
GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Set-wise Coordinate Descent for Dual
Asynchronous Decentralized Optimization

Marina Costantini, Nikolaos Liakopoulos, Panayotis Mertikopoulos, and Thrasyvoulos Spyropoulos

Abstract— In decentralized optimization over networks,
synchronizing the updates of all nodes incurs significant
communication overhead. For this reason, much of the
recent literature has focused on the analysis and design
of asynchronous optimization algorithms where nodes can
activate anytime and contact a single neighbor to complete
an iteration together. However, most works assume that
the neighbor selection is done at random based on a fixed
probability distribution (e.g., uniform), a choice that ignores
the optimization landscape at the moment of activation.
Instead, in this work we introduce an optimization-aware se-
lection rule that chooses the neighbor providing the highest
dual cost improvement (a quantity related to a dualization of
the problem based on consensus). This scheme is related
to the coordinate descent (CD) method with the Gauss-
Southwell (GS) rule for coordinate updates; in our setting
however, only a subset of coordinates is accessible at each
iteration (because each node can communicate only with its
neighbors), so the existing literature on GS methods does
not apply. To overcome this difficulty, we develop a new
analytical framework for smooth and strongly convex func-
tions that covers our new class of set-wise CD algorithms
–a class that applies to both decentralized and parallel
distributed computing scenarios– and we show that the
proposed set-wise GS rule can speed up the convergence
in terms of iterations by a factor equal to the size of the
largest coordinate set. We analyze extensions of these
algorithms that exploit the knowledge of the smoothness
constants when available and otherwise propose an algo-
rithm to estimate these constants. Finally, we validate our
theoretical results through extensive simulations.

Index Terms— convex optimization, coordinate descent,
decentralized optimization, distributed machine learning,
distributed optimization, multi-agent optimization, opti-
mization over networks.

I. INTRODUCTION

Many timely applications require solving optimization prob-
lems over a network where nodes can only communicate
with their direct neighbors. This may be due to the need of
distributing storage and computation loads (e.g. training large
machine learning models [1]), or to avoid transferring data
that is naturally collected in a decentralized manner, either due

Paper submitted for review on August 17th, 2023.
M. Costantini is with EURECOM, Sophia Antipolis, France

(costanti@eurecom.fr).
N. Liakopoulos is with Amazon, Luxembourg City, Luxembourg

(nliako@amazon.lu).
P. Mertikopoulos is with Univ. Grenoble Alpes, CNRS, Inria, Grenoble

INP, & LIG, France (panayotis.mertikopoulos@imag.fr).
T. Spyropoulos is with EURECOM & the Technical University of Crete,

Chania, Greece (spyropou@eurecom.fr).

to the communication costs or to privacy reasons (e.g. sensor
networks [2], edge computing [3], and precision medicine [4]).

Specifically, we consider a setting where the nodes want to
solve the decentralized optimization problem

minimize
θ∈Rd

n∑
i=1

fi(θ), (1)

where each local function fi is known only by node i
and nodes can exchange optimization values (parameters,
gradients) but not the local functions themselves. We represent
the communication network as a graph G = (V, E) with
n = |V| nodes (agents) and E = |E| edges, which are the
links used by the nodes to communicate with their neighbors.

Existing methods to solve this problem usually assign
to each node a local variable θi and execute updates that
interleave a local gradient step at the nodes followed by an
averaging step (usually carried out by a doubly-stochastic
matrix) that aggregates the update of the node with those of
its neighbors [5]–[10].

Alternatively, the consensus constraint can be stated explic-
itly between node pairs connected by an edge:

minimize
θ1,...,θn∈Rd

n∑
i=1

fi(θi) (2a)

subject to θi = θj ∀ (i, j) ≡ ℓ ∈ E , (2b)

where ℓ ≡ (i, j) indicates that edge ℓ links nodes i and j.
This reformulation allows solving the decentralized optimiza-
tion problem through its dual problem. Interestingly, dual
decentralized algorithms have been the only ones shown to
achieve optimal convergence rates when using acceleration
[11]–[13]. However, these algorithms are synchronous, in the
sense that they require coordinating the updates of all nodes
at each iteration. In contrast, by exploiting connections with
coordinate descent theory naturally derived from the dual
formulation, here we propose an alternative way to speed up
convergence in dual decentralized optimization that does not
require network-wide synchronicity.

In our setup, nodes activate anytime at random and select
one of their neighbors to make an update together. Methods
with such minimal coordination requirements avoid incurring
extra costs of synchronization that may also slow down con-
vergence [14]–[18]. However, most of these works assume that
when a node activates, it simply selects the neighbor to contact
randomly, based on a predefined probability distribution. This
approach overlooks the possibility of letting nodes choose
the neighbor to contact taking into account the optimization

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

landscape at the time of activation. Therefore, here we depart
from the probabilistic choice and ask: can nodes pick the
neighbor smartly to make the optimization converge faster?

In this paper, we give an affirmative answer and propose
algorithms that achieve this by solving the dual problem of
(2). In the dual formulation, there is one dual variable λℓ ∈
Rd per constraint θi = θj , hence each dual variable can be
associated with an edge ℓ in the graph. Our algorithms let an
activated node i contact a neighbor j so that together they
update their shared variable λℓ, ℓ ≡ (i, j) with a gradient
step. In particular, we propose to select the neighbor j such
that the updated λℓ is the one whose directional gradient for
the dual function is the largest, and thus the one that provides
the greatest cost improvement at that iteration. Beyond the
preliminary version of this work that appeared in [19], such
optimal choice has not yet been considered in the literature.

Interestingly, the above protocol where a node activates
and selects a λℓ to update can be seen as applying the
coordinate descent (CD) method [20] to solve the dual problem
of (2), with the following key difference: unlike standard CD
methods, where any of the coordinates may be updated, now
only a small subset of coordinates are accessible at each step,
which are the coordinates associated with the edges connected
to the node activated. Moreover, our proposal of updating the
λℓ with the largest gradient is similar to the Gauss-Southwell
(GS) rule [21], but applied only to the parameters accessible
by the activated node.

We name such protocols set-wise CD algorithms, and we
analyze a number of possibilities for the coordinate (or equiv-
alently, neighbor) choice: random sampling, local GS, and two
extensions that take into account the smoothness constants of
the dual function. Compared to standard CD literature, three
difficulties complicate the analysis and constitute the base of
our contributions: (i) for arbitrary graphs, the dual problem of
(2) has an objective function that is not strongly convex, even
if the primal functions fi are strongly convex, (ii) the fact
that the GS rule is applied to a few coordinates prevents the
use of standard norms to obtain the linear rate, as commonly
done for CD methods [20]–[22], and (iii) the coordinate sets
are overlapping (i.e. non-disjoint), which makes the problem
even harder.

Our results also apply to the (primal) parallel distributed
setting where multiple workers modify different sets of co-
ordinates of the parameter vector, which is stored in a server
accessible by all workers [23]–[25]. In particular, we show that
for this setting the GS selection attains the maximum speedup
promised by the theory (see Theorem 2).

Our contributions can be summarized as follows:
• We introduce the class of set-wise CD algorithms for

asynchronous optimization applicable to both the decen-
tralized and the parallel distributed settings.

• We prove linear convergence rates for smooth and
strongly convex fi and four coordinate (equivalently,
neighbor) choices: random uniform, GS, and their vari-
ants when the coordinate smoothness constants are
known.

• For the cases when these constants are not known, we
propose an algorithm based on backtracking [20] for es-

timating them online, and show that for certain problems
this method achieves faster per-iteration convergence than
the exact knowledge of these constants.

• To obtain the rates of all considered algorithms, we prove
strong convexity in uniquely-defined norms that (i) take
into account the graph structure to show strong convexity
in the linear subspace where the coordinate updates are
applied, and (ii) account for both the random uniform
node activation and the application of the GS rule to just
a subset of the coordinates.

• We show that the speedup in terms of number of iterations
of GS selection with respect to random uniform can be
up to Nmax (the size of the largest coordinate set).

• We prove that the versions accounting for coordinate
smoothness are provably faster than those that do not ac-
count for these constants. In particular, we show that the
algorithm exploiting both the GS rule and the smoothness
knowledge is provably faster than all others.

• We support all our results with thorough simulations1.

II. RELATED WORK

A number of algorithms have been proposed to solve (1)
asynchronously. In [18], the activated node chooses a neighbor
uniformly at random and both nodes average their primal local
values. In [14] the authors adapted the ADMM algorithm to
the decentralized setting, but it was the ADMM of [15] the
first one shown to converge at the same rate as the centralized
ADMM. The algorithm of [16] tracks the average gradients to
converge to the exact optimum instead of just a neighborhood
around it, as many algorithms back then. The algorithm of [26]
can be used on top of directed graphs, which impose additional
challenges. A key novelty of our scheme, compared to this
line of work, is that we consider the possibility of letting the
nodes choose smartly the neighbor to contact in order to make
convergence faster.

Work [27] is, to the best of our knowledge, the only work
similarly considering smart neighbor selection. The authors
propose Max-gossip, a version of the (primal) algorithm in
[5] where the activated node averages its local parameter with
that of the neighbor with whom the parameter difference is the
largest. They show that the algorithm converges sublineraly to
the optimum (for convex functions), and show in numerical
simulations that it outperforms random neighbor selection.
In contrast, here we propose dual algorithms for which we
show linear convergence rates (for smooth and strongly convex
functions), and most importantly, (i) we prove analytically
that either applying the GS rule and/or using the Lipschitz
information achieves faster convergence than random neighbor
sampling, and (ii) we quantify the magnitude of the gains.

Finally, as mentioned earlier, our work relates to standard
CD literature. In particular, our theorems extend the results
in [21], where the GS rule was shown to be up to d times
faster than uniform sampling for f : Rd→R, to the case
where this choice is constrained to a subset of the coordinates
only, sets have different sizes, each coordinate belongs to

1The code to reproduce the results is available at https://github.
com/m-costantini/Set-wise_Coordinate_Descent/.

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

exactly two sets, and sets activate uniformly at random. As
we explain in Sections IV and V, these considerations bring
important new challenges with respect to the standard single-
machine CD algorithms. Furthermore, our algorithms are not
only applicable to the decentralized case but also to parallel
distributed settings such as [23]–[25]. For the latter, [28] also
analyzed the GS applied to coordinate subsets, but their sets
are disjoint, accessible by any worker, and they do not quantify
the speedup of the method with respect to random uniform
sampling.

III. DUAL FORMULATION

In this section, we define the notation, obtain the dual
problem of (2), and analyze the properties of the dual objective
function. We will assume throughout that the functions fi
are Mi-smooth and µi-strongly convex, i.e. there exist finite
constants Mi ≥ µi > 0, i ∈ [n] such that:

fi(y) ≤ fi(x) + ⟨∇f(x), y − x⟩+ (Mi/2) ∥y − x∥22
fi(y) ≥ fi(x) + ⟨∇f(x), y − x⟩+ (µi/2) ∥y − x∥22 .

We define the concatenated primal and dual variables θ =
[θT1 , . . . , θ

T
n]

T ∈ Rnd and λ = [λT
1 , . . . , λ

T
E]

T ∈ REd, respec-
tively. The graph’s incidence matrix A ∈ Rn×E has exactly
one 1 and one -1 per column ℓ, in the rows corresponding to
nodes i, j : ℓ ≡ (i, j), and zeros elsewhere (the choice of sign
for each node is irrelevant). We call ui ∈ Rn the vector that has
1 in entry i and 0 elsewhere; we define eℓ ∈ RE analogously.
We use k ∈ [K] to indicate k = 1, . . . ,K. Vectors 1 and 0 are
respectively the all-one and all-zero vectors, and Id is the d×d
identity matrix. Finally, in order to use matrix operations in
the equations below for some operations, we define the block
arrays Λ = A ⊗ Id ∈ Rnd×Ed and Ui = ui ⊗ Id ∈ Rnd×d,
where ⊗ is the Kronecker product. This operation generates
arrays analogous to A and ui where the original entries 1, -1,
and 0 have been replaced by Id, −Id, and the all-zero d × d
matrix, respectively.

We can rewrite now (2b) as ΛT θ = 0, and the node variables
as θi = UT

i θ. The minimum value of (2) satisfies:

inf
θ:ΛT θ=0

n∑
i=1

fi(U
T
i θ)

(a)
= inf

θ
sup
λ

[
n∑

i=1

fi(U
T
i θ)− λTΛT θ

]
(b)
= sup

λ
inf
θ

[
n∑

i=1

fi(U
T
i θ)− λTΛT θ

]

= − inf
λ

sup
θ

n∑
i=1

[
(UT

i Λλ)TUT
i θ − fi(U

T
i θ)

]
= − inf

λ

n∑
i=1

f∗
i (U

T
i Λλ) ≜ − inf

λ
F (λ), (3)

where (a) holds due to Lagrange duality and (b) holds by
strong duality (see e.g. Sec. 5.4 in [29]). Functions f∗

i are the
Fenchel conjugates of the fi, and are defined as

f∗
i (y) = sup

x∈Rd

(
yTx− fi(x)

)
.

Our set-wise CD algorithms converge to the optimal solu-
tion of (2) by solving (3). In particular, they update a single

dual variable λℓ, ℓ ∈ [E] at each iteration and converge to
some minimum value λ∗ of F (λ).

Since
∑n

i=1 fi(U
T
i θ) in (2a) is Mmax-smooth and µmin-

strongly convex in θ, with Mmax = maxi Mi and µmin =
mini µi, function F is L-smooth with L = γmax

µmin
, where γmax

is the largest eigenvalue of Λ+Λ (Sec. 4 in [13]). We call γ+
min

the smallest non-zero eigenvalue2 of Λ+Λ.
However, as shown next, function F is not strongly convex

in the standard L2 norm, which is the property that usually
facilitates obtaining linear rates in optimization literature.

Lemma 1. F is not strongly convex in ∥·∥2.

Proof. Since Λ does not have full column rank in the general
case (i.e., unless the graph is a tree), there exist w ∈ REd

such that w ̸= 0 and F (λ) = F (λ+ tw) ∀t ∈ R.

Nevertheless, we can still show linear rates for the set-wise
CD algorithms using the following result.

Lemma 2 (Appendix C of [12]). F is σA-strongly convex in
the semi-norm ∥x∥A ≜ (xTΛ+Λx)

1
2 , with σA =

γ+
min

Mmax
.

Above, Λ+ denotes the pseudo-inverse of Λ. A key fact for
the proofs in the next section is that matrix Λ+Λ is a projector
onto range(ΛT), the column space of ΛT .

To simplify the notation, in what follows we assume that
d = 1, so that Λ = A, Ui = ui, and the gradient ∇ℓF (λ) =
∂F (λ)
∂λℓ

of F (λ) in the direction of λℓ is a scalar. In Sec. VI-C
we discuss how to adapt our proofs to the case d > 1.

IV. SET-WISE COORDINATE DESCENT ALGORITHMS

In this section, we present the set-wise CD algorithms,
which can solve generic convex problems (and (3) in par-
ticular) optimally and asynchronously. Here we analyze two
possibilities for the coordinate choice within the accessible
coordinate subset: (i) sampling uniformly at random (SU-CD),
and (ii) applying the GS rule (SGS-CD). Their extensions
when the coordinate-wise Lipschitz constants are known (or
can be estimated) are analyzed in Section V.

If coordinate ℓ is updated at iteration k and assuming d = 1,
the standard CD update applied to F (λ) is [20]:

λk+1 = λk − ηk∇ℓF (λk)eℓ, (4)

where ηk is the stepsize. Since F is L-smooth, choosing
ηk = 1/L ∀k guarantees descent at each iteration [21]:

F (λk+1) ≤ F (λk)− 1

2L

(
∇ℓF (λk)

)2
. (5)

Eq. (5) will be the departure point to prove the linear
convergence rates of SU-CD and SGS-CD.

We now define formally the set-wise CD algorithms.

Definition 1 (Set-wise CD algorithm). In a set-wise CD
algorithm, every coordinate ℓ ∈ [E] is assigned to (potentially
multiple) sets Si, i ∈ [n], such that all coordinates belong to at
least one set. At any time, a set Si may activate with uniform
probability among the i; a set-wise CD algorithm then chooses
a single coordinate ℓ ∈ Si to update using (4).

2The “+” stresses that γ+
min is the smallest strictly positive eigenvalue.

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

The next remark shows how the decentralized problem (2)
can be solved asynchronously with set-wise CD algorithms.

Remark 1. By letting (i) the E coordinates3 in Definition 1
correspond to the dual variables λℓ, ℓ ∈ [E], and (ii) the Si, i ∈
[n] be the sets of dual variables corresponding to the edges
that are connected to each node i, nodes can run a set-wise
CD algorithm to solve (3) (and thus, also (2)) asynchronously.

Furthermore, the set-wise CD algorithms can also be used
in the parallel distributed setting, as explained below.

Remark 2. In a parallel distributed setting, where the param-
eter vector x ∈ RE is stored4 in a shared server and can be
modified by n workers, the (primal) optimization can be done
with set-wise CD algorithms by letting each worker i ∈ [n]
modify a subset Si of coordinates such that when the worker
activates it chooses one coordinate ℓ ∈ Si to modify, and all
coordinates ℓ ∈ [E] belong to at least one set Si, i ∈ [n].

We additionally note that, although in the parallel distributed
setting each coordinate may belong to any number of sets
between 1 and n, the results that we present here apply to the
case where all coordinates belong to exactly two sets (i.e. they
can be modified by exactly two workers), since our analysis
is driven mainly by the decentralized setting.

In light of Remark 1, in the following we illustrate the steps
that should be performed by the nodes to run the set-wise CD
algorithms to find an optimal value λ∗. We first note that the
gradient of F in the direction5 of λℓ for ℓ ≡ (i, j) is

∇ℓF (λ) = Aiℓ∇f∗
i (u

T
i Aλ) +Ajℓ∇f∗

j (u
T
j Aλ). (6)

The nodes can use (4) and (6) to update the λℓ that they
have access to (i.e., those corresponding to the edges they are
connected to) as follows: each node i keeps in memory the
current values of λℓ, ℓ ∈ Si, which are needed to compute
∇f∗

i (u
T
i Aλ). Then, when edge ℓ ≡ (i, j) is updated (either

because node i activated and contacted j, or vice versa), both i
and j compute their respective terms in the right-hand side of
(6) and exchange them through their link. Finally, both nodes
compute (6) and update their copy of λℓ applying (4).

Algorithms 1 and 2 below detail these steps for SU-CD and
SGS-CD, respectively. We have used Ni to indicate the set of
neighbors of node i (note that Si = {ℓ : ℓ ≡ (i, j), j ∈ Ni}).
Table I shows this and other set-related notation that will be
frequently used in the sections that follow.

We now proceed to describe the SU-CD and SGS-CD
algorithms in detail, and prove their linear convergence rates.

A. Set-wise Uniform CD (SU-CD)

In SU-CD, the activated node chooses the neighbor uni-
formly at random, as shown in Alg. 1. We can compute the

3If d > 1, the standard CD terminology calls each λℓ a “block coordinate”,
i.e. a vector of d coordinates out of the E · d of F : RE·d → R.

4Also in this case we may actually have x ∈ Rd·E and each worker may
update a block coordinate xℓ ∈ Rd at each iteration.

5This is equivalent to saying “the ℓ-th (block) entry of the gradient ∇F ”.

TABLE I: Set-related definitions
Si Set of edges connected to node i

Ni Set of neighbors of node i

Ni Degree of node i, i.e. Ni = |Si| = |Ni|
Nmax Maximum degree in the network, i.e. maxi Ni

Ti Selector matrix of set Si (see Definition 2)
S′
i Subset S′

i ⊆ Si such that S′
i ∩ S′

j = ∅ if i ̸= j

T ′
i Selector matrix of set S′

i

S′
i Complement set of S′

i such that S′
i = Si \ S′

i

T ′
i Selector matrix of set S′

i

per-iteration progress of SU-CD taking expectation in (5):

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2L
E
[(
∇ℓF (λk)

)2 | λk
]

= F (λk)− 1

2Ln

n∑
i=1

1

Ni

∑
ℓ∈Si

(
∇ℓF (λk)

)2
≤ F (λk)− 1

LnNmax

∥∥∇F (λk)
∥∥2
2

(7)

where Ni = |Si|, Nmax = maxi Ni, and the factor 2 in the
denominator disappears because each coordinate ℓ ≡ (i, j) is
counted twice (once in the sum through Si and once in that
through Sj).

The standard procedure to show the linear convergence of
CD in the single-machine case is to lower-bound ∥∇F (λ)∥22
using the strong convexity of the function [20], [21]. However,
since F is not strongly convex (Lemma 1), we cannot apply
this procedure to get the linear rate of SU-CD.

We can, however, use F ’s strong convexity in ∥·∥A instead
(Lemma 2). The next result gives the core of the proof.

Lemma 3. It holds that

∥∇F (λ)∥2 = ∥∇F (λ)∥A = ∥∇F (λ)∥∗A , (8)

where ∥·∥∗A is the dual norm of ∥·∥A, defined as (e.g. [29])

∥z∥∗A = sup
x∈Rd

{
zTx

∣∣∣∣ ∥x∥A ≤ 1

}
. (9)

Proof. Note that ∀w ̸= 0 such that F (λ + tw) = F (λ) ∀t,
it holds that wT∇F (λ) = 0 and thus ∇F (λ) ∈ range(AT).
This means that A+A∇F (λ) = IE∇F (λ), and therefore it
holds that ∥∇F (λ)∥A = ∥∇F (λ)∥2. Finally, since the dual
norm of the L2 norm is the L2 norm itself, we have that also
∥∇F (λ)∥∗A = ∥∇F (λ)∥2, which gives the result.

We now use Lemma 3 to prove the linear rate of SU-CD.

Theorem 1 (Rate of SU-CD). SU-CD converges as

E
[
F (λk+1) | λk

]
− F (λ∗) ≤(

1− 2σA

LnNmax

)[
F (λk)− F (λ∗)

]
.

Proof. Since F (λ) is strongly convex in ∥·∥A with strong
convexity constant σA (Lemma 2), it holds

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σA

2
∥y − x∥2A .

Minimizing both sides with respect to y as in [21] we get

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

Algorithm 1 Set-wise Uniform CD (SU-CD)

1: Input: Functions fi, step η, incidence matrix A, graph G
2: Initialize θ0i , i = 1, . . . , n and λ0

ℓ , ℓ = 1, . . . , E

3: for k = 1, 2, . . . do
4: Sample activated node i ∈ {1, . . . , n} uniformly
5: Node i picks neighbor j ← U{h : h ∈ Ni}
6: Node i computes ∇f∗

i (u
T
i Aλ) and sends it to j

7: Node j computes ∇f∗
j (u

T
j Aλ) and sends it to i

8: Nodes i, j: (i, j) ≡ ℓ use (6) to update their local copies
of λℓ by λk

ℓ ← λk−1
ℓ − η∇ℓF (λ)

9: λk
m ← λk−1

m ∀ edges m ̸= ℓ

Algorithm 2 Set-wise Gauss-Southwell CD (SGS-CD)

1: Input: Functions fi, step η, incidence matrix A, graph G
2: Initialize θ0i , i = 1, . . . , n and λ0

ℓ , ℓ = 1, . . . , E

3: for k = 1, 2, . . . do
4: Sample activated node i ∈ {1, . . . , n} uniformly
5: All h ∈ Ni compute ∇f∗

h(u
T
hAλ) and send it to i

6: Node i computes ∇f∗
i (u

T
i Aλ)

7: Compute∇ℓF (λ) ∀ℓ ∈ Si (equivalently, ∀h ∈ Ni) with
(6) using the received ∇f∗

h(u
T
hAλ)

8: Node i selects j ← maxh∈Ni
|∇ℓF (λ)| , ℓ≡(i, h)

9: Node i sends ∇f∗
i (u

T
i Aλ) to j

10: Nodes i, j: (i, j) ≡ ℓ use (6) to update their local copies
of λℓ by λk

ℓ ← λk−1
ℓ − η∇ℓF (λ)

11: λk
m ← λk−1

m ∀ edges m ̸= ℓ

F (x∗) ≥ F (x)− 1

2σA

(
∥∇F (x)∥∗A

)2
, (10)

and rearranging terms we obtain the lower bound(
∥∇F (x)∥∗A

)2 ≥ 2σA(F (x)− F (x∗)).
Finally, we can use Lemma 3 to replace ∥∇F (x)∥22

with
(
∥∇F (x)∥∗A

)2
in (7), and use the lower bound on(

∥∇F (x)∥∗A
)2

to get the result.

Note that vector λ has 1
2

∑
i Ni = E ≤ nNmax

2 coordinates,
where the inequality holds with equality for regular graphs.
We make the following remark.

Remark 3. If G is regular, the linear convergence rate of SU-
CD is σA

LE , which matches the rate of single-machine uniform
CD for strongly convex functions [20], [21], with the only
difference that now the strong convexity constant σA is defined
over norm ∥·∥A.

In the next section we analyze SGS-CD and show that its
convergence rate can be up to Nmax times that of SU-CD.

B. Set-wise Gauss-Southwell CD (SGS-CD)
In SGS-CD, as shown in Alg. 2, the activated node i selects

the neighbor j to contact applying the GS rule within the edges
in Si:

ℓ = argmax
m∈Si

(∇mF (λ))
2
,

Fig. 1: Example of sets Si and one possibility for S ′i and S ′i

and then j is the neighbor that satisfies ℓ ≡ (i, j). In order
to make this choice, all nodes h ∈ Ni must send their
∇f∗

h(u
T
hAλ) to node i (line 5 in Alg. 2). We discuss this

additional communication step of SGS-CD with respect to SU-
CD in Sec. VIII.

To obtain the convergence rate of SGS-CD we will follow
the steps taken for SU-CD in the proof of Theorem 1. As done
for SU-CD, we start by computing the per-iteration progress
taking expectation in (5) for SGS-CD:

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2Ln

n∑
i=1

max
ℓ∈Si

(
∇ℓF (λk)

)2
.

(11)
Given this per-iteration progress, to proceed as we did for

SU-CD we need to show (i) that the sum on the right-hand
side of (11) defines a norm, and (ii) that strong convexity holds
in its dual norm. We start by defining the selector matrices Ti,
which will significantly simplify notation.

Definition 2 (Selector matrices). The selector matrices Ti ∈
{0, 1}Ni×E

, i = 1, . . . , n select the coordinates of a vector in
RE that belong to set Si. Note that any vertical stack of the
unitary vectors

{
eTℓ
}
ℓ∈Si

gives a valid Ti.

We can now show that the sum in (11) is a (squared) norm.
Since the operation involves applying max(·) within each set
Si, we will denote this norm ∥x∥SM, where the subscript SM
stands for “Set-Max”.

Lemma 4. The function ∥x∥SM ≜
√∑n

i=1 ∥Tix∥2∞ =√∑n
i=1 maxj∈Si

x2
j is a norm in RE .

Proof. Using maxj∈Si

(
x2
j+y2j

)
≤maxj∈Si

x2
j+maxj∈Si

y2j
and
√
a+ b ≤

√
a +
√
b we can show that ∥·∥SM satisfies

the triangle inequality. It is straightforward to show that
∥αx∥SM = |α| ∥x∥SM and ∥x∥SM = 0 if and only if x = 0.

Following the proof of Theorem 1, we would like to show
that F is strongly convex in the dual norm ∥·∥∗SM. Furthermore,
we would like to compare the strong convexity constant σSM
with σA to quantify the speedup of SGS-CD with respect to
SU-CD. It turns out, though, that computing ∥·∥∗SM is not easy
at all; the main difficulty stems from the fact that the sets Si
are overlapping (or non-disjoint), since each coordinate ℓ ≡
(i, j) belongs to both Si and Sj . The first scheme in Figure 1
illustrates this fact for the 3-node clique.

To circumvent this issue, we define a new norm ∥·∥∗SMNO
(“Set-Max Non-Overlapping”) that we can directly relate to

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

∥·∥∗SM (Lemma 5) and whose value we can compute explicitly
(Lemma 6), which will later allow us to relate the three strong
convexity constants σSM, σSMNO, and σA (Theorem 2).

Definition 3 (Norm ∥·∥∗SMNO). We assume that each coordi-
nate ℓ ≡ (i, j) is assigned to only one of the sets S ′i ⊆ Si or
S ′j ⊆ Sj , such that the new sets {S ′i}

n
i=1 are non-overlapping

(some sets can be empty), and all coordinates ℓ belong to
exactly one set in {S ′i}. We name the selector matrices of these
new sets T ′

i , so that each possible choice of {S ′i} defines a
different set {T ′

i}. Then, we define

∥z∥∗SMNO = sup
x

zTx

∣∣∣∣
√√√√ n∑

i=1

∥T ∗
i x∥

2
∞ ≤ 1

 , (12)

with the choice of non-overlapping sets

{T ∗
i } = argmax

{T ′
i}

n∑
i=1

∥T ′
ix∥

2
∞ . (13)

Note that the maximizations in (12) and (13) are coupled.
We denote the value of x that attains (12) by x∗

SMNO.

The definition of sets S ′i corresponds to assigning each edge
ℓ to one of the two nodes at its endpoints, as illustrated in the
second scheme of Figure 1. Therefore, for each possible pair
({S ′h} , {T ′

h}) , h ∈ [n] we can define a complementary pair
({S ′h}, {T ′

h}) such that if ℓ ≡ (i, j) was assigned to S ′i in
{S ′h}, then it is assigned to S ′j in {S ′h}. This corresponds to
assigning ℓ to the opposite endpoint (node) to the one origi-
nally chosen, as shown in the third scheme of Figure 1. With
these definitions, it holds (potentially with some permutation
of the rows):

Ti =

[
T ′
i

T ′
i

]
=

[
T ′
i

0

]
+

[
0

T ′
i

]
, i = 1, . . . , n.

We remark that the equality above holds for any {T ′
i}

corresponding to a feasible assignment {S ′i}, and in particular
it hols for ({S∗i } , {T ∗

i }). This fact is used in the proof of the
following lemma, which relates norms ∥·∥∗SM and ∥·∥∗SMNO.
This will allow us to complete the analysis with ∥·∥∗SMNO,
which we can compute explicitly (Lemma 6).

Lemma 5. The dual norm of ∥·∥SM, denoted ∥·∥∗SM, satisfies
1
2

(
∥z∥∗SMNO

)2 ≤ (∥z∥∗SM

)2 ≤ (∥z∥∗SMNO

)2
.

Proof. By definition

∥z∥∗SM = sup
x

zTx

∣∣∣∣
√√√√ n∑

i=1

∥Tix∥2∞ ≤ 1

 . (14)

By inspection we can tell that the x that attains the
supremum, denoted x∗

SM, will satisfy
∑n

i=1 ∥Tix
∗
SM∥

2
∞ =

1. Similarly, x∗
SMNO (defined under (13)) must satisfy∑n

i=1 ∥T ∗
i x

∗
SMNO∥

2
∞ = 1. Note that in these two equalities the

{Ti} are overlapping sets and the {T ∗
i } are non-overlapping.

Therefore, in order to satisfy both equalities it must hold
that |[x∗

SM]ℓ| ≤ |[x∗
SMNO]ℓ|, ℓ ∈ [E], i.e. the magnitude of the

entries of x∗
SMNO are equal or larger than the magnitudes of

the corresponding entries of x∗
SM. Referring to the definitions

(12) and (14), this means that ∥z∥∗SM ≤ ∥z∥
∗
SMNO.

We now proceed to show the first inequality in the lemma.
We note that

n∑
i=1

∥Tix∥2∞ =

n∑
i=1

∥∥∥∥∥
[
T ′
i

0

]
x+

[
0

T ′
i

]
x

∥∥∥∥∥
2

∞

≤
n∑

i=1

∥T ′
ix∥

2
∞ +

n∑
i=1

∥∥∥T ′
ix
∥∥∥2
∞
≤ 2

n∑
i=1

∥∥∥T̂ ′
ix
∥∥∥2
∞

, (15)

with

{T̂ ′
i} = arg max

{T ′
i},{T ′

i}

(
n∑

i=1

∥T ′
ix∥

2
∞ ,

n∑
i=1

∥∥∥T ′
ix
∥∥∥2
∞

)
. (16)

We now evaluate (15) and (16) at x∗
SMNO. Due to (13) we

have {T̂ ′
i} = {T ∗

i }, and since
∑n

i=1 ∥T ∗
i x

∗
SMNO∥

2
∞ = 1, the

rightmost member of (15) takes value 2. Then, dividing both
sides of (15) by 2 we obtain

1

2

n∑
i=1

∥Tix
∗
SMNO∥

2
∞ =

n∑
i=1

∥∥∥∥Ti
x∗

SMNO√
2

∥∥∥∥2
∞
≤ 1,

and since
∑n

i=1 ∥Tix
∗
SM∥

2
∞ = 1, we conclude that it must

hold that 1√
2
|[x∗

SMNO]ℓ| ≤ |[x∗
SM]ℓ|, ℓ ∈ [E], and thus

1√
2
∥z∥∗SMNO ≤ ∥z∥

∗
SM.

The next lemma gives the value of ∥x∥∗SMNO explicitly,
which will be needed to compare the strong convexity constant
σSMNO with σA.

Lemma 6. It holds that ∥x∥∗SMNO =
√∑n

i=1 ∥T ∗
i x∥

2
1.

Proof. Since the sets {S∗i } are non-overlapping and in (12)
norm ∥·∥∞ is applied per-set, the entries xℓ of x∗

SMNO will
have |xℓ| = x(i) ≥ 0 ∀ ℓ ∈ S∗i and the sign will match that of
the entries of z, i.e. sign(xℓ) = sign(zℓ). The maximization
of (12) then becomes

maximize
{x(i)}

n∑
i=1

∑
ℓ∈S∗

i

(
|zℓ| · x(i)

)

subject to

√√√√ n∑
i=1

(
x(i)
)2 ≤ 1.

Factoring out x(i) in the objective and noting that∑
ℓ∈S∗

i
|zℓ| = ∥T ∗

i z∥1, we can define w = [x(1), . . . , x(n)]T

and y = [∥T ∗
1 z∥1 , . . . , ∥T ∗

nz∥1]
T so that (12) now reads

∥z∥∗SMNO = sup
w

{
yTw

∣∣∣∣ ∥w∥2 ≤ 1

}
.

The right-hand side is the definition of ∥·∥∗2, the dual of
the L2 norm, evaluated at y. Since ∥·∥∗2 = ∥·∥2, we have that

∥z∥∗SMNO = ∥y∥2 =
√∑n

i=1 ∥T ∗
i z∥

2
1.

We can now prove the linear convergence rate of SGS-CD.

Theorem 2 (Rate of SGS-CD). SGS-CD converges as

E
[
F (λk+1) | λk

]
− F (λ∗) ≤

(
1− σSM

Ln

) [
F (λk)− F (λ∗)

]
,

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

with
σA

Nmax
≤ σSM ≤ 2σA. (17)

Proof. Similarly to what we did for SU-CD, we can depart
from the strong convexity of F in the ∥·∥SM norm:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSM

2

(
∥y − x∥∗SM

)2
,

then minimize both sides with respect to y to obtain

F (x∗) ≥ F (x)− 1

2σSM

(
∥∇F (x)∥SM

)2
, (18)

which is analogous to (10), and then rearrange terms to obtain
a lower bound on ∥∇F (λ)∥2SM. Using this lower bound in (11)
gives the rate of SGS-CD.

Since this rate is given in terms of σSM and that of SU-CD in
Theorem 1 is given in terms of σA, we need (17) to compare
both rates. However, we cannot prove these inequalities di-
rectly because we cannot compare norms ∥·∥A and ∥·∥∗SM (due
to the overlap of the coordinate sets, which prevents us from
computing the latter). However, we can compare ∥·∥A with
∥·∥∗SMNO and ∥·∥∗SM with ∥·∥∗SMNO individually, from which we
will obtain (17). In particular, we will show the inequalities

σA

Nmax
≤ σSMNO ≤ σA (19)

and
σSMNO ≤ σSM ≤ 2σSMNO. (20)

We start by proving (19). Below we assume x ∈ range(AT);
the results here can then be directly applied to the proofs above
because ∥·∥A , ∥·∥SM , ∥·∥SMNO and their duals are applied to
∇F , which is always in range(AT) (Lemma 3).

For x ∈ range(AT) it holds that (Lemmas 3 and 6):

∥x∥2A = ∥x∥22 =

E∑
i=1

x2
i =

n∑
i=1

∥T ∗
i x∥

2
2

(
∥x∥∗SMNO

)2
=

n∑
i=1

∥T ∗
i x∥

2
1 .

We also note that, using the Cauchy-Schwarz inequality and
denoting [v]i the ith entry of vector v, it holds both that

n∑
i=1

∥T ∗
i x∥

2
2 ≤

n∑
i=1

(∑
j∈S∗

i

|xj |

)2

=

n∑
i=1

∥T ∗
i x∥

2
1 , and

n∑
i=1

∥T ∗
i x∥

2
1 =

n∑
i=1

(
1T

[∣∣∣[T ∗
i x]1

∣∣∣, . . . , ∣∣∣[T ∗
i x]N∗

i

∣∣∣]T)2

C.S.
≤

n∑
i=1

N∗
i ∥T ∗

i x∥
2
2 ≤ Nmax

n∑
i=1

∥T ∗
i x∥

2
2 ,

where N∗
i = |S∗i |. We can summarize these relations as
1

Nmax

(
∥x∥∗SMNO

)2 ≤ ∥x∥2A ≤ (∥x∥∗SMNO

)2
.

Using these inequalities in the strong convexity definitions,
similarly to [21], we get both

F (y) ≥ F (x)+ ⟨∇F (x), y − x⟩+σA

2
(∥y − x∥A)

2

≥ F (x)+ ⟨∇F (x), y − x⟩+ σA

2Nmax

(
∥y − x∥∗SMNO

)2
,

(21)

and

F (y)≥F (x)+ ⟨∇F (x), y−x⟩+σSMNO

2

(
∥y−x∥∗SMNO

)2
≥ F (x)+ ⟨∇F (x), y − x⟩+σSMNO

2
(∥y − x∥A)

2
.

(22)

Equation (21) says that F is at least σA

Nmax
-strongly convex

in ∥·∥∗SMNO, and eq. (22) says that F is at least σSMNO-strongly
convex in ∥·∥A. Together they imply (19).

We can show (20) by the same procedure applied in eqs.
(21) and (22), but now using the strong convexity of F in
norms ∥·∥∗SM and ∥·∥∗SMNO together with Lemma 5. From
1
2 (∥z∥

∗
SMNO)

2 ≤ (∥z∥∗SM)2 we get 1
2σSM ≤ σSMNO, and from

(∥z∥∗SM)2 ≤ (∥z∥∗SMNO)
2 we get σSMNO ≤ σSM.

Finally, putting (19) and (20) together gives (17).

Theorems 1 and 2 together allow us to compare the con-
vergence rates of SU-CD and SGS-CD. We note that when
σSM takes the upper value in (17), SGS-CD is (in expectation)
Nmax times faster than SU-CD. The lower bound in (17), on
the other hand, suggests that SGS-CD could be slower than
SU-CD. We remark that (in expectation) this is not true and
the lower bound is vacuous, since the following holds.

Remark 4. For the same sequence of node activations, the
suboptimality reduction of SGS-CD at each iteration is equal
to or larger than that of SU-CD.

Taking this fact into account, we have the following result.

Corollary 3. In expectation, SGS-CD converges at least as
fast as SU-CD, and can be up to Nmax times faster.

Note that this result is analogous to that of [21] for single-
machine CD, where they show that the GS rule can be up to d
times faster than uniform sampling, d being the dimensionality
of the problem.

We remark that achieving the upper bound of Nmax speedup
may require designing a scenario particularly favorable to
SGS-CD with respect to SU-CD. Similarly, finding a setting
where the former converges at the same speed as the latter
also requires designing a particularly adversarial setting.

In our simulations of Section VII for the decentralized
setting, SGS-CD achieves a speedup approximately in the
middle of the range between 1 and Nmax. We show that this
speedup increases linearly with Nmax, achieving remarkable
gains in terms of suboptimality reduction versus number of
iterations (see Fig. 2). Furthermore, in the same figure we show
that for the parallel distributed setting the maximum speedup
of Nmax is attainable. We explain this further in Section VI-A.

V. SET-WISE LIPSCHITZ CD ALGORITHMS

In Section IV we stated that the dual function F is L-
smooth and therefore a sufficient condition for the set-wise
algorithms to converge was using stepsize η = 1/L. However,
the updates of some (and maybe many) coordinates could use
larger stepsizes by exploiting the fact F has coordinate-wise
smoothness Lℓ ≤ L, i.e. for α ∈ R:

|∇ℓF (λ+ αeℓ)−∇ℓF (λ)| ≤ Lℓα. (23)

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Therefore, when the coordinate-wise Lipschitz constants Lℓ

are known or can be estimated (see Section V-C) we can apply
the update (4) with stepsize ηk = 1/Lℓ, with ℓ being the
coordinate updated at iteration k.

In the sections that follow we show that by using the
knowledge (or estimation) of the coordinate-wise Lipschitz
constants and per-coordinate stepsizes we can have:

1) An algorithm that has randomized but non-uniform
neighbor selection that is provably faster than SU-CD.
We call this algorithm Set-wise Lipschitz CD (SL-CD).

2) An algorithm that applies locally the Gauss-Southwell
Lipschitz rule [21] and that converges provably faster
than both SL-CD and SGS-CD. We call this algorithm
Set-wise GS Lipschitz CD (SGSL-CD).

Once again, while the seminal work of [21] has analyzed
both of these rules in the context of single-machine coordinate
descent, their adaptation to set-wise CD brings important new
challenges. In this section, we prove that SL-CD is at least as
fast as SU-CD, and that SGSL-CD is at least as fast as the
fastest algorithm between SGS-CD and SL-CD.

In the proofs that follow we will use the following fact.

Fact 1. Denote a ◦ b the per-entry product of vectors a and
b. Then, for any norm ∥·∥ and finite a : ai > 0 ∀i, if we
define ∥x∥a := ∥a ◦ x∥, then ∥x∥∗a := ∥a−1 ◦ x∥∗ with a−1 =
[1
a1
, . . . , 1

ad
].

Proof. By definition

∥z∥∗a = sup
∥x∥a≤1

zTx,

and defining y := a ◦ x we get

∥z∥∗a = sup
∥y∥≤1

zT (a−1 ◦ y) = ∥a−1 ◦ z∥∗ .

A. Set-wise Lipschitz CD (SL-CD)
In SL-CD, an activated node i chooses the edge ℓ ∈ Si to

update at random with probability

pℓ =
Lℓ∑

m∈Si
Lm

(24)

and updates λℓ applying (4) with stepsize ηk = 1/Lℓ.
For convenience, we define the quantities

L(i) :=
∑
m∈Si

Lm

and
Lℓ :=

(
1

L(i)
+

1

L(j)

)
for ℓ ≡ (i, j).

With these definitions, and taking expectation in (5) for the
Lipschitz-dependent sampling probabilities (24) gives

E[F (λk+1) | λk] ≤ F (λk)− 1

2
E
[

1

Lℓk

[
∇ℓkF (λk)

]2]
= F (λk)− 1

2n

n∑
i=1

1

L(i)

∑
ℓ∈Si

[
∇ℓF (λk)

]2
(a)
= F (λk)− 1

2n

E∑
ℓ=1

Lℓ

[
∇ℓF (λk)

]2

where in (a) we used that ℓ ≡ (i, j) implies ℓ ∈ Si,Sj .
In order to prove the convergence rate of SL-CD, provided

in Theorem 4, we define the norm

∥x∥L :=

√√√√ E∑
ℓ=1

Lℓx2
ℓ ,

so that we can write the per-iteration progress of SL-CD as

E[F (λk+1)] ≤ F (λk)− 1

2n

∥∥∇F (λk)
∥∥2
L . (25)

Noting that ∥x∥L =
∥∥x ◦ [√L1, . . . ,

√
LE

]∥∥
2

we can apply
Fact 1 to get its dual norm:

∥x∥∗L =

√√√√ E∑
ℓ=1

1

Lℓ
x2
ℓ .

We call σL the strong convexity constant of F in this norm:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σL

2
(∥y − x∥∗L)

2. (26)

We use the definitions of ∥·∥∗L and σL in the proof of the
linear rate of SL-CD, given in the theorem below.

Theorem 4 (Rate of SL-CD). SL-CD converges as

E
[
F (λk+1) | λk

]
−F (λ∗) ≤

(
1− σL

n

) [
F (λk)− F (λ∗)

]
and it holds that

σALmin ≤ σL ≤ σALmax (27)

with Lmin = minℓ Lℓ and Lmax = maxℓ Lℓ.

Proof. We start by proving the linear rate. Minimizing both
sides of (26) with respect to y as done in (10) and (18) we
get

F (x∗) ≥ F (x)− 1

2σL
∥∇F (x)∥2L .

Rearranging terms gives a lower bound on ∥∇F (x)∥2L, and
replacing in (25) gives the result.

We now move on to show (27). Once again, since the norms
are evaluated at ∇F (λ) and (8) holds, to obtain the relation
between σL and σA we will compare ∥·∥∗L with ∥·∥2 directly.
We have that

c ∥x∥22−(∥x∥
∗
L)

2 = c
∑
ℓ

x2
ℓ−
∑
ℓ

1

Lℓ
x2
ℓ =

∑
ℓ

(
c− 1

Lℓ

)
x2
ℓ .

For c ≥ maxℓ
1
Lℓ

= 1
Lmin

the expression is larger than zero,
and thus

1

Lmin
∥x∥22 ≥ (∥x∥∗L)

2. (28)

Similarly, we have that

c ∥x∥2L − ∥x∥
2
2 =

∑
ℓ

(
c

Lℓ
− 1

)
x2
ℓ

is larger than zero for c ≥ Lmax, and therefore

Lmax(∥x∥∗L)
2 ≥ ∥x∥22 . (29)

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

Using these inequalities (and Lemma 3) in the strong
convexity definitions we have on the one hand:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σA

2
∥y − x∥2A

≥ f(x) + ⟨∇f(x), y − x⟩+ σALmin

2
(∥y − x∥∗L)

2,

(30)

and on the other hand:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σL

2
(∥y − x∥∗L)

2

≥ f(x) + ⟨∇f(x), y − x⟩+ σL

2Lmax
∥y − x∥2A . (31)

Eqs. (30) and (31) indicate respectively that σL ≥ σALmin

and that σA ≥ σL
Lmax

. Putting both together gives (27).

Having obtained the rate of SL-CD, we can compare it
against that of SU-CD. We have the following result.

Corollary 5. In expectation, SL-CD converges as fast or faster
than SU-CD.

Proof. The convergence rate of SU-CD is 2σA

LnNmax
(Theorem

1) and that of SL-CD is σL
n (Theorem 4). Since in the slowest

case of SL-CD we have σL = σALmin, it suffices to show
that Lmin ≥ 2

LNmax
. Indeed, we have that

L(i) =
∑
ℓ∈Si

Lℓ ≤ Lmax|Si| ≤ LmaxNmax

and therefore

Lmin = min
(i,j)∈E

(
1

L(i)
+

1

L(j)

)
≥ 2

LmaxNmax

The proof is complete by noting that it always holds that
Lmax ≤ L [30].

Since both SL-CD and SGS-CD can converge at the same
speed as SU-CD in the worst case, we cannot claim that either
of them is faster than the other. We can, however, exploit the
knowledge of the Lipschitz constants to get an improved ver-
sion of the GS rule, known as the Gauss-Southwell Lipschitz
rule [21], that when combined with per-coordinate stepsizes
allows for faster convergence than both SGS-CD and SL-CD.
We call this algorithm SGSL-CD, and we analyze it next.

B. Set-wise Gauss-Southwell Lipschitz CD (SGSL-CD)

If node i goes active, the Gauss-Southwell Lipschitz (GSL)
rule chooses to update λℓ, ℓ ∈ Si according to

ℓ = argmax
m∈Si

∣∣∇mf(xk)
∣∣

√
Lm

.

If we now use the GSL rule with the per-coordinate stepsizes
ηk = 1/Lℓ, the per-iteration progress given by (5) becomes:

E
[
F (λk+1)

]
≤ F (λk)− 1

2n

n∑
i=1

max
ℓ∈Si

(
1

Lℓ

[
∇ℓF (λk)

]2)
.

(32)

Note the resemblance of this expression with the per-
iteration progress of SGS-CD in (11). Similarly to the previous
procedures, we define the “Set-Max Lipschitz” norm:

∥x∥SML :=

√√√√ n∑
i=1

max
ℓ∈Si

(
1

Lℓ
x2
ℓ

)
, (33)

and call σSML the strong convexity constant of F in the dual
norm ∥·∥∗SML

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSML

2

(
∥y − x∥∗SML

)2
.

(34)
We can now state the convergence rate of SGSL-CD.

Theorem 6 (Rate of SGSL-CD). SGSL-CD converges as

E
[
F (λk+1) | λk

]
−F (λ∗) ≤

(
1− σSML

n

) [
F (λk)− F (λ∗)

]
,

(35)
and it holds that

σSM

L
≤ σSML. (36)

Proof. The expression of the rate is obtained with the proce-
dure followed for the previous algorithms: minimizing both
sides of (34) with respect to y and arranging terms we can
find ∥∇F (x)∥SML ≥ 2σSML(F (x)−F (x∗)), and using this in
(32) gives (35).

We now show (36). By definition, the dual norm of ∥·∥SML is

∥z∥∗SML := sup
x

{
zTx

∣∣∣∣ ∥x∥SML ≤ 1

}
=

sup
x

zTx

∣∣∣∣
√√√√ n∑

i=1

max
ℓ∈Si

(
1

Lℓ
x2
ℓ

)
≤ 1

 .

Similarly, we can write the dual norm of ∥·∥SM provided in
(14) also as

∥z∥∗SM := sup
x

{
zTx

∣∣∣∣ ∥x∥SM ≤ 1

}
=

sup
x

zTx

∣∣∣∣
√√√√ n∑

i=1

max
ℓ∈Si

x2
ℓ ≤ 1

 .

We call the values that achieve the supremum x∗
SML and

x∗
SM, respectively. To maximize zTx, these values will satisfy

the constraints of each dual norm with equality, i.e.

∥x∗
SML∥SML = 1 and ∥x∗

SM∥SM = 1.

From these conditions and the definitions of the dual norms
above we obtain

x∗
SML ◦

[
1√
L1

, · · · , 1√
LE

]
= x∗

SM.

Furthermore, using again Lmax ≤ L, we have

x∗
SM = x∗

SML◦
[

1√
L1

, · · · , 1√
LE

]
⪰ 1√

Lmax

x∗
SML ⪰

1√
L
x∗

SML,

where “⪰” indicates coordinate-wise inequality, and therefore

∥z∥∗SM ≥
1√
L
∥z∥∗SML .

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Lastly, using this inequality in the strong convexity equation
of F in ∥·∥∗SM:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSM

2

(
∥y − x∥∗SM

)2
≥ F (x) + ⟨∇F (x), y − x⟩+ σSM

2L

(
∥y − x∥∗SML

)2
,

from where we obtain σSM
L ≤ σSML

Theorem 6 states that SGSL-CD converges (in expectation)
at least as fast as SGS-CD. Algorithm SGSL-CD is also at least
as fast as SL-CD by an argument analogous to Remark 4: for
the same sequence of node activations, the set-wise GSL rule
achieves an equal or larger suboptimality reduction than the
random coordinate sampling with the probabilities in (24). We
thus have the following result.

Corollary 7. In expectation, SGSL-CD converges equally fast
or faster than both SGS-CD and SL-CD.

We remark that we could have compared the convergence
rates of SGSL-CD and SL-CD following a procedure similar
to the one used to compare SGS-CD and SU-CD, where we
would define a norm using non-overlapping sets (in this case,
accounting also for the coordinate-wise Lipschitz consants) as
an intermediate step to compare the strong convexity constants
σL and σSML. We did this derivation and observed that just as
it happened with σSM in eq. (17), the lower bound on σSML is
not tight and suggests that SL-CD could be faster than SGSL-
CD, which as we argued above, is not true.

Corollary 5 states that SL-CD is faster than SU-CD, and
Corollary 7 states that SGSL-CD is the fastest of all algorithms
analyzed here. However, these two methods depend on the
knowledge of the coordinate-wise Lipschitz constants Lℓ (see
eq. (23)). These constants are the global upper bounds on the
diagonal entries of the Hessian H = ∇2F , given by

Hℓℓ(λ) = ∇2f∗
i (U

T
i Λλ) +∇2f∗

j (U
T
j Λλ), ℓ ≡ (i, j),

i.e. Hℓℓ(λ) ≤ Lℓ ∀λ. We next describe a decentralized
algorithm to estimate these values when they are not known.
In Section VII we show that the versions of SL-CD and SGSL-
CD that use estimated constants, which we call SeL-CD and
SGSeL-CD, still perform remarkably well.

C. Smoothness constants estimation

In [20] the author proposed a method to estimate the value
of the instantaneous Lipschitz constants Lℓ(λ) when they
are not known. By instantaneous we mean the value of the
Lipschitz constants at the current point λk, and not global
values valid for any value of λ.

The procedure consists on finding, every time that variable
λℓ is going to be updated at iteration k, the lowest value
Lℓ(λ

k) such that after applying update (4) with stepsize
η = 1/Lℓ(λ

k) it holds that ∇ℓF (λk) · ∇ℓF (λk+1) > 0. In
other words, the procedure searches for a Lipschitz constant
(or equivalently, a stepsize) for which the update (4) does
not overshoot, making the gradient take a completely different
direction.

Algorithm 3 Online smoothness constant estimation

1: Assumption: Nodes i and j will update λℓ, ℓ ≡ (i, j) and
they have already exchanged their ∇f∗

x(u
T
xAλ), x = i, j.

Inputs: Instantaneous smoothness starting value L̂0
ℓ

Each node x = i, j then runs:
2: Compute ∇ℓF (λk) with (6) using ∇f∗

x(u
T
xAλ), x = i, j

3: Set L̂ℓ ← L̂0
ℓ

4: do ...
5: Set L̂ℓ ← 2 · L̂ℓ

6: Compute λ̂ℓ = λk
ℓ − (1/L̂ℓ) · ∇ℓF (λk)

7: Compute ∇f∗
x(u

T
xAλ̂ℓ) and send to neighbor

8: Compute ∇ℓF (λ̂) with (6) using ∇f∗
x(u

T
xAλ̂ℓ), x=i, j

9: ... while ∇ℓF (λk) · ∇ℓF (λ̂) ≤ 0

10: end do-while
11: Set Lk+1

ℓ ← 0.5 · L̂ℓ and λk+1
ℓ ← λ̂ℓ

The procedure to estimate Lℓ(λ
k) is shown in Algorithm 3.

In our numerical simulations, we denote SeL-CD and SGSeL-
CD the versions of SL-CD and SGSL-CD that use estimated
Lipschitz constants instead of the exact L values. SeL-CD is
obtained by replacing line 8 in Alg. 1 with Alg. 3 and using
the estimated values Lℓ for the random sampling. SGSeL-CD
is obtained by replacing line 10 in Alg. 2 with Alg. 3 and
using the estimated values Lℓ for the GSL neighbor choice.

The choice of the initial value L̂0
ℓ before entering the

search loop is subject to a trade-off: if L̂0
ℓ is too big, the

loop will be exited after only one iteration but we risk being
too conservative and making a much smaller step than we
could. Conversely, if L̂0

ℓ is too small, by repeated doubling
we will eventually find the value L̂ℓ that is closest to the
true instantaneous smoothness Lℓ(λ

k), but this may take
many iterations inside the loop, which means many rounds
of computation and communication for the nodes involved.

How are these estimated values expected to perform with
respect to the analytical ones? This depends heavily on the
problem at hand. We can easily construct a case where the
exact constants perform better than the estimated: assume that
we are in the parallel distributed setting, where we perform
primal optimization, and the function to optimize is F (x) =
xT diag(L1, . . . , Ld)x. If x0 ̸= 0, then the algorithm using
the analytic constants can converge in d steps (one in each
coordinate). This is actually what either SGS-CD or SGSL-
CD would achieve. However, using estimated constants will
most likely exit the search loop finding values L̂ℓ ̸= Lℓ,
and thus will need more iterations. Conversely, the analytical
constants Lℓ are global quantities, and therefore, although they
are valid in the complete optimization space, they might be
very different to the real instantaneous Lipschitz constants for
many values of λ (or x in the example above). In that case,
we may get a much better approximation to the instantaneous
value using the estimations, and therefore a faster convergence
due to using a larger stepsize. In Section VII-B we provide
numerical tests where we observe both behaviors.

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

VI. ADDITIONAL CONSIDERATIONS

A. Application to parallel distributed optimization
In the parallel distributed setup, the parameter vector is

stored in a server accessible by multiple workers, each of
which modifies some or all of the coordinates of the parameter.
We assume that coordinates are updated by a single worker
at each iteration and workers always access the most recent
value of the parameter.

In this setting, if there are E coordinates, n workers, and we
let each worker i update a different set Si of coordinates such
that (i) the sets overlap, and (ii) each coordinate can be updated
by exactly two workers, then all results presented previously
(Theorems 1, 2, 4, and 6) hold also for this setting. We remark
these two conditions are not necessary conditions to apply the
set-wise CD algorithms to the parallel distributed setting, but
only to directly apply the results of the theorems, which were
derived for the decentralized setting. In fact, the family of
set-wise CD algorithms can always be applied to the parallel
distributed setting independently of the degree of overlapping
of the sets and the number of the coordinates modified by each
worker.

We can then also easily construct a setting where SGS-CD
is Nmax times faster than SU-CD: let all sets have the same
size |Si| = Nmax ∀i, exactly (Nmax − 1) coordinates in each
set have ∇mF (λ) = 0, and only one ℓ have ∇ℓF (λ) ̸= 0. In
this case, on average only 1

Nmax
times will SU-CD choose the

coordinate that gives some improvement, while SGS-CD will
do it at all iterations.

Note that achieving the maximum speedup for this carefully
crafted scenario requires that the gradients of all coordinates
are independent, which is not verified in the decentralized
optimization setting: according to eq. (6), for a ∇mF to be
zero, it must hold that ∇f∗

i = ∇f∗
j for m ≡ (i, j). But unless

this equality holds for all (i, j) ∈ E (i.e., unless the minimum
has been attained), λ will continue to change, and the ∇f∗

i

will differ. This prevents us from easily designing a scenario
in the decentralized setting where SGS-CD attains the speedup
upper bound with respect to SU-CD. Nevertheless, in Figure
2 we show examples where (i) the speedup increases linearly
with Nmax for the decentralized setting, and (ii) the speedup
matches Nmax for the parallel distributed setting.

B. Dual-unfriendly functions and relation to Dual Ascent
The exposition that we have adopted up to this point may

suggest that in order to run the set-wise CD methods presented
here, one should be able to compute the Fenchel conjugates
f∗
i for i ∈ [n]. Computing these functions may be tedious, and

in some cases, like the logistic regression example presented
in the next section, simply impossible.

However, we remark that the dual coordinate algorithm
presented here is equivalent to the dual decomposition method
(Section 2.2 in [31]) and therefore the gradients ∇f∗

i can be
directly computed by minimizing the per-node Lagrangian (see
also Proposition 11.3 in [32])

∇f∗
i (u

T
i Aλ) = argmin

θi

[
fi(θi) +

∑
ℓ∈Si

Aiℓλℓθi

]
. (37)

Therefore, to apply the algorithms presented here we do
not need to be able to compute the Fenchel conjugates f∗

i , as
long as we can solve (37) analytically or numerically to a high
precision. This is what we do in our experiments of Section
VII for the logistic regression problem.

C. Case d > 1

To extend the proofs above for d > 1, the block arrays Λ
and Ui should be used instead of A and ui, and the selector
matrices Ti should be redefined in the same way (i.e., by
making a Kronecker product with the identity). Then, all the
operations that in the proofs above are applied per entry
(scalar coordinate) of the vector λ, should now be applied
to the magnitude of each vector coordinate λℓ ∈ Rd of
λ ∈ REd. Also, since ∇mF ∈ Rd, in this case the GS
rule becomes argmaxm∈Si

∥∇mF (λ)∥22 (and the GSL rule is
modified analogously).

VII. NUMERICAL RESULTS

In this section, we test the algorithms proposed in numerical
simulations and analyze their performance in a range of
different scenarios. In all cases, we used (37) to compute
the ∇f∗

i needed in (6). For quadratic and linear least squares
problems (37) has a closed-form expression, while for logistic
regression we used the SciPy module for the optimization [33].

A. SU-CD vs SGS-CD: speedup increase with Nmax

Figure 2 shows an example in the decentralized setting
where the speedup of SGS-CD compared to SU-CD increases
linearly with Nmax (left plots), and an example in the parallel
distributed setting where SGS-CD achieves the maximum
speedup of Nmax (right plots).

For the decentralized setting, we created two regular graphs
of n = 32 nodes and degrees Nmax = 8 and 12, respectively.
The local functions were fi(θ) = θT cIdθ with d = 5, and
the constant c being much larger for one node than all others.
This choice gave a few edges with smoothness constants much
smaller than the rest, maximizing the chances to observe the
advantages of SGS-CD versus SU-CD (see also the discussion
in Section 4.1 of [21]).

For the parallel distributed setting, we created a problem
that was separable per-coordinate, and we tried to recreate the
conditions described in Section VI-A to approximate the Nmax

gain. We chose F (x) = xT diag(a1, ..., ad)x with d = 48 and
ai ∼ N (10, 3) ∀i. We then created n sets of Nmax coordinates
such that each coordinate belonged to exactly two sets, and
simulated two different distributions of the d = 48 coordinates:
one with n = 24 sets of Nmax = 4 coordinates, and another
with n = 12 sets of Nmax = 8 coordinates. Following the
reasoning in Sec. VI-A, we set the initial value of (Nmax−1)
coordinates in each set to x0

m = 1 (close to the optimal value
x∗
m = 0), and the one remaining to x0

ℓ = 100 (far away from
x∗
ℓ = 0).
In all plots of Fig. 2 we used the portion of the curves

highlighted with thicker lines to estimate the suboptimality
reduction factor (1 − ρ), and called ρU and ρG the rates

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 2: Comparison of the convergence rates of SU-CD and SGS-CD for quadratic problems in two settings: decentralized
optimization over a network (left plots), and parallel distributed computation with parameter server (right plots).

of SU-CD and SGS-CD, respectively. In all cases we see
that 1 ≤ ρG

ρU
≤ Nmax, as predicted by Theorem 2. We

additionally observe that this ratio increases approximately in
the same proportion as Nmax for the decentralized setting, and
is approximately equal to Nmax in the parallel distributed.

B. Estimated vs exact Lipschitz constants
As mentioned in Section V-C, whether the estimated in-

stantaneous Lipschitz constants L̂i achieve a faster or slower
per-iteration convergence of the exact global Li than the
Lipschitz-informed algorithms depends heavily on the problem
at hand. In this section, we compare SL-CD against SeL-CD
in two different polynomial functions and show that the fastest
algorithm is different in each case (Figure 3).

We consider the parallel distributed setting of the last plot in
Fig. 2, where the parameter vector x has 48 coordinates and 12
workers update 8 coordinates each, such that each coordinate is
updated by exactly two workers. We compare the performance
of SL-CD and SeL-CD in two functions: a quadratic F (x) =
a1x

2
1 + . . .+ adx

2
d + 1 and an order-four polynomial F (x) =

a1x
4
1+ . . .+adx

4
d+1. For the former, the global (and also the

instantaneous) coordinate-wise Lipschitz constants are {Li} =
{2ai}, while for the latter they are {Li} = {12ai(x̂i)

2)},
where x̂i is the maximum absolute value taken by the entry
xi throughout the optimization. The constants ai were set to
random integers sampled at uniform in the interval [1,100].

Fig. 3 shows the performance of SL-CD and SeL-CD in the
quadratic (left plot) and the order-four (right plot) problems.
As expected, SL-CD converges faster than SeL-CD in the
quadratic problem, where once a coordinate is selected for the
first time it is set to its optimal value in that single iteration.
Note also that due to this behavior and the fact that the
coordinate sampling probabilities of SL-CD are fixed (cf. eq.
(24)), sampling a not-yet-optimized coordinate becomes more
and more difficult as the iterations progress, which is why
the convergence of SL-CD in the left plot of Fig. 3 shows a
stairwise pattern where the length of the steps becomes larger
with the iterations. The estimated constants L̂ℓ approximate
the optimal values 2ai as well as possible, but cannot match
them exactly and thus SeL-CD converges more slowly.

Conversely, in the order-four function SeL-CD converges
faster than SL-CD, since in this case the estimated constants
will always be closer to the true instantaneous coordinate-
wise Lipschitz values than the global smoothness constants

Fig. 3: Comparison of the performance of SL-CD (using
global exact Li values) and SeL-CD in the parallel distributed
setting. The experiment was designed to show that which of
the two methods is faster depends on the problem considered.

Lℓ. Note, however, that if the exact instantaneous values could
be known at each iteration (which is the case of the quadratic
function in the left plot of Fig. 3), SL-CD using these values
would always be faster than SeL-CD.

C. Number of iterations vs communication complexity

Figure 4 shows the performance of all algorithms proposed
for the linear least squares problem

fi(θ) =
1

M
∥Xiθ − Yi∥22 , Xi ∈ RM×d, Yi ∈ RM ,

in two random graphs of n = 32 nodes and link probabilities
of 0.1 (left plots) and 0.5 (right plots), respectively. The data
was generated with the model of [11], d = 5,M = 30, and
the Y values were additionally multiplied by the index of the
corresponding node to have non-iid data between the nodes.
Here we do not only show the convergence of the algorithms in
terms of the number of iterations (top plots) but also in terms
of the number of vectors in Rd transmitted through the network
for each suboptimality value computed. Table II shows the
communication complexity of each algorithm in these terms.

TABLE II: Communication complexity of each algorithm:
number of vectors in Rd transmitted in one iteration for an
arbitrary activated node i. Variable I indicates the number of
iterations inside the do-while loop in Alg. 3.

SU-CD 2 SGS-CD Ni + 1

SL-CD 2 SGSL-CD Ni + 1

SeL-CD 2 + 2I SGSeL-CD Ni + 1 + 2I

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

Fig. 4: Performance of the algorithms presented in a linear
least squares problem and two random graphs with different
numbers of edges (left and right columns). The top plots
show convergence in terms of the number of iterations, and
the bottom plots, in terms of the number of vectors in Rd

transmitted.

In terms of the number of iterations, we confirm the con-
clusions of all our corollaries, namely (i) SGS-CD converges
faster than SU-CD (Corollary 3), (ii) SL-CD converges faster
than SU-CD (Corollary 5), and (iii) SGSL-CD converges faster
than both SL-CD and SGS-CD (Corollary 7). Whether the ver-
sions with estimated Lipschitz constants SeL-CD and SGSeL-
CD are faster than their counterparts with exact Lipschitz
knowledge SL-CD and SGSL-CD depends on the problem
instance, as discussed in the previous section. As already
observed in Fig. 2, the speedup of the algorithms applying
either the GS or the GSL rule increases radically as the graph
becomes more connected.

The plots in terms of the number of vectors transmit-
ted provide a complementary point of view of the relative
performance of all these algorithms. We observe that for a
sparsely connected graph (bottom-left plot in Fig. 4), SGS-
CD and SGSL-CD may still achieve lower suboptimality than
SU-CD for the same number of transmissions, but they are
already outperformed by SL-CD. Algorithms SeL-CD and
SGSeL-CD are the slowest when plotted against number of
transmissions, since they have the additional overhead of
estimating the smoothness constants. The gap between SU-CD
and SL-CD, which are the algorithms with the lowest number
of vector transmissions per iteration (see Table II) and the
rest of the algorithms becomes larger (in favor of the former)
as the graph becomes more connected (bottom-left plot in
Fig. 4). While it is natural that plotting the suboptimality
reduction versus the number of vector transmissions benefits
the algorithms using randomized neighbor selection (and no
smoothness estimation), this does not necessarily mean that
they will converge faster in a real system in terms of wall-
clock time. We discuss this in more detail in Section VIII.

Fig. 5: Convergence of SeL-CD and SGSeL-CD in a logistic
regression problem.

D. A dual-unfriendly problem with no L knowledge
Figure 5 shows the convergence of SeL-CD and SGSeL-CD

in the logistic regression problem

fi(θ) =
1

M

M∑
j=1

log
(
1 + exp(−[Yi]j · ([Xi]j)

T θi)
)
+ c ∥θi∥22

where [Yi]j and ([Xi]j)
T are the j-th component and the

j-th row of arrays Yi ∈ RM and Xi ∈ RM×d, respectively. We
ran the simulation for the same graphs and parameter choices
used for the experiments in Section VII-C. In this case, we
cannot compute analytically the optimal value of (37), so we
did the optimization in (37) using the SciPy module. For the
same reason, we do not know the true coordinate Lipschitz
values Lℓ, so we test only the algorithms using estimated
constants.

As in the previous examples, both algorithms converge
linearly, and SGSeL-CD is faster than SeL-CD. We may
remark, however, that the gap between the two algorithms does
not increase with the graph connectivity, as observed between
SL-CD and SGSL-CD in the top plots of Fig. 4. Indeed, we
observed that when the Lℓ are estimated, the gap between
SGSeL-CD and SeL-CD may or may not increase with the
connectivity of the graph. We attribute this effect to the fact
that the performance of the algorithms depends very much on
how close to optimal the estimated Lipschitz constants are,
and therefore, some instances that allow for a better fit of the
true constants using Alg. 3 have advantage over others whose
true constants cannot be well approximated. In the next section
we discuss how to improve the estimation of Alg. 3, and the
associated costs of this improvement.

VIII. DISCUSSION AND CONCLUSION

We have presented the class of set-wise CD optimization
algorithms, where in a multi-agent system workers are allowed
to modify only a subset of the total number of coordinates at
each iteration. These algorithms are suitable for (dual) asyn-
chronous decentralized optimization and (primal) distributed
parallel optimization.

We studied the convergence of a number of set-wise CD
variants: random uniform and Gauss-Southwell set-wise coor-
dinate selection (SU-CD and SGS-CD), and their Lipschitz-
informed versions (SL-CD and SGSL-CD). We showed linear
convergence for all variants for smooth and strongly convex
functions fi, which required developing a new methodology
that extends previous results on CD methods.

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

14 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

In particular, we proved that in expectation, when con-
vergence is measured in terms of number of iterations, both
SGS-CD and SL-CD are faster than SU-CD, and SGSL-CD
is the fastest of them all. However, running one iteration
of each algorithm requires different amount of computation
and communication (see Table II). When the convergence is
measured in terms of number of vectors transmitted through
the network, the random algorithms become better than the
ones based on the GS rule as the connectivity of the network
increases. However, neither the performance measured against
number of iterations nor of vectors transmitted is sufficient
to decide which will perform the fastest in a real setup.
Since all algorithms are asynchronous and can modify multiple
coordinates simultaneously, in a real scenario many iterations
and vector transmissions will occur at the same time, and the
actual wall-clock time of the algorithm will depend on the
network connectivity and where the bottlenecks of the system
are (e.g. low link capacities, presence of stragglers).

Lastly, we proposed the methods SeL-CD and SGSeL-
CD, which run respectively SL-CD and SGSL-CD but with
online coordinate Lipschitz constant estimation for the cases
where these values cannot be easily computed. While these
estimations can achieve remarkably good performance in terms
of number of iterations (top plots in Fig. 4), they come with
a greater penalty in the number of vectors transmitted, which
shows clearly in the bottom plots of Fig. 4. In cases where
there is no alternative but to use estimated Lipschitz constants,
as in our logistic regression example of Section VII-D, and if
the communicaion constraints allow it, we could design an
algorithm better than Alg. 3 that, instead of doubling L̂ℓ at
each time (line 5), runs a bisection search to approximate the
true instantaneous Lℓ as much as possible. This would, of
course, increase the communication costs even more; whether
this penalty is worth paying is an engineering decision that
will depend on the system setup and its constraints.

REFERENCES

[1] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[2] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization
in sensor networks,” in 2009 International Conference on Information
Processing in Sensor Networks, pp. 49–60, IEEE, 2009.

[3] M. Alrowaily and Z. Lu, “Secure edge computing in IoT systems: review
and case studies,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pp. 440–444, IEEE, 2018.

[4] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan,
S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A.
Aziz, et al., “Swarm learning for decentralized and confidential clinical
machine learning,” Nature, vol. 594, no. 7862, pp. 265–270, 2021.

[5] A. Nedic and A. Ozdaglar, “On the rate of convergence of distributed
subgradient methods for multi-agent optimization,” in 2007 46th IEEE
Conference on Decision and Control, pp. 4711–4716, IEEE, 2007.

[6] G. Neglia, C. Xu, D. Towsley, and G. Calbi, “Decentralized gradient
methods: does topology matter?,” in International Conference on Arti-
ficial Intelligence and Statistics, pp. 2348–2358, PMLR, 2020.

[7] D. Jakovetic, D. Bajovic, A. K. Sahu, and S. Kar, “Convergence rates for
distributed stochastic optimization over random networks,” in 2018 IEEE
Conference on Decision and Control (CDC), pp. 4238–4245, IEEE,
2018.

[8] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning, pp. 3043–3052, PMLR, 2018.

[9] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3,
pp. 1835–1854, 2016.

[10] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[11] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” in international conference on machine learning, pp. 3027–
3036, PMLR, 2017.

[12] H. Hendrikx, F. Bach, and L. Massoulié, “Accelerated decentralized
optimization with local updates for smooth and strongly convex objec-
tives,” in The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 897–906, PMLR, 2019.

[13] C. A. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “A dual approach for
optimal algorithms in distributed optimization over networks,” in 2020
Information Theory and Applications Workshop (ITA), pp. 1–37, IEEE,
2020.

[14] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous
distributed optimization using a randomized alternating direction method
of multipliers,” in 52nd IEEE Conference on Decision and Control
(CDC), pp. 3671–3676, IEEE, 2013.

[15] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” in 2013 IEEE
Global Conference on Signal and Information Processing, pp. 551–554,
IEEE, 2013.

[16] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous dis-
tributed gradient methods over stochastic networks,” IEEE Transactions
on Automatic Control, vol. 63, no. 2, pp. 434–448, 2017.

[17] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 772–790, 2011.

[18] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Asynchronous gossip
algorithms for stochastic optimization,” in Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pp. 3581–3586, IEEE, 2009.

[19] M. Costantini, N. Liakopoulos, P. Mertikopoulos, and T. Spyropoulos,
“Pick your neighbor: Local gauss-southwell rule for fast asynchronous
decentralized optimization,” in 2022 IEEE 61st Conference on Decision
and Control (CDC), pp. 1602–1609, IEEE, 2022.

[20] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[21] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke,
“Coordinate descent converges faster with the Gauss-Southwell rule than
random selection,” in International Conference on Machine Learning,
pp. 1632–1641, PMLR, 2015.

[22] J. Nutini, I. Laradji, and M. Schmidt, “Let’s make block coordinate
descent go fast: Faster greedy rules, message-passing, active-set com-
plexity, and superlinear convergence,” arXiv preprint arXiv:1712.08859,
2017.

[23] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

[24] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: an algorithmic frame-
work for asynchronous parallel coordinate updates,” SIAM Journal on
Scientific Computing, vol. 38, no. 5, pp. A2851–A2879, 2016.

[25] L. Xiao, A. W. Yu, Q. Lin, and W. Chen, “DSCOVR: Randomized
primal-dual block coordinate algorithms for asynchronous distributed
optimization,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1634–1691, 2019.

[26] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push–pull gradient methods for
distributed optimization in networks,” IEEE Transactions on Automatic
Control, vol. 66, no. 1, pp. 1–16, 2020.

[27] A. Verma, M. M. Vasconcelos, U. Mitra, and B. Touri, “Maximal dissent:
a state-dependent way to agree in distributed convex optimization,” IEEE
Transactions on Control of Network Systems, 2023.

[28] Y. You, X. Lian, J. Liu, H.-F. Yu, I. S. Dhillon, J. Demmel, and C.-J.
Hsieh, “Asynchronous parallel greedy coordinate descent,” Advances in
Neural Information Processing Systems, vol. 29, 2016.

[29] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[30] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[31] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 15

of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[32] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317.
Springer Science & Business Media, 2009.

[33] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

Marina Costantini received her Electronic Engi-
neering degree (with honors) from the National
University of La Plata, Argentina, in 2015 and
her M.Sc. in communication systems from EU-
RECOM, Sophia Antipolis, France, in 2019. She
is currently pursuing a Ph.D. degree in engi-
neering at EURECOM and Sorbonne University.
Her research interests span different aspects of
mathematical optimization theory, with particular
interest in multi-agent optimization for distributed
computing environments.

Nikolaos Liakopoulos received the Diploma
degree in physics and the M.Sc. degree in
control and computing from the National and
Kapodistrian University of Athens, and the Ph.D.
degree in communication systems from Sor-
bonne University in 2019. He was with the Math-
ematical and Algorithmic Sciences Lab, Paris
Research Center, Huawei Technologies SASU,
from 2016 until 2021. He is currently with Ama-
zon Luxembourg, where he is Senior Research
Scientist in Amazon Transportation Services.

Panayotis Mertikopoulos is a principal re-
searcher at the French National Center for Sci-
entific Research (CNRS). After completing his
undergraduate studies in physics at the Univer-
sity of Athens, he received his MSc and MPhil
degrees in mathematics from Brown University
in 2005, and his PhD degree from the University
of Athens in 2010. Before joining the CNRS
in 2011, he spent one year as a post-doctoral
fellow at École Polytechnique in Paris. Since
2011, he has held visiting or part-time positions

at UC Berkeley and EPFL. His research interests span the interface
of game theory, learning and optimization, with a special view towards
their applications to machine learning, data science, and operations
research. His most recent distinctions include a nomination for the
médaille de bronze of the CNRS in computer science in 2020 and the
INFORMS best paper award in network science in 2022.

Thrasyvoulos Spyropoulos received the
Diploma in Electrical and Computer Engineering
from the National Technical University of
Athens, Greece, and a Ph.D degree in Electrical
Engineering from the University of Southern
California. He was a post-doctoral researcher
at INRIA and then, a senior researcher with
the Swiss Federal Institute of Technology
(ETH) Zurich. He has served as an Associate
Professor (2010-2020) and Professor (2020-
2022) in EURECOM, Sophia-Antipolis, France.

He is currently a Full Professor at the Technical University of Crete,
Greece. He is the co-recipient of the best paper award in IEEE SECON
2008, and IEEE WoWMoM 2012, and best paper award runner-up for
ACM Mobihoc 2011, IEEE WoWMoM 2015, 2021.

Limited circulation. For review only
IEEE-TAC Submission no.: 23-1500.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: August 17, 2023 11:08:01 Pacific Time

