

2 : α ∈ A+(x), x ∈ Rε

}
> 0.

where the positiveness of both Hmin and cε comes from the fact that gα(x) = 0 only when
xα = 0 (consequence of the regularizer being steep).

Using these notations we can then write, for any x ∈ Rε,

Lϕ(x) ≤ λ

2

B ∑
α∈A−

gαe
λxα + (B − λσ2

mincε)
∑

α∈A+

gαe
λxα


≤ λ

2

HmaxB(n− 1)eλ/n − σ2
mincε

(
λ− B

σ2
mincε

) ∑
α∈A+

gαe
λxα

. (D.14)

Consequently, if we choose λ big enough so that

λ ≥ 1

σ2
mincε

[
B +

Hmax

Hmin
(n− 1)B + 1

]
, (D.15)

then we readily get

Lϕ(x) ≤ λ

2

HmaxB(n− 1)eλ/n −
(
Hmax

Hmin
(n− 1)B + 1

) ∑
α∈A+

gαe
λxα


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≤ λ

2

{
HmaxB(n− 1)eλ/n − Hmax

Hmin
(n− 1)BHmine

λ/n −Hmine
λ/n

}
= −λ

2
Hmine

λ/n < 0 (D.16)

for every x ∈ Rε, which verifies the claim. ■

Building on the two previous claims, we are now ready to prove Proposition D.1 and
Proposition D.2.

Proof of Proposition D.1. Let τε = inf{t ≥ 0 : Xα(t) ≥ 1 − ε for some α ∈ A}. For every
fixed t ≥ 0, Dynkin’s formula yields

Ex[ϕ(X(τε ∧ t))] = ϕ(x) + Ex

[∫ τε∧t

0

Lϕ(X(s)) ds

]
. (D.17)

Claims 1 and 2 can then be used to argue that there exists a (deterministic) parameter λ
big enough so that

0 ≤ n+ eλ − λ

2
Hmine

λ/n Ex[τε ∧ t] (D.18)

for every t ≥ 0. Rearranging the terms and taking the monotone limit as t↗∞ therefore
give

Ex[τε] ≤
2

λ

eλ + n

Hmineλ/n
<∞ (D.19)

for every initial condition x ∈ X , which finishes the proof. ■

Proof of Proposition D.2. Based on Eq. (D.19), it is evident that the hitting time τε has an
average bounded as

Ex[τε] ≲
eλ

λ
(D.20)

for λ big enough. Furthermore, due to the condition from Eq. (D.15), λ can also be chosen
proportional to σ2

max+1

σ2
mincε

(where the hidden multiplicative constants depend neither on noise
nor on ε).

To prove Proposition D.2, we therefore only need to show that cε is of order [θ′′(ε/(n−1))]−2

for ε small enough.
Recall that cε is defined through the minimization problem

cε = min
{
gα(x)(1−G−1(x)gα(x))

2 : α ∈ A+(x), x ∈ Rε

}
, (D.21)

where Rε = {x ∈ X : xα ≤ 1 − ε for every α ∈ A} and A+(x) = {α ∈ A : xα ≥ 1/n}. For
the sake of clarity, let us also define

c(x, α) = gα(x)[1−G−1(x)gα(x)]
2 and c(x) = min

α∈A+(x)
c(x, α), (D.22)

so that cε = minx∈Rε c(x) for any ε > 0.
The main idea of the proof is the following observation: c(x) ≥ 0 for every x ∈ X , with

equality occurring if and only if x is a pure strategy (this is a consequence of gα(x) = 0 if
and only if xα = 0). Accordingly, for ε small enough, we should expect cε to be reached for
an x ∈ Rε that is the closest possible to a pure strategy.

To make this argument rigorous, note that by definition θ′′ is locally decreasing around 0,
and so there exists an η < 1/n small enough verifying θ′′(x) ≥ θ′′(y) for every x ≤ y ≤ η. The
proof is then separated into two parts: for ε < η small enough, we decompose the minimization
space Rε as Rη and Rε \Rη, and find a lower-bound for both spaces independently.
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Before jumping into those steps, notice that c(x, α) can be rewritten as

gα(x)

G(x)2

(∑
α̸=β

gβ(x)
)2
, (D.23)

where the term gα(x)G
−2(x) is lower-bounded uniformly on α ∈ A+(x) and x ∈ Rε.

Step 1: Minimization on Rη. As c(x) → 0 when x converges to a pure strategy, there
exists an ε′ < η small enough such that, for any ε < ε′, c(x) > c(x∗) whenever x ∈ Rη and
x∗ ∈ Uε. In particular, for x∗ = (1− ε)eα + ε

n−1

∑
β ̸=α eβ , it implies that

min
x∈Rη

c(x) > c(x∗) ≳
(∑

α̸=β
[θ′′(x∗β)]

−1
)2
∝
[
θ′′
(

ε

A− 1

)]−2

(D.24)

by definition of x∗.

Step 2: Minimization on Rε \Rη. Let x ∈ Rε \Rη, i.e., xα ≤ 1− ε for every α ∈ A and
there exists a β ∈ A such that xβ > 1− η. In particular, we know that xβ ≤ 1− ε, so there
exists γ′ ̸= β verifying

ε

n− 1
≤ xγ′ ≤ η. (D.25)

Furthermore, η was initially taken so that η < 1/n, thus A+(x) = {β}, which leads to

c(x) = c(x, β) ≳
(∑

γ ̸=β
[θ′′(xγ)]

−1
)2
≥ [θ′′(xγ′)]−2 ≥

[
θ′′
(

ε

A− 1

)]−2

, (D.26)

where the last inequality comes from the local monotony of θ′′ for ε
n−1 ≤ xγ′ ≤ η.

Combining those two steps, we conclude that

cε = min
x∈Rε

c(x) = min

{
min
x∈Rη

c(x), min
x∈Rε\Rη

c(x)

}
≳

[
θ′′
(

ε

n− 1

)]−2

. (D.27)

On the other hand, taking x = (1− ε)eα + ε
n−1

∑
β ̸=α eβ ∈ Rε leads to

cε ≤ c(x, α) =
1

θ′′(1− ε)

[
1

θ′′(1− ε)
+

n− 1

θ′′(ε/(n− 1))

]−2

(n− 1)2
[
θ′′
(

ε

n− 1

)]−2

≤ (A− 1)2θ′′(1− ε)
[
θ′′
(

ε

n− 1

)]−2

≲

[
θ′′
(

ε

n− 1

)]−2

, (D.28)

which finally shows that cε = Θ

([
θ′′
(

ε

n− 1

)]−2
)

as needed. ■

D.2. Proof of Theorem 2. Our goal in this appendix is to prove the following theorem:

Theorem 2. Suppose Assumption 3 holds. Then, with notation as above, S is stochastically
asymptotically stable under (S-FTRL) if and only if it is closed under better replies. If this
is so, there exists an open initialization domain U0 ⊆ X such that, whenever X(0) ∈ U0, we
have with arbitrarily high probability

dist1(X(t),S) ≲ Φ
[
c1 − c2t+O

(
σmax

√
t log log t

)]
(25)

where c1 and c2 are constants (c2 > 0), and the rate function Φ is given by Φ(z) =
maxi∈N (θ′i)

−1(z).
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Let B =
∏

i∈N Bi be a product of pure strategies, and let S be the face spanned by B.
Recall from Appendix A that, for every player i ∈ N , the Bregman divergence is defined as

Di(pi, xi) = hi(pi)− hi(xi)− ⟨∇hi(xi), pi − xi⟩ for all pi ∈ Xi, xi ∈ riXi. (D.29)

For each player i ∈ N , let Ci = Ai \ Bi denote the collection of pure actions not included in
Bi. The main idea behind proving the stability of closed under better replies faces is to show
that the family of energy functions

Eiαi
(x) = Di(eiαi

, xi) for xi ∈ riXi, αi ∈ Ci, i ∈ N , (D.30)

can be combined to yield a well-behaved “Lyapunov-like” function for S.
The definition of these energy functions is motivated by the following property, which will

also play a crucial role in deriving convergence rates:

Lemma D.1. If the kernels verify θi(0) <∞ for every player i ∈ N , then there exist constants
c1 <∞ and c2 > −∞ such that∑

i∈N

∑
αi∈Ci

Φi[c2 − Eiαi(x)] ≤ dist1(x,S) ≤ 2
∑
i∈N

∑
αi∈Ci

Φi[c1 − Eiαi(x)] (D.31)

with Φi defined as Φi(z) = (θ′i)
−1(z).

Proof. From the definitions of the Bregman divergence and of the regularizers, we can write

Eiαi
(x) = hi(eiαi

)− hi(xi)− ⟨∇hi(xi), eiαi
− xi⟩

= ciαi
−
∑

βi

θi(xiβi
)− θ′i(xiαi

) +
∑

βi

xiβi
θ′i(xiβi

), (D.32)

where ciαi is a finite constant. As a result, the convexity of θi yields

Eiαi
(x) ≤ ciαi

− ni min
z∈[0,1]

θi(z)− θ′i(xiαi
) + θ′i(1) ≤ c1 − θ′i(xiαi

), (D.33)

for some constant c1 <∞ obtained by taking the maximum over all actions αi ∈ Ci and all
players i ∈ N . On the other hand, note that for all players i ∈ N and every z ∈ (0, 1), we
have

zθ′i(z) =

∫ z

0

θ′i(z)dt ≥
∫ z

0

θ′i(t)dt = θi(z)− θi(0), (D.34)

where the inequality comes from the (strong) convexity of θi. As such, we also get

Eiαi(x) ≥ ciαi −
∑

βi

θi(xiβi)− θ′i(xiαi) +
∑

βi

[θi(xiβi)− θi(0)]

= ciαi
− niθi(0)− θ′i(xiαi

) ≥ c2 − θ′i(xiαi
), (D.35)

where c2 > −∞ thanks to the assumption that θi(0) <∞. Putting both sides together, we
therefore obtain

Φi[c2 − Eiαi
(x)] ≤ xiαi

≤ Φi[c1 − Eiαi
(x)] (D.36)

for every αi ∈ Ci, i ∈ N , x ∈ riX . Now, note that by definition of the face S,

dist1(x,S) := min
x′∈S
∥x− x′∥1

= min
x′∈S

∑
i∈N

( ∑
αi∈Ci

xiαi +
∑

αi∈Bi

|xiαi − x′iαi
|

)
≥
∑
i∈N

∑
αi∈Ci

xiαi . (D.37)

Furthermore, if we pick some arbitrary pure action α∗ ∈ B and define

x′iαi
=


0 if αi ∈ Ci
xiαi

if αi ∈ Bi \ {αi∗}
xiα∗

i
+
∑

βi∈Ci
xiβi

if αi = α∗
i

(D.38)
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for each x ∈ X , then x′ ∈ S by construction and we get

∥x− x′∥1 =
∑
i∈N

∑
αi∈Ci

xiαi
+
∑
β∈Ci

xiβi

 = 2
∑
i∈N

∑
αi∈Ci

xiαi
. (D.39)

Consequently, Eqs. (D.37) and (D.39) yield∑
i∈N

∑
αi∈Ci

xiαi
≤ dist1(x,S) ≤ 2

∑
i∈N

∑
αi∈Ci

xiαi
, (D.40)

which concludes the proof when combined with Eq. (D.36). ■

According to Lemma D.1, we can derive two consistency results for the family Eiαi
(x):

(1) x→ S if and only if Eiαi(x)→∞ for every action αi ∈ Ci and every player i ∈ N ;
(2) For every neighborhood US of S, there exist constants M ′ ≥ M > 0 such that
UM ′ ⊆ US ⊆ UM , where

UM :={x ∈ X : Eiαi
(x) > M for every αi ∈ Ci, i ∈ N}, M > 0. (D.41)

Remark 3. Our proof scheme for showing stability of closed under better replies faces is
similar to the one proposed by Boone & Mertikopoulos [12] in a discrete setting, but uses
a different family of energy functions in order to fix a flaw in their initialization domain’s
construction. To better understand this flaw, recall that they define the set of outward
deviations from S as Z = {eiβi

− eiαi
: αi ∈ Bi, βi ∈ Ci, i ∈ N}, and they argue that the

associated family of energy functions Ez(y) = ⟨y, z⟩ forms a good Lyapunov function for
S. In particular, they show that x :=Q(y) converges to S whenever maxz∈Z Ez(y)→ −∞,
which is similar property that we have obtained in Lemma D.1. However, in their framework,
the reverse implication is not true in general, i.e., there could be a sequence (xn) converging
to S but such that maxz∈Z Ez(y

n) remains lower-bounded. For instance, if there exists a
player i ∈ N for which |Bi| ≥ 2 (this is equivalent to ask that S is not restricted to a vertex
of X ) and if we fix some pure strategies α∗ ∈ B, αi ∈ Bi \ {α∗

i }, βi ∈ Ci, then any sequence
(xn) converging to eα∗ ∈ S with xniαi

= xniβi
satisfies

inf
n≥1

Ez(y
n) = inf

n≥1
yniβi
− yniαi

= inf
n≥1

θ′i(x
n
iβi

)− θ′i(xniαi
) = 0 > −∞ (D.42)

for the deviation z = eiβi − eiαi ∈ Z. Due to this subtlety, the initialization domain
U0 = {x ∈ X : maxz∈Z Ez(y) < −2M, x = Q(y)} (for M > 0 big enough) proposed by
Boone & Mertikopoulos [12] does not describe a bona fide neighborhood of S: in fact, from
the previous example, the vertex eα∗ ∈ S is not even included in U0. Since the initialization
domain is required to be a neighborhood of the whole face in order to verify the stochastic
stability criterion (cf. Definition 1), it means that the energy functions used in [12] are not
precise enough to prove such a result.

To gain insight into how these energy functions arise in local stability proofs, let us assume
S to be closed under better replies. By definition, we then know that ui(αi;x−i)− ui(x) < 0
for every αi ∈ Ci, i ∈ N and all x ∈ S. Since the payoff functions ui are continuous on the
compact space X , it implies that there exists a neighborhood U of S and a finite constant
m > 0 such that

ui(αi;x−i)− ui(x) ≤ −m for every αi ∈ Ci, i ∈ N , x ∈ U . (D.43)

Now, let X(t) be a solution orbit of (S-FTRL). Using Itô’s lemma in tandem with the dual
representation of the Bregman divergence (cf. Appendix A and the proof of Lemma F.1), we
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then get

dEiαi(X(t)) = [ui(X)−ui(αi;X−i)]dt+
1

2
tr(JacQi(Yi)Σi(X))dt+⟨Xi−eiαi , dMi(t)⟩ (D.44)

Specifically, if we temporarily ignore the martingale term ⟨Xi − eiαi
, dMi(t)⟩ (i.e., if we

consider the noiseless setting), then all energy functions are expected to locally increase
along trajectories of (S-FTRL) evolving in U as dEiαi

(X(t)) ≥ mdt. As a result, player’s
strategies will remain in U for any time and converge to S thanks to Lemma D.1.

However, once the noise term is reintroduced, this local increase of the energy no longer
holds: the noise, being modelled as a continuous martingale with zero mean, can counterbal-
ance the positive drift and, with positive probability, cause the energy to decrease locally.
For instance, under Assumption 1, we know that trajectories of (S-FTRL) cannot even stay
in U with probability 1; they always visit any strategy in riX with positive probability (cf.
Eq. (B.4) and the related discussion about uniform ellipticity in Appendix B).

With that being said, although trajectories could exit U with positive probability, we can
still show that the total energy converges to ∞ along those trajectories that do stay into U :

Claim 3. If E = {X(t) ∈ U for every t ≥ 0} has positive probability, then Eiαi
(X(t))→∞

almost surely on E for every αi ∈ Ci, i ∈ N .

Proof of Claim 3. On the event E, integrating Eq. (D.44) yields

Eiαi
(X(t)) = Eiαi

(X(0)) +

∫ t

0

dEiαi
(X(s))ds ≥ Eiαi

(x) +mt+ ξiαi
(t) (D.45)

where ξiαi
(t) is the square-integrable martingale given by dξiαi

(t) = ⟨Xi(t)− eiαi
, dMi(t)⟩.

By definition of Mi(t), the quadratic variation of ξiαi
(t) can be upper-bounded as

d[ξiαi
](t) = (Xi − eiαi

)⊤d[Mi](t)(Xi − eiαi
)

= (Xi − eiαi)
⊤Σi(t)(Xi − eiαi)dt

≤ ∥Xi − eiαi
∥22σ2

maxdt

≤ 2σ2
maxdt, (D.46)

where σmax <∞ by continuity of noise coefficients and compactness of X . The strong law of
large numbers for martingales (cf. Lemma B.5) can then be used to obtain Eiαi

(X(t))→∞
almost surely on the event E, which finishes the proof. ■

With this claim established, we begin to see the connection to stochastically asymptotic
stability: if we can demonstrate that trajectories remain within U with arbitrarily high
probability, depending on how close their initial conditions are to S, then we would directly
obtain convergence toward S with the same (arbitrarily high) probability.

To show that, we use Lemma D.1 to describe the neighborhood U through the energy
functions Eiαi

. Indeed, we know from the aforementioned lemma that there exists a constant
M > 0 (which can be taken as large as needed) such that x ∈ U whenever x ∈ UM , where
we recall that UM denotes the non-empty subset of X given by

UM = {x ∈ X : Eiαi
(x) > M for every αi ∈ Ci, i ∈ N}. (D.47)

The main idea is to show that if the initial condition is sufficiently close to S, say with
x ∈ U2M (which describes a neighborhood of S thanks to Lemma D.1), then we can choose
M big enough so that every energy functions remains above M at all times, with arbitrarily
high probability. In other words, we want to ensure that the noise perturbations are not
strong enough to counterbalance the linearly increasing drift. More precisely, we aim to
prove the following intermediate result:
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Claim 4. For every ε > 0, there exists M :=M(ε) > 0 big enough such that

Px(X(t) ∈ UM for every t ≥ 0) ≥ 1− ε (D.48)

whenever x ∈ U2M .

Proof of Claim 4. For every M big enough, let τM denotes the first time at which the
minimal energy is lower than M , viz.

τM = inf{t ≥ 0 : min
αi∈Ci,i∈N

Eiαi
(X(t)) ≤M}. (D.49)

Proving the claim is therefore equivalent to showing that P(τM =∞) ≥ 1−ε for a well-chosen
constant M . To prove this, we will reduce the problem of estimating τM to examining specific
hitting times of ξiαi(t). Since ξiαi(t) is a continuous square-integrable martingale, these
hitting times will be significantly easier to estimate using standard results in stochastic
analysis.

First, let us define the auxiliary hitting time

τ = inf{t ≥ 0 : ξiαi(t) = −M −mt for some αi ∈ Ci, i ∈ N}. (D.50)

We claim that τ ≤ τM almost surely. Indeed, let us assume on the other hand that there
exists a non-negligible event on which τ > τM . Then τM is necessarily finite on this event,
and X(t) ∈ U for every t < τM , so Eq. (D.44) leads to

Eiαi
(X(τM )) > 2M +mτM + ξiαi

(τM ) > 2M +mτM −M −mτM =M (D.51)

for every αi ∈ Ci and i ∈ N , where the second inequality is a consequence of τM < τ . This
contradicts the definition of τM , which prove that τ ≤ τM with probability 1 as required.

It follows from the previous argument that {τ =∞} ⊆ {τM =∞}, which readily implies
the bound

P(τM <∞) ≤ P(τ <∞) ≤
∑
i∈N

∑
αi∈Ci

P(τiαi
<∞), (D.52)

where τiαi
is the hitting time given by

τiαi = inf{t ≥ 0 : ξiαi
(t) = −M −mt}. (D.53)

To estimate the probability that τiαi
is finite, remember that the quadratic variation of

ξiαi(t) is upper-bounded by 2σ2
maxt (a.s.). Moreover, the time-change theorem for continuous

martingales [29, p. 174] states that there exists a standard Brownian motion W̃ (t) (defined
on a possibly enlarged probability space) such that ξiαi

(t) = W̃ ([ξiαi
](t)).

Accordingly, if we let τ̃ denotes the stopping time

τ̃ = inf

{
t ≥ 0 : W̃ (t) = −M − mt

2σ2
max

}
, (D.54)

then we readily get P(τiαi < ∞) ≤ P(τ̃ < ∞) for every αi ∈ Ci, i ∈ N . This last hitting
time is easily computed as it only involves a standard Brownian motion, for which classical
results of the literature (see for instance [29, Subsection 3.5.C]) yield P(τ̃ < ∞) = e−λM

with λ = m/σ2
max.

Putting all these estimations back into Eq. (D.52) then allows us to obtain

P(τM <∞) ≤ |C|e−λM . (D.55)

where |C| :=
∑

i∈N |Ci|. In particular, if we take M big enough so that M >
σ2
max

m log(|C|/ε),
then we finally get P(τM =∞) ≥ 1− ε, which finishes the proof. ■

With Claims 3 and 4 established, we are now ready to prove Theorem 2.
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Proof of Theorem 2 (club =⇒ stable). Let us fix a threshold ε > 0 and a neighborhood U0
of S. By previously discussed arguments, if S is closed under better replies, we can find a
neighborhood U and a constant m > 0 small enough such that

ui(αi;x−i)− ui(x) ≤ −m for every αi ∈ Ci, i ∈ N , x ∈ U . (D.56)

Furthermore, we can choose U ⊆ U0 without loss of generality. Claim 4 therefore yields a
constant M > 0 big enough so that

Px(X(t) ∈ U0 for every t ≥ 0) ≥ Px(X(t) ∈ U for every t ≥ 0) (D.57)
≥ Px(X(t) ∈ UM for every t ≥ 0) ≥ 1− ε (D.58)

whenever x ∈ U2M (which describes a neighborhood of S). Moreover, X(t)→ S almost surely
on the event {X(t) ∈ U for every t ≥ 0} by Claim 3 and Lemma D.1, so S is stochastically
asymptotically stable as required. ■

Proof of Theorem 2 (convergence rate). Coming back to Eq. (D.45), we obtain that, on the
event E = {X(t) ∈ U for every t ≥ 0} which has probability greater than 1− ε,

Eiαi(X(t)) ≥ mt+ ξiαi(t) (D.59)

for every pure actions αi ∈ Ci and all players i ∈ N , where ξiαi(t) is a square-integrable
martingale with [ξiαi

](t) ≤ 2σ2
maxt. In particular, if [ξiαi

](t)↗∞, then the law of iterated
logarithm (Lemma B.4) yields

lim sup
t→∞

|ξiαi
(t)|

σmax

√
t log log t

= lim sup
t→∞

|ξiαi
(t)|√

2[ξiαi
](t) log log[ξiαi

](t)

√
2[ξiαi

](t) log log[ξiαi
](t)

σ2
maxt log log t

≤ 2
√
2 (a.s.) (D.60)

On the other hand, if [ξiαi
](t)↗ [ξiαi

](∞) <∞, then ξiαi
(t) converges to a finite random

variable and so |ξiαi(t)| = o(σmax

√
t log log t). Consequently, as Ci and N are finite, it implies

that maxαi∈Ci,i∈N |ξiαi(t)| = O
(
σmax

√
t log log t

)
(a.s.) in any cases.

Now, in virtue of Lemma D.1 and by the fact that Φi is increasing (θi is convex), we
therefore get

d1(X(t),S) ≤ 2
∑
i∈N

∑
αi∈Ci

Φi

[
c1 −mt+ max

αi∈Ci,i∈N
|ξiαi

(t)|
]

≲ Φ
[
c1 −mt+O

(
σmax

√
t log log t

)]
(D.61)

on the event E, which readily finish the proof. ■

Proof of Theorem 2 (stable =⇒ club). Assume that the face S is stochastically asymptoti-
cally stable but not closed under better replies. Then, there exists a player i ∈ N and pure
strategies α ∈ B, α′

i ∈ Ci such that ui(α′
i;α−i) ≥ ui(α).

Now, let us consider the restriction of (S-FTRL) to the face spanned by α and (α′
i;α−i),

by taking as initial condition X(0) = (xi;α−i) where suppxi = {αi, α
′
i}. As h is steep,

trajectories of (S-FTRL) are invariant in this subface, meaning that X(t) = (Xi(t);α−i)
with suppXi(t) = {αi, α

′
i} for every time t ≥ 0.

Consequently, the score difference between strategies αi and α′
i is given at any time by

dYiαi
− dYiα′

i
= [ui(α)− ui(α′

i;α−i)] dt+ dξ(t) ≤ dξ(t), (D.62)

where ξ(t) is the square-integrable martingale given by ξ(t) =
〈
eiαi − eiα′

i
,M(t)

〉
. The

quadratic variation of ξ(t) is lower-bounded as [ξ](t) ≥ 2σ2
mint (a.s.), which implies that
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[ξ](t) ↗ ∞ when t → ∞. We can therefore invoke the law of iterated logarithm for
martingales (cf. Lemma B.4) to obtain lim inft→∞ ξ(t) = −∞ (a.s.). Coming back to
Eq. (D.62), we then get

lim inf
t→∞

Yiαi
(t)− Yiα′

i
(t) ≤ Yiαi

(0)− Yiα′
i
(0) + lim inf

t→∞
ξ(t) = −∞ (a.s.). (D.63)

This implies that, with probability one and for any initial condition, there exists a subsequence
(tn) ↗ ∞ such that Yiαi

(tn) − Yiα′
i
(tn) → −∞. Moreover, the Karush-Kuhn-Tucker

conditions applied to the convex problem posed in the definition ofQi yield yiαi
= θ′i(xiαi

)+µi

for some Lagrange multiplier µi ∈ R whenever xi = Qi(yi). Consequently, we also get

θ′i(Xiαi
(tn)) = θ′i(Xiα′

i
(tn))+Yiαi

(tn)−Yiα′
i
(tn) ≤ θ′i(1)+Yiαi

(tn)−Yiα′
i
(tn)→ −∞ (a.s.),

(D.64)
meaning that Xiαi

(tn) → 0 with probability one thanks to the convexity of θi. This
contradicts the fact that S is stochastically asymptotically stable (as eα ∈ S, we should have
X(t)→ eα with positive probability for trajectories starting close enough to eα), thus S is
necessarily closed under better replies. ■

D.3. Proof of Theorem 3. In this section, we provide the proof of Theorem 3, whose statement
is recalled below for convenience:

Theorem 3. Suppose Assumptions 1–3 hold. Then:

(1) x∗ ∈ X is stochastically asymptotically stable under (S-FTRL) if and only if it is a
strict equilibrium.

(2) If Px(limt→∞X(t) = x∗) > 0, then x∗ is a pure Nash equilibrium; in words, the only
possible limits of (S-FTRL) are pure Nash equilibria.

First, note that any stochastically asymptotically stable strategy must be pure, as shown
by Corollary 3 (and similarly, any strategy toward which trajectories of (S-FTRL) converge
with positive probability is pure). Therefore, it is sufficient to prove the following claims in
order to establish Theorem 3:

Claim 5. A pure strategy is stochastically asymptotically stable if and only if it is a strict
Nash equilibrium.

Claim 6. Trajectories of (S-FTRL) converge only to Nash equilibria.

Proof of Claim 5. By Theorem 2 and the fact that strict Nash equilibria are the only pure
strategies whose support is closed under better replies, Claim 5 is automatically proven
true. ■

Claim 6, on the other hand, does not follow from any of our previous results. However,
this property of (S-FTRL) has already been established by Bravo & Mertikopoulos [13]
under the same kind of assumptions as ours. For the sake of completeness, we also provide
the proof of this result here.

Proof of Claim 6. For the sole purpose of proving a contradiction, assume that there exists
an event E with positive probability and a strategy x∗ that is not a Nash equilibrium
such that X(t) → x∗ on E. As x∗ in not Nash, there must exists a player i ∈ N and
actions αi ∈ supp(x∗i ), βi ∈ Ai verifying viαi(x

∗) < viβi(x
∗). By continuity of v, we can

therefore find a small enough neighborhood U of x∗ and a positive constant m > 0 such that
viβi

(x)− viαi
(x) ≥ m for every x ∈ U . As X(t) converges to x∗ on E, it follows that there
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exists a finite (random) time t0 such that X(t) ∈ U for every t ≥ t0 when conditioned on the
event E. In particular, for t big enough, we get

Yiαi(t)− Yiβi(t) = yiαi − yiβi +

∫ t0

0

(viαi − viβi) ds+

∫ t

t0

(viαi − viβi) ds+ ξ(t) (D.65)

≤ C −mt+ ξ(t), (D.66)

where C = yiαi
− yiβi

+
∫ t0
0
(viαi

− viβi
) ds+mt0 is a random constant finite on E, and ξ(t)

is the square-integrable martingale given by

ξ(t) =

m∑
k=1

∫ t

0

[σiαik(X(s))− σiβik(X(s))] dWk(s). (D.67)

As the quadratic variation of ξ is upper-bounded by C ′t for some positive deterministic
constant C ′, the strong law of large numbers (cf. Lemma B.5) implies that Yiαi(t)−Yiβi(t)→
−∞ on E, which directly leads to Xiαi

(t)→ 0 by the same argument used in the proof of
Theorem 2. This contradicts the fact that we should have Xiαi

(t)→ x∗iαi
> 0 on E, hence

proving that x∗ must be a Nash equilibrium. ■

E. Harmonic games and closedness under better replies

In this appendix, we present some general facts about harmonic games, following the
framework of Legacci et al. [34], and establish the following original result: no subface of a
harmonic game can be closed under better replies.

Originally introduced by Candogan et al. [15] and later generalized by Abdou et al. [1],
harmonic games games model strategic scenarios where players have conflicting, anti-aligned
interests. These games encompass two-player zero-sum games with a fully mixed equilibrium,
a widely studied framework for modeling conflicting interactions [48]. By contrast, harmonic
games are, in a precise sense, complementary to the class of potential games of Monderer &
Shapley [52], which model strategic situations where players’ interests align to maximize
outcomes by collectively optimizing a shared potential function.

A defining feature of harmonic games is the existence of a special strategy, known as
strategic center. Intuitively, the center has the property that the game’s payoff vector is
always parallel to an ellipsoid centered at this point, imparting a circular character to the
game’s strategic structure. This should be compared with the payoff vector of potential
games [59], which is always perpendicular the level sets of the underlying potential function.
In the deterministic setting, these strategic structures reflect in the dynamics as follows:
harmonic games exhibit a constant of motion with bounded level sets, closely related to the
Fenchel coupling introduced in Appendix A; conversely, potential games are characterized by
a Lyapunov function in the form of their potential.

An important additional property of harmonic games is the following: excluding trivial
situations where all unilateral payoff deviations are identically zero, harmonic games cannot
have strict Nash equilibria. In Theorem E.1, we shall prove that this is an instance of a
more general result: given a harmonic game Γ = Γ(N ,A, u), no proper subset B ⊂ A of pure
action profiles can be closed under better replies (club).

Since their introduction, harmonic games have generated a substantial body of literature;
for a brief survey, we refer the reader to Legacci et al. [35].

E.1. Harmonic games. Roughly speaking, a finite game Γ = Γ(N ,A, u) is harmonic if,
whenever a player considers deviating towards a specific action profile α ∈ A, there are other
players inclined to deviate away from that profile. More formally, a game is harmonic if there
exist strictly positive weights µiαi

> 0 that each player i ∈ N assigns to each of their pure
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actions αi ∈ Ai, such that for any action profile α ∈ A, the µ-weighted sum of unilateral
utility deviations to α is zero:∑

i∈N

∑
βi∈Ai

µiβi
[ui(αi;α−i)− ui(βi;α−i)] = 0 for all α ∈ A . (E.1)

An immediate consequence of this definition is that, excluding trivial games where all
unilateral payoff deviations vanish identically, harmonic games cannot have strict Nash
equilibria: If α were a strict NE, all terms within the square brackets in Eq. (E.1) would by
definition be strictly positive, leading to a contradiction.

This stands in stark contrast to the behavior of potential games, which always admit at
least one pure (and generically strict) Nash equilibrium. This important difference stems
from a rather deep geometrical fact: the orthogonal nature of potential and harmonic games,
discussed in detail by Abdou et al. [1], Candogan et al. [15], which we briefly describe
here. For fixed sets of players N and actions A with cardinalities N and n respectively,
the payoff function u of a game Γ = Γ(N ,A, u) can be represented as an element of a nN -
dimensional vector space. Potential games and harmonic games comprise linear subspaces of
this vector space; moreover, endowed with a suitable inner product, this vector space admits
an orthogonal direct sum decomposition into the subspaces of potential and harmonic games
(modulo strategic equivalence, an equivalence relation that identifies games with the same
strategic structure). In other words, up to strategic equivalence, the payoff functions of any
finite game Γ = Γ(N ,A, u) can be uniquely decomposed as u = up + uh , where (N ,A, up)
is a potential game and (N ,A, uh) is a harmonic one.

Moving on, the defining property (E.1) for a finite game Γ to be harmonic can be
reformulated in terms its mixed extension’s payoff vector v:

Proposition E.1 ([34]). A finite game Γ = Γ(N ,A, u) is harmonic if and only if its mixed
extension ∆(Γ) = (N ,X , u) fulfills the following: there exist (i) a tuple m ∈ RN

>0, and (ii) a
fully mixed strategy q ∈ riX , such that∑

i∈N
mi⟨vi(x), xi − qi⟩ = 0 for all x ∈ X . (E.2)

Whenever the above holds true, m and q are called respectively mass and strategic center of
the underlying harmonic game.

Proof. By standard arguments, Eq. (E.1) holds true if and only if its multilinear extension
holds true, that is if and only if

∑
i∈N

∑
βi∈Ai

µiβi
[ui(xi;x−i)− ui(βi;x−i)] = 0 for all

x ∈ X . By Eqs. (2) and (3), this is equivalent to

∑
i∈N

⟨vi(x), xi⟩∑
βi

µiβi
− ⟨µi, vi(x)⟩


=
∑
i∈N

∑
βi

µiβi

[
⟨vi(x), xi −

µi∑
βi
µiβi

⟩

]
= 0 for all x ∈ X , (E.3)

where we denote µi :=(µiαi
)αi∈Ai

, and all sums involving players’ pure actions are taken
over βi ∈ Ai. Now, assume that Eq. (E.3) holds true; then Eq. (E.2) holds true by setting
mi =

∑
βi
µiβi and qiαi = µiαi/

∑
βi
µiβi , for all i ∈ N and αi ∈ Ai. Conversely, if Eq. (E.2)

holds true, then Eq. (E.3) follows by setting µiαi
= miqiαi

for all i ∈ N and αi ∈ Ai. ■

An immediate corollary is that harmonic games encompass two-player zero-sum games
with a fully mixed equilibrium:
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Corollary E.1. Every two-player zero-sum game with a fully mixed Nash equilibrium x∗ is
harmonic, with weights µ = x∗.

Proof. An interior equilibrium of two-player zero-sum games is null variationally stable
[47–49], that is

∑
i∈N ⟨vi(x), xi − x∗i ⟩ = 0 for all x ∈ X , which implies that Eq. (E.2) is

fulfilled with mi = 1 and qi = x∗i . ■

Proposition E.1 implies that the payoff vector v of a harmonic game is parallel to the
parametric family of hyperellipsoids given by the level sets of the function x 7→

∑
i∈N mi(xi−

qi)
2 ∈ R. Each hyperellipsoid in this family is centered at q, with the ratios among the

semi-axes determined by the game’s mass m, and their absolute lengths varying based on the
level value. As shown by Legacci et al. [34, Th. 2], a consequence of this “circular” strategic
structure is that the (deterministic) dynamics (FTRL) are “almost-periodic” in harmonic
games – more precisely, they exhibit Poincaré recurrence. The authors establish this result
by demonstrating that the FTRL dynamics in harmonic games admit a constant of motion;
for completeness, we include the proof of this fact here.

Proposition E.2. Assume (FTRL) is run in a harmonic game with mass m and strategic
center q. Then the function

F(m,q)(y) :=
∑
i∈N

mi [hi(qi) + h∗i (yi)− ⟨qi, yi⟩] (E.4)

remains constant along score trajectories y(t).

Remark. Eq. (E.4) expresses the sum of Fenchel couplings F (qi, yi), as defined in Eq. (A.6),
for each player i ∈ N . Each term is computed relative to the strategic center qi, and weighted
by the corresponding mass mi.

Proof. By chain rule,

d

dt
F(m,q)(y(t)) =

∑
i∈N

mi [⟨∇h∗i (yi), ẏi⟩ − ⟨qi, ẏi⟩] =
∑
i∈N

mi⟨xi(t)− qi, vi(x(t))⟩ = 0 (E.5)

where we used Eq. (A.7), the definition of (FTRL), and the characterization (E.2) of harmonic
games. ■

In the following sections, we will show that the absence of strict Nash equilibria in
harmonic games is a special case of a broader principle, namely the absence of sets that
are closed under better replies. To this end, we first review some basic properties of the
better-reply correspondence over pure strategies, later extending our results to the case of
mixed strategies.

E.2. Pure better reply correspondence and club sets. Given a finite game Γ = Γ(N ,A, u),
Ritzberger & Weibull [56] introduced the better reply correspondence btri : A⇒Ai as the
set-valued map returning all (weakly) profitable deviations for player i ∈ N from a given
action profile α ∈ A:

btri(α) = {βi ∈ Ai : ui(βi;α−i) ≥ ui(αi;α−i)} . (E.6)

Extending this to all players, we will write btr :=
∏

i∈N btri : A⇒A for the product corre-
spondence; we then say that a subset B ⊆ A of action profiles is closed under better replies
(club) if btr(α) ⊆ B for all α ∈ B. Clearly, the whole A is always closed under better replies;
the question of whether a set of action profiles is club or not is thus non-trivial only in the
case of proper subsets B ⊂ A.
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Next, we provide a simple characterization of club sets in terms of unilateral utility
deviations: heuristically, a subset B of action profiles is club if and only if each unilateral
deviation towards B is strictly profitable. To make this precise, we set some notation.

Definition E.1. Let Γ = Γ(N ,A, u) be a finite game. Two action profiles α, β ∈ A form
a unilateral deviation if they differ in the action of precisely one player; whenever this is
the case, we write α ↔ β, and simply say that β is a deviation from α. The deviations
from any α ∈ A constitute the set Zα :={β ∈ A : β ↔ α}. Whenever α ↔ β, we write
Du(α, β) :=ui(α)−ui(βi;α−i) for the payoff difference of the (necessarily existing and unique)
player i ∈ N deviating from β to α; furthermore, if the game is harmonic with weights µ, we
write µ(α, β) :=µiβi

, where again i is the (existing and unique) deviating player.5 Note that
Du(·, ·) is anti-symmetric in its two arguments, while µ(·, ·) does not generically possess any
symmetry. Consider now a subset B ⊆ A: For any fixed α ∈ A, we denote by Zα,B :=Zα ∩B
the set of deviations from α that belong to B, and by Z∗

α,B :=Zα−Zα,B the set of deviations
from α that do not belong to B.

Remark. These notations allow to recast the defining property (E.1) of harmonic games as∑
β∈Zα

µ(α, β)Du(α, β) = 0 for all α ∈ A . (E.7)

Lemma E.1 (Characterization of club sets). Given a finite game Γ = Γ(N ,A, u), a proper
subset B ⊂ A of action profiles is closed under better replies if and only if the following
condition holds true:

Du(α, β) > 0 for all α ∈ B and all β ∈ Z∗
α,B . (E.8)

Proof. We proceed by contradiction. Let B be a club set, and assume the existence of a pair
α ∈ B, β ∈ Z∗

α,B such that Du(α, β) ≤ 0. Then by Eq. (E.6), βi ∈ btri(α) for some unique
i ∈ N . Since β−i ≡ α−i and αj ∈ btrj(α) for all j ∈ N , this implies that β ∈ btr(α). This
is a contradiction, since by assumption α ∈ B, β /∈ B, and B is closed under better replies.

Conversely, let Eq. (E.8) hold true, and assume B is not closed under better replies. Then
there must exist a (non-strictly) profitable deviation leaving B, that is pair α ∈ B, β ∈ Z∗

α,B,
such that β ∈ btr(α). This in turn implies Du(α, β) ≤ 0, a contradiction. ■

Remark. Note that in the above we consider any subset B ⊂ A; in particular, B is not
necessarily spanning a subface of X , that is, it is not necessarily factoring as B =

∏
i∈N Bi

for a family (Bi ⊂ Ai)i∈N . The case in which B does span a subface of X is described in
Corollary E.2.

E.3. No pure club sets in harmonic games. With the notions of the previous sections at hand,
we move on to show that harmonic games do not admit proper subsets of action profiles
that are closed under better replies. Rather than directly stating and proving the general
result, we take a more pedagogical approach to develop intuition by proceeding as follows:
(i) We begin with Example E.1, which considers the special case of a uniform harmonic
game, where µiαi

≡ 1 for all i ∈ N and all αi ∈ Ai, involving three players each having two
available actions; (ii) Next, we provide the proof for the case of uniform harmonic games
with arbitrary number of player and actions, as presented in Proposition E.3; (iii) Finally, we

5It is important to observe that µ(α, β) = µiβi
as defined in the text is indeed a function of both of

its arguments: While the first argument does not explicitly appear on the right-hand side, player i in
the definition depends implicitly on both α and β. A more explicit, albeit verbose, definition would be
µ(α, β) = µplay(α,β)βplay(α,β)

, where play(α, β) ∈ N is the player deviating between α and β, for any pair

α ↔ β.
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Figure 2: Left – Response graph of a 2 × 2 × 2 uniform harmonic game. Red
labels on edges: freely chosen payoff deviations a, b, c, d, δ ∈ R. Black labels on
edges: payoff deviations constrained as to make the game harmonic according to
Eq. (E.1). Violet vertices: generic subset B of pure action profiles. As detailed in
Example E.1, there is no way to choose the parameters a, b, c, d, δ ∈ R as to make
the set B closed under better replies. Right – Response graph of a generic 2×2×2
game. Violet vertices: generic subset B of pure action profiles. Red labels on edges:
unilateral payoff deviations between elements of B. Black labels on vertices α ∈ B:
sum of unilateral payoff deviations towards α within B, that is

∑
β∈Zα,B

Du(α, β).
As detailed in Lemma E.2, summing these values for all α ∈ B yields zero by the
anti-symmetry of the Du(·, ·) operator. Note that Zα,B = ∅ for α = TLP, which
hence does not contribute to the sum.

extend the result to general harmonic games, as detailed in Theorem E.1. Readers familiar
with the topic may choose to proceed directly to this final proof.

Example E.1 (2× 2× 2 uniform harmonic game). A harmonic game is called uniform if all
players assign a weight of 1 to each of their actions. As shown by Candogan et al. [15, Prop.
4.1], the number of degrees of freedom available in choosing unilateral payoff deviations in
a uniform harmonic game is given by the formula (N − 1)

∏
i∈N ni −

∑
i∈N

∏
j ̸=i nj + 1,

where N is the number of players and ni is the number of actions available to player i. For
a 2× 2× 2 game, this yields 5 degrees of freedom; we denote them by a, b, c, d, δ ∈ R, and
represent them in Fig. 2 (left) as payoff deviations on the game’s response graph [15], an
oriented graph with a node for each of the 8 action profiles and an edge for each of the 12
unilateral deviations of the game.6

The values of the remaining 7 payoff deviations required for the game to be harmonic
are readily computed by Eq. (E.1), and are also represented in Fig. 2 (left). For example,
label the action profiles of the game by the positions they occupy in the response graph.7

Deviating towards the TLA profile entails a payoff difference of c− d for the first player, of
−δ for the second player, and of −c+ d+ δ for the third player: Summing these differences
yields zero, as required for the game to be harmonic.

Having the general form of a 2 × 2 × 2 uniform harmonic game in place, we claim
that one cannot find values for the free parameters a, b, c, d, δ ∈ R such that some proper
subset of action profiles be closed under better replies. Consider, for example, the set

6The label on each oriented edge represents the payoff difference for the player performing the deviation
indicated by the arrow.

7T and B for top and bottom; L and R for left and right ; A and P for anterior and posterior.
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B = {TLA, BLA, BRA, BRP} ⊂ A, whose elements are highlighted in violet in Fig. 2 (left).
By Lemma E.1, if B were closed under better replies, then each unilateral payoff deviation
from a profile not in B to any profile in B would be strictly positive. This would yield the
following system of inequalities for the parameters a, b, c, d, δ ∈ R:

TLA :

{
−c+ d+ δ > 0

−δ > 0
, BLA :

{
c > 0 , BRA :

{
a− d > 0 , BRP :

{
b− a > 0

−b > 0
.

(E.9)
This system is easily verified to have no solution, as summing all of the left-hand sides yields
zero. Consequently, it is impossible to select values for the parameters a, b, c, d, δ ∈ R such
that the set B closed under better replies. It is straightforward to verify that this does not
depend on the particular choice of B, and holds true for any subset of action profiles of the
game. ❦

The reasoning employed in the previous example can be generalized to the case of uniform
harmonic games with arbitrary number of players and actions, as follows.

Proposition E.3. In a uniform harmonic game, no proper subset of action profiles can be
closed under better replies.

Proof. Let Γ = Γ(N ,A, u) be a uniform harmonic game, and assume by contradiction the
existence of some B ⊂ A that is club. For any α ∈ B, specialize Eq. (E.7) characterizing
harmonic games to the uniform case (µiαi

= 1 for all i ∈ N , αi ∈ Ai), and split the domain
of summation as the disjoint union Zα = Zα,B ⊔ Z∗

α,B, to obtain∑
β∈Zα,B

Du(α, β) +
∑

β∈Z∗
α,B

Du(α, β) = 0 for all α ∈ B . (E.10)

By Lemma E.1, each term of the second summation is strictly positive, and so is the whole
second summation; hence, the first summation must be strictly negative. In other words, if a
uniform harmonic game admitted a club set B, it should be true that∑

β∈Zα,B

Du(α, β) < 0 for all α ∈ B . (E.11)

However, this contradicts Lemma E.2 below, concluding our proof. ■

Lemma E.2 (Antisymmetric contraction). In any finite game Γ = Γ(N ,A, u) and for any
B ⊆ A, ∑

α∈B

∑
β∈Zα,B

Du(α, β) ≡ 0 . (E.12)

Proof. The idea is that for each term appearing in the sum, it’s opposite also appears, by
anti-symmetry of Du(·, ·). Take α ∈ B. If Zα,B = ∅, there is nothing to show. Assume then
that Zα,B ≠ ∅. Each β ∈ Zα,B contributes with a term Du(α, β) to the sum. However,
β ∈ Zα,B implies that α ∈ Zβ,B, since α ↔ β is symmetric and both α and β belong to
B. Hence each β ∈ Zα,B contributes to the sum also with a term Du(β, α) = −Du(α, β),
canceling out the previous contribution. ■

Example E.2 (Antisymmetric contraction). Let Fig. 2 (right) be the response graph of a
generic 2× 2× 2 game. Consider the set of profiles α ∈ B = {BLA, BRA, BRP, TRA, TLP},
with payoff deviations among them given by a, b, c ∈ R; it is not necessary to consider any of
the deviations to TLP, since none of them belongs to B. We have that

∑
α∈B

∑
β∈Zα,B

Du(α, β) =

−a+ (a+ c− b) + b− c ≡ 0 , in agreement with Lemma E.2.

Finally, we generalize this result to the case of harmonic games with non-unitary weights.
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Theorem E.1. Assume Γ = Γ(N ,A, u) is a harmonic game. Then no proper subset B ⊂ A
can be closed under better replies.

Proof. The proof is formally almost identical to that of Proposition E.3, but hinges on a
more general version of the key Lemma E.2, taking into account the “symmetry breaking”
due to the presence of weights. Let Γ = Γ(N ,A, u) be a harmonic game with weights µ, and
assume by contradiction the existence of some B ⊂ A that is club. For any α ∈ B, invoke
Eq. (E.7) characterizing harmonic games, and split the domain of summation as the disjoint
union Zα = Zα,B ⊔ Z∗

α,B, to obtain∑
β∈Zα,B

µ(α, β)Du(α, β) +
∑

β∈Z∗
α,B

µ(α, β)Du(α, β) = 0 for all α ∈ B . (E.13)

By Lemma E.1, each term of the second summation is strictly positive, and so is the whole
second summation; hence, the first summation must be strictly negative. In other words, if a
harmonic game with weights µ admitted a club set B, it should be true that∑

β∈Zα,B

µ(α, β)Du(α, β) < 0 for all α ∈ B . (E.14)

However, this leads to a contradiction: indeed, for any B ⊆ A, we claim that

∑
α∈B

∏
j∈N

µjαj

 ∑
β∈Zα,B

µ(α, β)Du(α, β) ≡ 0 . (E.15)

If we show that Eq. (E.15) holds true, our proof is complete; note that this equation is
a generalization of Lemma E.2 in the presence of non-uniform weights. As such, it is
proved analogously: recall that for any profile α ∈ B and any deviation β ∈ Zα,B, the
map (α, β) 7→ Du(α, β) is anti-symmetric, and observe that (on the same domain) the map
(α, β) 7→

[∏
j∈N µjαj

]
µ(α, β) is symmetric. To verify the latter statement, denote by i ∈ N

the (existing and unique) player deviating between α and β, that is, β = (βi, α−i). Then,∏
j∈N

µjαj

µ(α, β) =
 ∏
j∈N−{i}

µjαj

µiαi
µiβi

=

∏
j∈N

µjβj

µ(β, α) . (E.16)

For conciseness we denote this symmetric map by S(α, β) ≡
[∏

j∈N µjαj

]
µ(α, β) for all

α ∈ B, β ∈ Zα,B. Eq. (E.15) then reduces to
∑

α∈B
∑

β∈Zα,B
S(α, β)Du(α, β) = 0, and

follows as the contraction of a symmetric map with an anti-symmetric one: for each term
appearing in the sum, it’s opposite also appears. Take α ∈ B. If Zα,B = ∅, there is nothing to
show. Assume then that Zα,B ̸= ∅. Each β ∈ Zα,B contributes with a term S(α, β)Du(α, β)
to the sum. However, β ∈ Zα,B implies that α ∈ Zβ,B, since α ↔ β is symmetric and
both α and β belong to B. Hence each β ∈ Zα,B contributes to the sum also with a term
S(β, α)Du(β, α) = −S(α, β)Du(α, β), canceling out the previous contribution. ■

Example E.3 (Antisymmetric contraction revisited). Consider again the deviations of
Fig. 2 (right), this time assigning a positive weight µiαi

to each player’s action. Let
B = {BLA, BRA, BRP, TRA, TLP}. The condition given by Eq. (E.14) for B to be club
assuming that the game is harmonic yields the following system of inequalities (one for each
α ∈ B such that Zα,B ̸= ∅):

BLA : µR(−a) < 0 BRA : µLa+ µTc+ µP(−b) < 0

BRP : µAb < 0 TRA : µB(−c) < 0
(E.17)
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This system of inequalities admits no solution in the domain µiαi > 0, a, b, c ∈ R. Indeed,∑
α∈B

[∏
i∈N

µiαi

]∑
β∈Zα,B

µ(α, β)Du(α, β) = µBµLµA[−µRa]

+ µBµRµP[µAb]

+ µTµRµA[−µBc]

+ µBµRµA[µLa+ µTc− µPb] ≡ 0 , (E.18)

in agreement with Eq. (E.15), making it impossible for the system (E.17) to admit a solution.

E.4. No club subfaces in harmonic games. We conclude this appendix by extending Theo-
rem E.1 to the case of mixed strategies. To set the notation we recall the definition of the
following standard objects:

Definition E.2. Given the mixed extension ∆(Γ) of a finite game Γ = Γ(N ,A, u), the support
of any xi ∈ Xi is supp(xi) :={αi ∈ Ai : xiαi > 0}. Given a family (Bi ⊆ Ai)i∈N , the face
spanned by B :=

∏
i∈N Bi is

SB :=
∏
i∈N
{xi ∈ Xi : supp(xi) ⊆ Bi} ≡

∏
i∈N
SBi

. (E.19)

A subface of X (sometimes also referred to as a proper face) is a proper subset of X that
can be written in the form (E.19) for some (Bi ⊂ Ai)i∈N . Moving on, the better reply
correspondence (E.6) extends to mixed strategies as the correspondence btr : X ⇒X define
by

btr(x) =
∏
i∈N
{x′i ∈ Xi : u(x

′
i, x−i) ≥ u(x)} , (E.20)

and we say that a subface S of X is closed under better replies (club) if btr(x) ⊆ S for all
x ∈ S.

Corollary E.2. Assume ∆(Γ) is the mixed extension of a finite harmonic game Γ = Γ(N ,A, u).
Then no subface of X can be closed under better replies.

Proof. Let SB ⊂ X be a subface of X with spanning set B =
∏

i∈N Bi ⊂ A, with Bi ⊂ Ai

for all i ∈ N . Our claim follows as a consequence of Theorem E.1, and the fact that

SB is club =⇒ B is club . (E.21)

Indeed, assume that SB is club. Then for any x ∈ SB and any x′ ∈ X , if x′ ∈ btr(x), that is,
if ui(x′i, x−i) ≥ ui(x) for all i ∈ N , then x′ ∈ SB. For any α ∈ B, this holds true in particular
at the mixed profile α ∈ SB such that supp(αi) = {αi}, i.e., at the mixed representation
of the pure profile α ∈ B, in which each player i plays the strategy αi with probability 1.
Hence, for any α ∈ B and any x′ ∈ X , if ui(x′i, α−i) ≥ ui(α) for all i ∈ N , then x′ ∈ SB.
With the same reasoning, this holds true in particular at the mixed representation β ∈ X of
any β ∈ A: for any α ∈ B and any β ∈ X , if ui(βi, α−i) ≥ ui(α) for all i ∈ N , then β ∈ SB,
meaning that supp(βi) ⊆ Bi, i.e., βi ∈ Bi. ■

As a consequence, we can now prove Theorem 6, which we restate here for ease of reference:

Theorem 6. Suppose Assumption 3 holds. If the game is harmonic, there is no proper face S
of X that is stochastically asymptotically stable under (S-FTRL).

Proof. By Theorem 2, stochastically asymptotically stable subfaces of X are necessarily
closed under better replies. Corollary E.2 shows that harmonic game do not admit any such
faces, which completes our proof. ■
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F. Omitted proofs from Section 5

In this appendix, we prove the various results stated in Section 5 regarding the fragility of
deterministic recurrence in a noisy environment. As mentioned in the main text, the primary
object of interest of this section will be the energy function

H(x) =
∑
i∈N

miDi(qi, xi) (F.1)

where m and q denote respectively the mass and the strategy center of a fixed harmonic
game Γ, and Di denotes the standard Bregman divergence generated by the regularizer
function hi.

In fact, we will not directly work with the energy function H through its “primal” definition
Eq. (F.1), but instead use its “dual” representation

F (y) =
∑
i∈N

miFi(qi, yi) (F.2)

where Fi denotes the Fenchel coupling defined in Appendix A. In particular, Proposition A.2
implies that H(x) = F (y) whenever x = Q(y), which allows this change of function. This
choice of representation greatly simplifies the computations, as it avoids the need to use an
explicit expression of trajectories in X . In the deterministic setting for instance, it provides
a quick proof that the energy H (resp. F ) is a constant of motion for (FTRL) in harmonic
games (cf. Appendix E).

F.1. Proof of Theorems 4 and 5. The main idea underlying the proofs of Section 5 is to
show that the infinitesimal generator L of (S-FTRL) applied to F is positive on Y. To be
more precise, recall from Appendix B that

Ey[F (Y (t))] = F (y) + Ey

[∫ t

0

LF (Y (s)) ds

]
(F.3)

for every t ≥ 0, so t 7→ Ey[F (Y (t))] is increasing whenever LF is anywhere positive. The
interesting aspect is that this result also holds when t is replaced by any (almost surely
bounded) hitting time τ (see Lemma B.1), enabling us to obtain even finer results beyond
just the average increase of the energy function

For this reason, we begin with a preliminary lemma allowing us to accurately estimate
this quantity in harmonic games:

Lemma F.1. For every harmonic game Γ and every y ∈ Y,

σ2
min

2

∑
i∈N

mi tr(JacQi(yi)) ≤ LF (y) ≤
σ2
max

2

∑
i∈N

mi tr(JacQi(yi)). (F.4)

Proof. Let us fix the player’s index i ∈ N . By Itô’s formula, we have

dFi(qi, Yi) = ⟨gradFi(q, Yi), dYi⟩+
1

2

∑
αβ

∂2Fi

∂yα∂yβ
(qi, Yi)d[Yiα, Yiβ ]

= ⟨Qi(Yi)− qi, vi(X)⟩dt+ 1

2

∑
αβ

∂Qiα

∂yβ
(Yi)(Σi(X))αβdt+ dξi

= ⟨Xi − qi, vi(X)⟩dt+ 1

2
tr(JacQi(Yi)Σi(X))dt+ dξi (F.5)



THE IMPACT OF UNCERTAINTY ON REGULARIZED LEARNING 43

where Σi = σiσ
T
i and ξi denotes a square-integrable martingale starting from 0. Consequently,

we get

LF (y) =
∑
i∈N

miLFi(qi, yi) =
1

2

∑
i∈N

mi tr(JacQi(yi)Σi(x)) (F.6)

for every y ∈ Y and x = Q(y).
Now, notice that the eigenvalues of each Σi are all included in the interval [σ2

min, σ
2
max] by

Assumption 1 on the diffusion matrix. Furthermore, JacQi(y) = Hessh∗i (y) is symmetric
and positive semi-definite for any y ∈ Y (this is a consequence of h∗ being convex and of
Proposition A.1). By classical results of linear algebra, we therefore obtain

σ2
min tr(JacQi(yi)) ≤ tr(JacQi(yi)Σi(x)) ≤ σ2

max tr(JacQi(yi)) (F.7)

for every player i ∈ N , which finishes the proof when combined with Eq. (F.6). ■

With this lemma in hand, we are now ready to prove every results stated in Section 5.

Proof of Theorem 4 (H →∞ in average). From Lemma F.1 and the convexity of h, it is
evident that LF (y) ≥ 0 for every y ∈ Y. According to Eq. (F.3), it then implies that
t 7→ E[F (Y (t))] is a non-decreasing function. In particular, it admits a (possible infinite)
limit. Assume for a moment that this limit is finite. Then, Eq. (F.3) and Fubini’s theorem
would imply that

∫ t

0
LF (Y (s))ds should be finite almost-surely. But as LF (y) is positive for

every y ∈ A, this is possible only if LF (Y (t))→ 0 almost-surely. Due to the lower bound
of Lemma F.1, it would mean that tr(JacQi(Yi(t))) → 0 for every player i ∈ N , but this
can only occurs if X(t) = Q(Y (t)) converges to the boundary bdX (indeed, this quantity is
strictly positive on the relative interior of X due to Lemma A.1). However, this leads to a
contradiction because F (Y (t)) = H(X(t)) explodes to infinity whenever X(t) converges to
the boundary. Consequently, the limit of E[F (Y (t))] is necessarily infinite as required. ■

Proof of Theorem 5. (1) Let K be compact subset of X disjoint from bd(X ). Due to
Dynkin’s lemma (Lemma B.1) and Lemma F.1 we have, for every fixed t ≥ 0,

M(K) ≥ Ex[F (Y (τK ∧ t))] ≥ F (y) +
σ2
min

2
Ey

[∫ τK∧t

0

∑
i∈N

mi tr(JacQi(Yi(s)) ds

]

≥ F (y) + σ2
min

2
m(K)Ex[τK ∧ t] (F.8)

where

M(K) :=max{H(x) : x ∈ K} <∞, (F.9)

m(K) :=min

{∑
i∈N

mi tr(JacQi(yi)) : x = Q(y), x ∈ K

}
> 0. (F.10)

The finiteness of M(K) follows from properties of the Bregman divergence, while the
positiveness of m(K) comes from Lemma A.1. Rearranging the inequality and taking
the monotone limit as t→∞, we therefore obtain

Ex[τK] ≤ 2
M(K)−H(x)

m(K)σ2
min

<∞; (F.11)

hence the mean escape time is finite as required.
(2) From Lemma F.1 and the fact that h∗i is both convex and L-smooth (cf. Appendix A),

we obtain

0 ≤ LF (y) ≤ Lσ2
min

2

∑
i∈N

mi =:K. (F.12)
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In particular, it implies that F (Y (t)) (resp. H(X(t))) is a submartingale (this
is a consequence of the martingale characterization of infinitesimal generators, cf.
Eq. (B.2)). Let us consider the compact subset K = {x ∈ X : H(x) ≥M} and assume
that Ex[τK] <∞ for some initial condition x ∈ riX such that H(x) ≥M + 1. Then,
Dynkin’s lemma and Eq. (F.12) yield

Ex[H(X(τK ∧ t))] ≤ H(x) +K Ex[τK ∧ t] ≤ H(x) +K Ex[τK] <∞. (F.13)

Consequently, the stopped process (H(X(τK ∧ t)))t≥0 is a uniformly integrable sub-
martingale. Doob’s martingale convergence theorem [29, Theorem 3.15 p.17] therefore
implies that

H(x) ≤ Ex[H(X(τK ∧ t))]→ Ex[H(X(τK))] ≤M, (F.14)

which contradicts the fact that H(x) ≥M +1. We therefore deduce that Ex[τK] =∞
for some x ∈ K, so trajectories of (S-FTRL) cannot be positive recurrent in the sense
of Definition 3. In particular, the mean escape time is also infinite for any compact
subset containing bd(X ) due to the transience/recurrence dichotomy of Theorem 7.

■

Proof of Theorem 4 (Hitting time estimate). The proof follows directly from Eq. (F.11) with
the particular choice K = {x ∈ X : H(x) ≤ M}, which leads to M(K) = M and m(K) =
ε(M). ■

Proof of Corollary 4. Let us consider the entropic kernel θi(z) = z log z, and let us drop
the player’s index i for a moment. A standard computation shows that, in this case, the
Bregman divergence D(q, x) is equal to the Kullback-Leibler divergence between q and x,
given by

KL(q, x) =
∑

α
qα log

(
qα
xα

)
= h(q)−

∑
α
qα log xα. (F.15)

On the other hand, computing the Jacobian matrix of the logit map Q leads to

tr(JacQ(y)) =
∑

α
xα(1− xα). (F.16)

Applying the inverse exponential function on Eq. (F.15) then yields

e−D(q,x) = e−h(q)
∏

α
xqαα = e−h(q)

(∏
α
xα

)q∗ ∏
α
xqα−q∗

α ≤ e−h(q)
(∏

α
xα

)q∗
, (F.17)

where q∗ = minα qα > 0. Furthermore, we can upper bound
∏

γ xγ as∏
γ
xγ =

1

n(n− 1)

∑
α̸=β

∏
γ
xγ ≤

1

n(n− 1)

∑
α̸=β

xαxβ =
1

n(n− 1)

∑
α
xα(1− xα),

(F.18)
where the the penultimate inequality follows by taking xγ ≤ 1 for every γ /∈ {α, β}, and the
last equality uses the simplex constraint

∑
α xα = 1. Putting this bound back into Eq. (F.17)

therefore leads to

e−
1
q∗ D(q,y) ≤ e−

1
q∗ h(q)[n(n− 1)]−1

∑
α
xα(1− xα) = c(q) tr(JacQ(y)). (F.19)

with c > 0 a constant depending only on q and n.
Adding back the players’ indices, we define q∗ = mini q

∗
i and c(q) = maxi ci(qi), which

allows us to write∑
i∈N

mi tr(JacQi(yi)) ≥
1

c(q)

∑
i∈N

mie
− 1

q∗ Di(qi,xi) ≥ m

c(q)
e−

1
mq∗

∑
i miDi(qi,xi) = c1e

−c2H(q,x),

(F.20)
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where m =
∑

imi, c1 and c2 are positive constants, and the penultimate inequality holds
thanks to the convexity of e−x. Accordingly, if H(q, x) ≤M , then∑

i∈N
mi tr(JacQi(yi)) ≥ c1e−c2M , (F.21)

and, therefore, the same lower bound also holds true for ε(M). Substituting this bound
inside the hitting time estimate of Theorem 4 then yields the desired result, accordingly that

Ex[τM ] ≲
M

σ2
min

ecM (F.22)

for some positive constant c > 0. ■

F.2. Comparison with related works: the pure noise setup. To conclude this appendix, we
discuss the main differences between the behavior of (S-FTRL) and those of (SRD-PI) and
(SRD-AS) in harmonic games. In particular, we aim to clarify why the Itô correction term
in (S-FTRL) is the one that preserves most of the rationally admissible properties of the
deterministic case.

For this purpose, we focus on the pure noise regime, i.e., the case where v ≡ 0 across all X
(which, by definition, is also a trivial harmonic game). In this setting, the system’s behavior
is entirely determined by the noise and the corresponding Itô correction term, making it a
suitable approximation for analyzing the impact of noise on (S-FTRL).

To simplify the analysis, we consider uncorrelated noise where each σiαi
is independent of

the players’ strategies. Under these assumptions, the dynamics of (S-FTRL) reduce to the
following form:

Yiαi
(t) = σiαi

Wiαi
(t), Xi(t) = Qi(Yi(t)). (FTRL-N)

Since Q−1 is generally neither continuous nor single-valued, the behavior of X(t) cannot
be inferred directly from that of Y (t). Instead, we must map Y (t) to the space of payoff
differences Z(cf. Appendix B), where (FTRL-N) then takes the form:

Ziαi
(t) = σiαi

Wiαi
(t)− σiα̂i

Wiα̂i
(t); Xi(t) = Q̂i(Zi(t)) (F.23)

for every αi ̸= α̂i, where α̂i ∈ Ai is a fixed benchmark action and Q̂ denotes the payoff-
adjusted mirror map (whose inverse is continuous and single-valued by Lemma B.3). In
particular, the long-run behaviors of X(t), i.e., the classification of those as either transient
or recurrent, are completely the same as that of a (correlated) Brownian motion.

This identification explains why the deterministic stability properties of (FTRL) largely
persist under any level of noise: in terms of players’ strategies, the induced noise essentially
behaves like a standard Brownian motion and is therefore negligible compared to most drifts,
as justified by the strong law of large numbers (Lemma B.5).

Additionally, this also explains why positive recurrence is impossible in harmonic games:
the absence of significant drift results in trajectories of (S-FTRL) resembling ones of a
(correlated) Brownian motion. Since the effective dimension of such a process is at least 2
(and finite games require at least 2 players), it generally cannot exhibit positive recurrence.

To illustrate these points, consider two specific examples of pure-noise settings:

Example F.4 (2× 2 zero game). Let Γ be a 2× 2 zero game, i.e., a game with two players
each having two strategies, and take all noise coefficients equal to 1 for simplicity. In this
case, we get

Z1(t) =W1α1
(t)−W1α̂2

(t) =
1√
2
B1(t) (F.24)
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Z2(t) =W2α2
(t)−W2α̂2

(t) =
1√
2
B2(t) (F.25)

where B(t) = (B1(t), B2(t)) is a standard 2-dimensional Brownian motion. Accordingly, Z(t)
is proportional to a 2-dimensional Brownian motion, which is known to be null recurrent
from classical results (see e.g., Examples 3.11 and 3.12 of [32]). Accordingly, X(t) must also
be null-recurrent by Lemma B.3.

Example F.5 (2× 2× 2 zero game). Let Γ be a 2× 2× 2 zero game, with then three players
each having two strategies, and all noise coefficient equal to 1. Similarly to the previous
example, we therefore obtain that Z(t) = 1√

3
B(t) for B(t) a 3-dimensional Brownian motion.

Such a process is transient, so X(t) must also be transient.

The previous examples highlight an important observation about (S-FTRL) in harmonic
games: although trajectories converge on average toward the boundary by Theorem 4, this is
not enough to distinguish between convergence with probability one (transience) and infinite
oscillations in the strategy space (null recurrence).

With that in mind, let us now examine the different stochastic differential equations
proposed to study random perturbations to the replicator dynamics (RD) (and more generally
in (FTRL)), namely the stochastic replicator dynamics with aggregate shocks (SRD-AS)
[14, 21, 24, 28] and the stochastic replicator dynamics of pairwise imitation (SRD-PI)
[10, 17, 20, 46].

Still in the pure-noise setting and with a slight abuse of notation, both of these dynamics
can be recast within the framework of (S-FTRL) (at least for the entropic regularizer from
Example 1) as:

Y AS
iαi

(t) = −
σ2
iαi

2
t+ σiαi

Wiαi
(t); XAS

i (t) = Qi(Y
AS
i (t)) (FTRL-AS-N)

and

dY PI
iαi

(t) = −1

2

(
1− 2XPI

iαi
(t)
)
σ2
iαi
dt+ σiαidWiαi(t); XPI

i (t) = Qi(Y
PI
i (t)) (FTRL-PI-N)

respectively. Mapping both (FTRL-AS-N) and (FTRL-PI-N) into the payoff differences
space Z then yield

ZAS
iαi

(t) = −1

2
(σ2

iαi
− σ2

iα̂i
)t+ σiαiWiαi(t)− σiα̂iWiα̂i(t) (AS-Z)

and
dZPI

iαi
(t) = −2

(
XPI

iα̂i
(t)−XPI

iαi
(t)
)
dt+ σiαi

dWiαi
(t)− σiα̂i

dWiα̂i
(t). (PI-Z)

To highlight their differences, we discuss each of these dynamics in separate examples.

Example F.6 (Stochastic replicator dynamics with aggregate shocks). Notice that the drift
in (AS-Z) is deterministic and only depend on the relative difference of noise magnitude. By
the strong law of large numbers (Lemma B.5), we therefore get the following classification of
its behaviors:

(1) If σ2
iαi

> σ2
iα̂i

for some αi ̸= α̂i, then ZAS
iαi

(t)→ −∞ (a.s.), and so XAS
iαi

(t)→ 0 (a.s.):
trajectories are transient.

(2) If σ2
iαi

< σ2
iα̂i

for some αi ̸= α̂i, then ZAS
iαi

(t)→∞ (a.s.), and so XAS
iα̂i

(t)→ 0 (a.s.):
trajectories are transient.

(3) If σiαi
≡ σi for every αi ∈ A, then ZAS

iαi
(t) = σi(Wiαi

(t)−Wiα̂i
(t)): same behavior

as (FTRL-N).
This classification can also be recovered from results proved in [24, 28] concerning the
extinction of dominated strategies and stability of equilibria under (SRD-AS).
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Example F.7 (Stochastic replicator dynamics of pairwise imitation). Note that if XPI(t)
remains close enough to a pure strategy, say α̂i, then the drift of (PI-Z) is strictly decreasing
with order −t for every αi ≠ α̂i. In other words, trajectories have a strong tendency to drift
toward pure strategies. Moreover, a similar argument to the one developed in the proof
of Theorem 2 then shows that each pure strategy is stochastically asymptotically stable
under (FTRL-PI-N). As a result, trajectories are always transient and attracted strongly
toward pure strategies. This aligns with the findings of Engel & Piliouras [17] in two-player
zero-sum games, where pure strategies are attractive in terms of their invariant measures,
and trajectories converge to the boundary regardless of the noise level.

From the previous examples, we conclude that both (SRD-AS) and (SRD-PI) exhibit a
strong bias towards the strategy boundary, even when the payoffs do not favor any particular
outcome. In contrast, (S-FTRL) does not show such tendencies and behaves as we would
expect in a pure noise setting, namely, similarly to white noise (Brownian motion).
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