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Abstract. In this paper, we examine the robustness of Nash equilibria in continuous
games, under both strategic and dynamic uncertainty. Starting with the former, we
introduce the notion of a robust equilibrium as those equilibria that remain invariant to
small—but otherwise arbitrary—perturbations to the game’s payoff structure, and we
provide a crisp geometric characterization thereof. Subsequently, we turn to the question
of dynamic robustness, and we examine which equilibria may arise as stable limit points of
the dynamics of “follow the regularized leader” (FTRL) in the presence of randomness and
uncertainty. Despite their very distinct origins, we establish a structural correspondence
between these two notions of robustness: strategic robustness implies dynamic robustness,
and, conversely, the requirement of strategic robustness cannot be relaxed if dynamic
robustness is to be maintained. Finally, we examine the rate of convergence to robust
equilibria as a function of the underlying regularizer, and we show that entropically
regularized learning converges at a geometric rate in games with affinely constrained
action spaces.

1. Introduction

A fundamental requirement in game theory—which predates even the cornerstone notion
of a Nash equilibrium—concerns the robustness that should be inherent in any axiomatization
of rational behavior. To quote a famous passage by von Neumann & Morgenstern [53, p. 32]:
“In whatever way we formulate the guiding principles and the objective justification of rational
behavior, provisos will have to be made for every possible conduct of “the others.” If the
superiority of rational behavior over any other kind is to be established, then its description
must include rules of conduct for all conceivable situations—including those where “the
others” behaved irrationally in the sense of the standards which the theory will set for them.”

As a byproduct of this tenet, there has been a flurry of activity since the 1970s in
proposing refinements of the Nash equilibrium concept, all in an effort to dismiss equilibria
that are highly fragile or otherwise implausible (e.g., because they involve threats that are not
credible).1 This pursuit of robustness has recently gained increased momentum owing to the
applications of game theory to machine learning and data science, two fields where the notion
of robustness has been likewise elusive. Here, even though many game-theoretic solutions
perform extremely well on specific tasks—such as a well-trained generative adversarial
network (GAN) at equilibrium—the resulting models tend to have a narrow performance
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envelope, being brittle, and unable to adapt to situations that deviate from their initial
configuration.

In game-theoretic terms, this highlights the fact that, even though a Nash equilibrium is
resilient to unilateral deviations, it need not be robust to small perturbations in the payoff
data of the game (which, in a machine learning context, could represent distributional shifts,
incomplete observations, and/or other sources of uncertainty). In view of this, it is natural
to ask

Which equilibria remain robust in the presence of strategic uncertainty?
This question has been the lodestar of the equilibrium refinement literature, and it has led to
a wide array of proposals aiming to get rid of “unreasonable” equilibria that may disappear
even under the most minute perturbation to the players’ payoffs—from Selten’s notion of
trembling hand perfection [46], to Myerson’s concept of properness [38], and the various
criteria of strategic stability introduced by Kohlberg & Mertens [28] (hyperstability, full
stability, sequential stability, etc.).

Dually to the above theory of “strategic refinement”, an important alternative approach
has been based on dynamic considerations: that is, the players of a game start off-equilibrium,
and in one sense or another learn (or fail to learn) to play an equilibrium over time. Here,
the focus is on the players’ learning protocol, the information available during play, and
the presence (or absence) of players that may deviate from this protocol. By the so-called
“folk theorem of evolutionary game theory” [23], it is well known that only strict equilibria
are stable and attracting under the replicator dynamics, a result which was extended more
recently to a broad class of “regularized learning” schemes, in both continuous [17] and
discrete time [18, 19, 36].

These two viewpoints are not always compatible: for instance, in 2×2 games with two pure
equilibria and one mixed (such as the Chicken / Hawk-Dove game), the mixed equilibrium is
ruled out by almost all game-theoretic learning algorithms and dynamics, even though it
survives a broad range of strategic refinement attacks. A point of hope here is the equivalence
between (setwise) strategic and dynamic stability proved by Ritzberger & Weibull [40], who
showed that a span of pure strategies in the mixed extension of a finite game is strategically
stable in the sense of Kohlberg & Mertens [28] if and only if it is asymptotically stable under
the replicator dynamics—see also [10, 13] for an extension to a wider class of discrete-time
models for learning, with different information assumptions.

Notably, these considerations all concern finite games in normal (or extensive) form. By
contrast, most applications of game theory to machine learning and data science involve
continuous games, that is, games with a finite number of players and a continuum of actions
per player—for example, GANs, multi-agent reinforcement learning, Kelly auctions, etc. In
view of this, our paper seeks to answer the following questions in the context of continuous
games:

Which equilibria arise as robust predictions of the players’ learning dynamics?
We refer to these two types of robustness as strategic and dynamic robustness, respectively.

Our paper aims to quantify the interplay between the two, and the links that connect them.

Our contributions in the context of related work. Aiming for the strongest possible definition
of robustness, we propose the following strategic refinement criterion:

An equilibrium of a continuous game is strategically robust
if it remains an equilibrium in any slightly perturbed, nearby game.

This requirement is similar in spirit to—but considerably stronger than—the classical notion
of essentiality of Wu & Jiang [55], which posits that any nearby game has a nearby, possibly
different equilibrium. Importantly, our results apply to local Nash equilibria, which are
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especially relevant in machine learning applications where payoff landscapes are typically
nonconcave. This distinction is crucial, as global Nash equilibria do not always exist in general
continuous games, making local equilibrium guarantees both meaningful and necessary in
practice.

An important point here is that, in contrast to finite games—where the notion of “nearby” is
fairly unambiguous—perturbations to a continuous game involve functional variations and, as
such, the metric that quantifies a “small” perturbation plays a crucial role. Importantly, albeit
natural, our proposed robustness requirement becomes vacuous if distances are measured
with respect to the players’ payoff functions: more precisely, it is always possible to find a
payoff perturbation with arbitrarily small L∞-norm that ends up upsetting any equilibrium.

The underlying issue here is that a small payoff perturbation may exhibit very high
local variability, which can disrupt the first-order stationarity conditions that characterize
equilibria in continuous games, thereby eliminating them altogether. To circumvent this
issue, we argue that deviations of continuous games should be measured by comparing their
respective gradient fields, which encode all the strategic information in the game. This shift
in perspective leads to a crisp geometric characterization of strategically robust equilibria:
they are extreme points of the game’s action space, and they are sharp in the sense that the
game’s individual payoff gradients form a strictly acute angle with any tangent direction (cf.
Fig. 1 later in the paper).

From a dynamic standpoint, we focus throughout on the family of algorithms known as
“follow the regularized leader” (FTRL) [31, 47–49]. This is arguably one of the most—if not the
most—popular class of policies for online learning due to its strong regret minimization and
convergence guarantees, and it contains as special cases gradient descent/ascent methods [3,
58], dual averaging [39, 56], the exponential / multiplicative weights algorithm [2, 5, 5, 33, 54],
implicitly normalized forecasters [1, 4, 57], exponentiated gradient methods [7, 27, 51], and
many stochastic approximation schemes, adaptive [24, 25] and non-adaptive alike [26, 34–36].

In this general context, we examine which equilibria admit robust convergence guarantees as
stable limit points of the dynamics of FTRL in the presence of randomness and uncertainty.
Our first main result is that strategic robustness implies dynamic robustness, i.e., any
strategically robust equilibrium is stable and attracting with high probability under the
dynamics of FTRL, for any choice of regularizer. Conversely, we also show that the strategic
robustness requirement cannot be lifted, and we provide an example of a game with an
extreme, non-robust equilibrium which attracts all FTRL orbits under a certain choice of
regularizer, and none under another.

To the best of our knowledge, this is the first result of its kind for general continuous
games. In the context of finite games, Flokas et al. [17] showed that a point is asymptotically
stable under the continuous-time FTRL dynamics if and only if it is a strict Nash equilibrium,
while [10] extended this equivalence to discrete-time models of regularized learning under
uncertainty. Strict equilibria are prime examples of strategically robust equilibria, so this
part of the analysis of [10] is subsumed in ours. In the context of concave games—that
is, continuous games with individually concave payoff functions—Mertikopoulos & Zhou
[34] showed that sharp global equilibria enjoy comparable convergence guarantees under
FTRL with a vanishing step-size. While such step-size schedules are effective at suppressing
noise in the long run, they do so at the cost of significantly slowing down the algorithm’s
convergence. By contrast, we focus on fast, constant step-size schedules, which are widely
used in practice due to their simplicity and often superior empirical performance. In this
regime, we show that entropically regularized learning with a constant step-size converges to
robust equilibria at a geometric rate, compared to distinctly subgeometric rates in the case
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of vanishing step-size policies—subsuming in this way a range of previous results for finite
[19] and stochastic games [20].

2. Preliminaries

We start by briefly reviewing some basics of game theory and regularized learning,
introducing the necessary context for our results.

2.1. The game-theoretic framework. Throughout our paper, we focus on a class of continuous
games consisting of a finite set of players i ∈ N = {1, . . . , N}, and defined by the following
primitives:

(1) Each player i ∈ N has access to a compact convex subset Xi of some finite dimensional
vector space Vi, describing the set of actions available to said player. By X :=

∏
i Xi

we denote the space of all ensembles x = (x1, . . . , xN ) of actions xi ∈ Xi that are
independently chosen by each player i ∈ N . We will also write x = (xi;x−i) to
emphasize the action of player i ∈ N against the joint action profile x−i ≡ (xj)j ̸=i of
all other players.

(2) The players’ rewards are determined by their individual payoff functions ui : X → R,
assumed to be continuously differentiable for all i ∈ N . Denoting by Yi ≡ V∗

i the dual
space of Vi, we define the individual gradient vector vi : X → Yi of player i ∈ N by

vi(x) = ∇xi
ui(xi;x−i) (1)

and the ensemble v(x) = (v1(x), . . . , vN (x)) ∈ Y ≡
∏

i∈N Yi thereof.

A continuous game is then defined as a tuple G ≡ G(N ,X , u) with players, actions and
payoff functions as above.

Nash equilibrium. The best known solution concept in game theory is that of a Nash
equilibrium (NE), which characterizes the actions x∗ ∈ X from which no player has incentive
to unilaterally deviate. Formally, x∗ ∈ X is a Nash equilibrium if

ui(x
∗) ≥ ui(xi;x

∗
−i) for all xi ∈ Xi, i ∈ N . (NE)

A game G ≡ G(N ,X , u) always admits a Nash equilibrium if X is compact and each player’s
payoff function ui is individually concave in the sense that ui(xi;x−i) is concave in xi for all
x−i ∈ X−i [14, 44]. In this case, basic arguments from convex analysis [42, 43] show that x∗

is an equilibrium of G if and only if it satisfies the (Stampacchia) variational inequality

⟨v(x∗), x− x∗⟩ ≤ 0 for all x ∈ X . (VI)

If the players’ functions are not individually concave, a game may not admit a Nash
equilibrium. In that case, it is more meaningful to consider local Nash equilibria, i.e., profiles
x∗ ∈ X such that

ui(x
∗) ≥ ui(xi;x

∗
−i) for all x in a neighborhood U of x∗ in X . (LNE)

In stark contrast to games with individually concave payoff functions, (VI) no longer
characterizes local Nash equilibria: specifically, by first-order stationarity, we have (LNE) =⇒
(VI) but the converse need not hold; in fact, a solution x∗ of (VI) may be a global payoff
maximizer for all i ∈ N .

Note. In the sequel, we will work with general continuous games that may not admit a global
equilibrium—but admit local Nash equilibria. To streamline our presentation, we will use
the term “equilibrium” without any further qualification to refer to local equilibria, and we
will say explicitly “global equilibria” for profiles satisfying (NE).
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2.2. Regularized learning in games. The most widely used framework for learning in games,
is the so called “follow the regularized leader” (FTRL) template, primarily because it leads
to no regret in a wide variety of settings [48, 49]. The corresponding update rule hinges on
the notion of a regularized choice map, and proceeds as

yt+1 = yt + γv̂t, xt = Q(yt) for t = 1, 2, . . . (FTRL)

where (i) xt ∈ X denotes the players’ action profile at step t; (ii) yt = (yi,t)i∈N ∈ Y is an
auxiliary process that aggregates historical feedback into a compact state representation, i.e.,
a proxy for the players’ empirical performance up to time t; (iii) v̂t = (v̂i,t)i∈N ∈ Y denotes
the current gradient-like payoff signal; (iv) γ > 0 is the learning rate, or step-size parameter
of the process; and (v) Q : Y → X is a mapping between the auxiliary process on the dual
space Y , and the players’ strategy space X . In what follows, we analyze the key components
of this framework.

The algorithm’s step-size. Throughout this work, we adopt a constant step-size routine. This
stands in contrast to the stochastic approximation literature [8, 11, 29], where (FTRL) is
typically implemented with a vanishing step-size satisfying the Robbins-Monro summability
conditions

∑
t γt =∞,

∑
t γ

2
t <∞ [41], which is known to promote convergence by gradually

suppressing the effect of noise [34].
On the other hand, in practical applications, it is common to employ a constant (or

non-diminishing) step-size for several reasons. First, constant step-sizes are easier to tune and
maintain, making them more suitable for large-scale or production environments. Moreover,
methods with vanishing step-sizes often experience long warm-up phases and converge slowly
to a neighborhood of the equilibrium. In comparison, constant step-size methods in machine
learning settings typically reach the vicinity of a solution much faster—often within 0.1%
accuracy [16]. Indeed, many state-of-the-art architectures, including transformers and large
language models, use step-size schedules that remain effectively constant over billions or
even trillions of samples [15].

The mirror map. A central ingredient of regularized learning is the mirror map Q ≡ (Qi)i∈N ,
with each Qi : Yi → Xi induced by a strongly convex regularizer hi : Xi → R that promotes
stability during the learning process. To streamline our presentation and letting h(x) =∑

i∈N hi(xi), the players’ mirror map is defined as

Q(y) := argmaxx∈X {⟨y, x⟩ − h(x)} (2)

In the rest of our paper, we will write Xh = imQ for the image of Y under Q—and, likewise,
Xhi = imQi for each player i ∈ N . In particular, if Q is interior-valued—that is, Xh = riX—
we will say that h is steep because, in this case, the (sub)gradients of h explode to infinity
as x→ bdX (i.e., h becomes “infinitely steep”); instead, if imQ = X , we will say that h is
non-steep. For a detailed discussion on this distinction and related concepts, see Appendix A.

Different choices of the regularizer h induce different projection-like operations, adapted
to the geometry of the underlying space. We describe two mainstay examples below.

Example 2.1 (Euclidean projection). The quadratic regularizer h(x) = ∥x∥22/2 gives rise to
the Euclidean projection Q(y) = ΠX (y) = argminx∈X ∥y − x∥2. Here, h is non-steep. ✦

Example 2.2 (Exponential weights). For Ai a finite set of actions per player i ∈ N , and
Xi ≡ ∆(Ai), the entropic regularizer hi(xi) =

∑
αi∈Ai

xiαi
log xiαi

gives rise to the logit map,
defined via Qi(yi) = exp(yi)/∥exp(yi)∥1, where exp(yi) denotes the element-wise exponential
of yi. ✦
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The feedback process. Throughout this work, we consider two distinct feedback models:
(i) stochastic gradients; and (ii) payoff-based feedback. We describe both frameworks below.

Stochastic gradient feedback. At every time step t, each player i ∈ N has access to a
stochastic first-order oracle (SFO)—that is, a noisy version of their individual gradient vector
of the form:

v̂t = v(xt) + Ut with E[Ut | Ft] = 0 (SFO)

where Ut is zero-mean and conditionally sub-Gaussian given the information Ft generated
up to time t ∈ N. In other words, players observe unbiased estimates of their individual
gradient vectors.

Payoff-based feedback. Unlike (SFO) where players have access to a black-box oracle that
provides noisy gradient information, it is often more realistic to consider a payoff-based
paradigm where players observe only their realized payoffs—that is, a single scalar value—and
have to reconstruct an estimate of their individual gradient vectors.

The most widely used method in this setting is the single-point stochastic approximation
(SPSA) framework of [12, 50], which is based on finite differences along randomly sampled
directions. Specifically, denoting the set of unit directions Ei :={±e1, . . . ,±edi

} that span the
affine hull of Xi of dimension di, each player i ∈ N draws a direction wi,t ∈ Ei uniformly at
random in every round t ∈ N. Since the perturbed action xi,t + δtwi,t may lie outside Xi for
a perturbation radius δt > 0, we introduce a pivot element pi ∈ ri(Xi) and a radius ri > δt
such that pi + riwi ∈ Xi for all wi ∈ Ei. Based on these, we define the feasibility-adjusted
action xδ

i,t :=xi,t + (δt/ri)(pi − xi,t) ∈ Xi. Finally, each player queries the perturbed action
x̂i,t ≡ xδ

i,t + δtwi,t which is an element of Xi, and observes the realized payoff value ui(x̂t).2

The gradient vector is, then, estimated via the single-point stochastic approximation scheme:

v̂i,t :=(di/δt)ui(x̂t)wi,t (SPSA)

Importantly, the feasibility adjustment ensures that the perturbed action x̂t remains within
the players’ action set X , while preserving the direction of the original perturbation wt. As
we show in Appendix A, (SPSA) enjoys the bounds

∥E[v̂t | Ft]− v(xt)∥∗ = O(δt) and ∥v̂t∥∗ = O(1/δt) . (3)

These statistical properties of (SPSA) will play a crucial role in establishing its convergence
guarantees; we will revisit them in Section 4.

3. Strategic robustness: Geometric and variational characterization

We begin in this section by addressing the strategic aspects of the equilibrium robustness
question, namely:

Which equilibria remain invariant under
small perturbations of the underlying game?

We take this desideratum as the starting point for our definition of strategic robustness, that
is, action profiles that remain (local) equilibria under small disturbances in the underlying
game. This leads to a delicate interplay between the variational and geometric aspects of
the underlying game, which we detail below.

2Since ri > δt, we write xδ
i,t = xi,t(1− δt/ri) + (δt/ri)pi which is a convex combination of points in Xi.

Regarding x̂i,t, note it can be written as x̂i,t = xi,t(1− δt/ri) + (δt/ri)(pi + riwi,t), which is also a convex
combination of points in Xi. Thus, both belong to Xi.
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3.1. A first approach and insights. The first step in our analysis is to quantify the meaning
of “small”. In this regard, a natural way to measure the distance between two concave games,
G ≡ G(N ,X , u) and G̃ ≡ G(N ,X , ũ), would be via the uniform distance

ρ
(
G, G̃

)
:=maxi∈N supx∈X |ui(x)− ũi(x)| . (4)

Intuitively, if this quantity is small enough, the two games are nearly indistinguishable from
a strategic perspective, since for every strategy profile x ∈ X , the payoffs in G and G̃ are
almost the same. Thus, one might expect that at least some equilibria of G should persist
under sufficiently small perturbations, especially given that a Nash equilibrium is defined in
terms of the game’s payoff functions themselves.

Perhaps surprisingly, as we show below, this definition of distance cannot provide a
meaningful concept of equilibrium robustness.

Proposition 1. For any game G and any equilibrium x∗ ∈ X of G, there exists a perturbed
game G̃, arbitrarily close to G in the uniform metric (4) such that x∗ ∈ X is not an equilibrium
of G̃.

To show this, we provide Examples 3.1 and 3.2 which, taken together, cover all possible
types of equilibria in continuous games in the sense of (VI).

Example 3.1. Let G be a continuous game, and let x∗ ∈ X be an equilibrium of G such
that ⟨vi(x∗), pi − x∗

i ⟩ < 0 for some player i ∈ N and pi ∈ Xi. For arbitrary ε > 0, define
ũi : X → R as

ũi(x) :=ui(x)− ε exp
(
2 ε−1⟨vi(x∗), xi − x∗

i ⟩
)

(5)
which is a continuously differentiable concave function in xi, and let ũj ≡ uj for all j ̸= i,
j ∈ N . Since x∗ ∈ X is an equilibrium of G, it holds ⟨vi(x∗), xi − x∗

i ⟩ ≤ 0 for all xi ∈ Xi,
which implies that

ρ
(
G, G̃

)
= supx∈X |ui(x)− ũi(x)| = ε supxi∈Xi

exp
(
2 ε−1⟨vi(x∗), xi − x∗

i ⟩
)
= ε. (6)

Computing the individual gradient vector of player i ∈ N , we obtain

ṽi(x) = vi(x)− 2 vi(x
∗) exp

(
2 ε−1⟨vi(x∗), xi − x∗

i ⟩
)

(7)

and, evaluating it at x∗ ∈ X , we get, ṽi(x∗) = −vi(x∗). Therefore, for x = (pi;x
∗
−i) ∈ X , we

have

⟨ṽ(x∗), x− x∗⟩ = −⟨vi(x∗), pi − x∗
i ⟩ > 0 (8)

i.e., x∗ ∈ X is not an equilibrium point of the perturbed game G̃. ✦

Example 3.2. Let G be a continuous game, and let x∗ ∈ X be an equilibrium of G such that
⟨v(x∗), x − x∗⟩ = 0 for all x ∈ X . Fix a player i ∈ N and pi ∈ Xi, and let yi ∈ V∗

i with
⟨yi, pi − x∗

i ⟩ > 0. For arbitrary ε > 0, let ũi : X → R be defined as

ũi(x) :=ui(x) + ε diam(Xi)
−1∥yi∥−1

∗ ⟨yi, xi − x∗
i ⟩ (9)

which is a concave function in xi, and ũj ≡ uj for all j ≠ i, j ∈ N . Then, we readily get that

ρ
(
G, G̃

)
= supx∈X |ui(x)− ũi(x)| = εdiam(Xi)

−1∥yi∥−1
∗ supxi∈Xi

|⟨yi, xi − x∗
i ⟩| ≤ ε. (10)

Computing the individual gradient vector of player i ∈ N , we obtain

ṽi(x) = vi(x) + ε diam(Xi)
−1∥yi∥−1

∗ yi (11)

Therefore, for x = (pi;x
∗
−i) ∈ X , it holds by the example’s assumptions that

⟨ṽ(x∗), x− x∗⟩ = ⟨vi(x∗), pi − x∗
i ⟩+ ε diam(Xi)

−1∥yi∥−1
∗ ⟨yi, pi − x∗

i ⟩ > 0 (12)
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X. x∗

NC(x∗)

X. x∗
v(x∗)

NC(x∗)

X

. x∗
v(x∗)

NC(x∗)

X

. x∗

v(x∗)

Figure 1. Different equilibrium configurations: an interior equilibrium (v(x∗) = 0); a
boundary, non-extreme equilibrium (normal cone with empty topological interior); an
extreme, non-robust equilibrium (v(x∗) on the boundary of the normal cone); a robust
equilibrium (v(x∗) in the interior of the normal cone). Only the robust equilibrium
remains invariant under strategic perturbations of the underlying game.

where we used that ⟨vi(x∗), pi−x∗
i ⟩ = 0 and ⟨yi, pi−x∗

i ⟩ > 0, as per our original assumptions.
Thus, x∗ ∈ X is not an equilibrium of the perturbed game G̃. ✦

Remark 1. In Examples 3.1 and 3.2, if G is concave, so is G̃, indicating that this notion of
distance is not proper even within the class of concave games.

The preceding examples demonstrate that under the distance (4), even an arbitrarily small
perturbation to the payoff function of a single player can destroy any equilibrium.3 This
phenomenon arises because, although an equilibrium is defined in terms of payoff functions,
the first-order stationarity condition in (VI) shows that it fundamentally depends on the
individual gradient vectors. Therefore, any meaningful notion of distance between two games
must likewise be aware of the behavior of the individual gradient vectors.

3.2. Defining strategic robustness. As illustrated in Examples 3.1 and 3.2, small changes in
the payoffs, though negligible in the uniform norm, can alter the equilibrium landscape quite
significantly. To address this, we refine the notion of distance between games G and G̃ as
follows:

dist
(
G, G̃

)
:= supx∈X ∥v(x)− ṽ(x)∥∗ (13)

With this definition in hand, we are now ready to state the concept of strategic robustness
in the class of continuous games.

Definition 1. An equilibrium x∗ ∈ X of a game G is called strategically robust if there exists
ε > 0 such that for any game G̃ with dist

(
G, G̃

)
< ε, x∗ is also an equilibrium of G̃.

As we explore next, this definition offers a meaningful notion of “closeness” for equilibrium
stability, one that is grounded not in the payoff values themselves, but in the geometry they
induce.

Geometric characterization. To provide a geometric characterization, we zoom in on the
variational structure that governs Nash equilibria. Specifically, we show that strategically
robust equilibria x∗ ∈ X are precisely those solutions of (VI) for which the inequality is
strict for all feasible deviations. Formally, we have the following characterization:

Theorem 1. Let x∗ ∈ X be a joint action profile in G(N ,X , u). Then the following are
equivalent:

(i) x∗ is a strategically robust equilibrium.

3Such variations are not possible in the class of finite games, so, in this much more restrictive class, the
sup-norm of the payoff differences is a valid metric to measure robustness.
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(ii) ⟨v(x∗), z⟩ ≤ −m∥z∥ for some m > 0 and all z ∈ TC(x∗), where TC(x∗) is the
closure of all rays emanating from x∗ and intersecting X in at least one other point.

(iii) v(x∗) ∈ int(PC(x∗)), where PC(x∗) :={y ∈ Y : ⟨y, z⟩ ≤ 0, for all z ∈ TC(x∗)}.

Intuitively, Theorem 1 suggests that strategically robust equilibria are precisely those
points x∗ ∈ X where the associated gradient vector v(x∗) lies in the topological interior of
the polar cone PC(x∗), i.e.,

⟨v(x∗), z⟩ < 0 for all z ∈ TC(x∗). (14)

We thus conclude that strategic robustness can only occur at boundary points where the
tangent cone is pointed; if the feasible set is locally flat at x∗ ∈ X , the corresponding polar
cone has empty interior, and robustness is not possible. This phenomenon is illustrated in
Fig. 1, and the full proof of Theorem 1 is provided in Appendix B.

Remark 2. Both Examples 3.1 and 3.2 violate the condition in Definition 1, but for different
reasons. In the former case, although the perturbed payoffs can be made arbitrarily close
to the original, the perturbed gradient vector at equilibrium can become arbitrarily large,
making the distance dist

(
G, G̃

)
exceed any ε > 0. In the latter case, the polar cone PC(x∗)

at the equilibrium has empty interior, so strategic robustness cannot hold at x∗. ✦

Remark 3. Several important classes of games admit robust equilibria for all but a measure-
zero set of instances. Examples include nonatomic, non-splittable routing games with
arbitrary increasing cost functions [45], Markov potential games arising in multi-agent
reinforcement learning [32], Cournot oligopolies in which firms have no or limited price-
setting power [37], etc.

In the next section, we examine the dynamic implications of this result by studying the
robustness of such equilibria under (FTRL).

4. From strategic to dynamic robustness: Convergence results

So far, we focused on strategic robustness, a static notion determined solely by the
underlying game and the local geometry around the equilibrium in question. In this section,
we shift to the dynamic perspective of our central question and explore which equilibria
admit robust convergence guarantees, namely, equilibria that can emerge as stable outcomes
of regularized learning under feedback and initialization uncertainty, regardless of the specific
choice of regularizer.

To this end, we first establish that non-equilibrium points cannot arise as limits of (FTRL),
even with perfect gradient feedback. Formally, we have the following proposition, whose
proof is provided in Appendix C.

Proposition 2. Suppose that (FTRL) is run with perfect gradient feedback of the form
v̂t = v(xt) for all t = 1, 2, . . . , and assume that xt converges to some x̂ ∈ X . Then x̂ is an
equilibrium of G.

Having excluded non-equilibrium points as positive probability outcomes of a learning
process, we now turn to identifying equilibria that are robust from a dynamic standpoint,
and more precisely, under that of (FTRL). In this regard, strategically robust equilibria
serve as natural candidates, as their stability with respect to game perturbations suggests
they may also admit robust convergence guarantees. This is further supported by the finding
that equilibrium points in the interior of the strategy space X cannot be limit points: in
particular, we show below that, even under i.i.d. stochastic noise, the iterates of (FTRL)
diverge from such equilibria almost surely.
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Proposition 3. Let x∗ ∈ ri(X ) be a Nash equilibrium of G(N ,X , u), and (xt)t∈N be the
sequence of play induced by (FTRL) with v̂t = v(xt) +Ut, where Ut i.i.d. with E[Ut] = 0 and
cov(Ut) ≻ 0 for all t ∈ N. Then:

P
(
lim
t→∞

xt = x∗
)
= 0 for any x1 ∈ Xh. (15)

Remark 4. The condition cov(Ut) ≻ 0 is not necessary. In fact, it suffices to have cov(Ut)
non-degenerate in a direction p − x∗ for p ∈ X , but we state our result under stronger
assumptions for simplicity. ✦

The key idea of the proof, which is deferred to Appendix C, is that, since x∗ ∈ ri(X ),
we have ⟨v(x∗), x− x∗⟩ = 0 for all x ∈ X . At the same time, as cov(Ut) ≻ 0, the quantity
⟨Ut, x−x∗⟩ fluctuates and remains bounded away from zero infinitely often, thereby preventing
convergence.

4.1. Learning with gradient-based feedback. In view of the impossibility result of Proposi-
tion 3, we shift our focus on the convergence of (FTRL) toward strategically robust equilibria.
We first consider the gradient feedback model, where each player receives an unbiased esti-
mate of their individual gradient vector via (SFO). Specifically, we analyze the behavior of
(FTRL) and we establish local convergence guarantees toward strategically robust equilibria
with high probability. This is encoded in the following theorem:

Theorem 2. Let x∗ ∈ X be a strategically robust equilibrium of G(N ,X , u). Fix a confidence
level δ > 0, and let (xt)t∈N be the iterates of (FTRL) with feedback provided by (SFO), and
step-size γ > 0 sufficiently small. Then, there exists a neighborhood U of x∗ in Xh such that:

P
(
lim
t→∞

xt = x∗
)
≥ 1− δ if x1 ∈ U . (16)

Before proceeding, a few remarks are in order. Since continuous games may admit multiple
Nash equilibria, global convergence guarantees are in general unattainable. As such, our
analysis focuses on the local convergence landscape of (FTRL). As a sidenote, it is important
to emphasize that the convergence result is robust to the choice of regularizer, relying solely
on the general conditions outlined in Section 2 rather than any particular functional form.
We outline below the main steps of the proof, with full details provided in Appendix C.

Proof Sketch. The key idea is that the auxiliary process yt, which aggregates the players’
gradient updates, diverges to infinity in a direction that steers the induced sequence xt = Q(yt)
toward the equilibrium in question. More formally, the proof relies on the following intuition.
From Theorem 1 and the continuity of the players’ payoffs, strategic robustness implies that,
in a neighborhood of a robust equilibrium x∗, the players’ individual gradient fields point
toward x∗. Consequently, the process yt accumulates gradient steps that, on average, are
aligned with the interior of the normal cone NC(x∗) to the action space X at x∗. As a result,
yt exhibits a consistent drift that carries it deeper into a “copy” of the normal cone NC(x∗)
embedded in the gradient space Y. Moreover, we show that, with high probability, once yt
enters this region, it remains there, provided that the algorithm is not initialized too far
from x∗. Combining the above, Proposition C.1 establishes that the sequence of actions
xt = Q(yt) generated by (FTRL) converges to x∗. ✦

While our main focus lies on the qualitative convergence behavior of (FTRL), stronger
guarantees can be obtained under additional structural assumptions on the strategy space
and the regularizer. In particular, suppose that X is a polyhedral domain of the form
X :=

{
x ∈ Rd

+ | Ax = b
}

for some A ∈ Rm×d and b ∈ Rm, and h is decomposable with
kernel function θ, i.e., h can be written as h(x) =

∑d
j=1 θ(xj) for some continuous function

θ : R+ → R with locally Lipschitz θ′′ and θ′′ > 0. Under these conditions, we obtain the
explicit convergence rates for the (FTRL) dynamics, as follows.
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Theorem 3. If, in addition, X is a polyhedral domain and h is decomposable with kernel θ,
on the event E :={limt→∞ xt = x∗} it holds:

∥xt − x∗∥ = ϕ(−Θ(t)) (17)

where ϕ is the rate function defined via

ϕ(z) :=

{
(θ′)−1(z) if z > θ′(0+)

0 if z ≤ θ′(0+)
(18)

Remark 5. For the setting of Example 2.2, with X = ∆(A), θ(z) = z log z and x∗ a
strict Nash equilibrium, the convergence rate of (FTRL) as per Theorem 3, becomes
∥xt − x∗∥ = exp(−Θ(t)). ✦

Remark 6. For finite games, [19] showed that under a step-size schedule of the form γt ∝ 1/tp,
the Robins-Monro summability conditions require p ∈ (1/2, 1], leading to convergence rates
from ϕ

(
−Θ(t1−p)

)
to ϕ(−Θ(log t)). Our convergence guarantees remain valid under these

step-size schedules, though they yield the slower aforementioned rates. ✦

Remark 7. It is important to highlight the different behavior of (FTRL), often referred to
as a “lazy” variant of mirror descent [22], with that of the mirror descent algorithm, defined
via the update

xt+1 = Q(∇h(xt) + γv̂t) for t = 1, 2, . . . (MD)
where ∇h(x) denotes a continuous selection of ∂h(x) [12]. To illustrate the difference,
consider the single-agent problem of maximizing u(x) = x over X = [0, 1], where x∗ = 1 is a
robust equilibrium. Using the Euclidean regularizer (see Example 2.1), (MD) reduces to the
projected gradient algorithm

xt+1 = Π(xt + γv̂t) (SGA)
where v̂t is a stochastic gradient of u at xt, i.e., v̂t = 1 + Ut where Un is a Bernoulli process
with Ut = ±1 with probability 1/2. However, even if xt = x∗ for some t, we then have
that xt+1 = 1 − γ with probability 1/2. Thus, by a straightforward application of the
Borel-Cantelli lemma, we conclude that, with probability 1, (SGA) does not converge to
x∗. Through this toy example, note that although (MD) and (FTRL) use the same mirror
map Q to select actions, they differ fundamentally in how feedback is processed. The “eager”
nature of (MD) makes it more sensitive to noise, whereas (FTRL) maintains a cumulative
dual variable yt that aggregates all past feedback, effectively smoothing out fluctuations
over time. Also, note that for steep regularizers, the iterations (MD) and (FTRL) coincide,
as the mirror map Q is essentially injective (see Appendix A for more details). Therefore,
differences in their behavior arise in the case where steepness does not hold. ✦

4.2. Learning with payoff-based feedback. We now turn to the payoff-based feedback model,
where players observe only their realized payoffs and use them to estimate gradients indirectly
via (SPSA). This feedback model introduces higher variance and structural bias due to
the diminishing sampling radius and the feasibility corrections. Nevertheless, we show that
strategically robust equilibria retain their dynamic robustness: they still locally attract the
(FTRL) dynamics with high probability, as the following theorem suggests.

Theorem 4. Let x∗ ∈ X be a strategically robust equilibrium of G. Fix a confidence level
δ > 0, and let (xt)t∈N be the iterates of (FTRL) run with (SPSA) with δt ∝ 1/tp for some
p ∈ (0, 1/2) and step-size γ > 0 sufficiently small. Then, there exists a neighborhood U of x∗

such that:
P
(
lim
t→∞

xt = x∗
)
≥ 1− δ if x1 ∈ U . (19)
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Figure 2. Convergence and non-convergence to different type of equilibria. Only robust
equilibria are stochastically asymptotically stable under (FTRL).

If, in addition, X is affinely constrained and h is decomposable with kernel θ, then, whenever
xt converges to x∗, we have:

∥xt − x∗∥ = ϕ(−Θ(t)) . (20)

Despite the scarcity of information inherent in the payoff-based feedback model, strategi-
cally robust equilibria retain not only their convergence properties but also their convergence
speed, under the additional structural assumptions on the regularizer and domain, matching
that of the (SFO) feedback setting. This is further discussed along with the proof of the
theorem in Appendix C.

4.3. Convergence landscape beyond strategic robustness. Having established the robust
convergence properties of strategically robust equilibria, a natural question arises: Can we
expect robust convergence guarantees toward equilibria that lack this structural property? As
we show below, the answer is not encouraging: strategic robustness is essentially necessary
for robust convergence.



ROBUST EQUILIBRIA IN CONTINUOUS GAMES 13

To make this limitation precise, we move beyond the interior of the strategy space, where
Proposition 3 rules out equilibria as potential limit points, and shift our focus to non-robust
equilibria on the boundary. To illustrate the behavior of (FTRL) in this setting, we construct
a game with a unique equilibrium that exhibits fundamentally different long-run behavior
depending on the regularizer.

Proposition 4. Consider the 1-player game G with X = [0, 1], u(x) = − 3
4x

4/3 and x∗ = 0.
Let (xt)t∈N be the iterates of (FTRL) with γ < 1, and v̂t = v(xt) + Ut, where Ut are i.i.d.
standard normal random variables for all t ∈ N. Then, for any initial condition y1 ∈ R, we
have:

(i) For h(x) = x log x, it holds P(limt→∞ xt = x∗) = 0.
(ii) For h(x) = −2

√
x, it holds P(limt→∞ xt = x∗) = 1.

The core idea of the proof of Proposition 4 (which we present in detail in Appendix C)
is to construct a process zt that dominates yt. Importantly, the process zt can be then
viewed as a random walk with a diminishing drift whose rate of decay depends on the choice
of regularizer. Depending on the magnitude of this drift, the process exhibits two sharply
contrasting long-term behaviors: if the drift decays sufficiently fast, the process behaves
like a zero-mean random walk and returns infinitely often with probability 1 (recurrence);
conversely, if the drift diminishes at a slower rate, the process behaves like a random walk
with constant drift and escapes to infinity with probability 1 (transience).

In view of the above, we conclude that strategic robustness cannot be relaxed without
compromising convergence guarantees, even when the equilibrium lies on the boundary of
the game’s action space. For a graphical illustration, cf. Fig. 2.

5. Concluding remarks

Our aim in this paper was to examine the robustness of Nash equilibria in continuous games,
under both strategic and dynamic uncertainty. From a strategic standpoint, the notion of
strategic robustness characterizes those (local) equilibria which remain invariant under small
perturbations of the underlying game, and we derived a tight geometric characterization
thereof in terms of the variational geometry of the game. From a dynamic standpoint,
we focused on the stability of regularized learning under uncertainty, and we established
a deep structural connection between the two notions. Strategic robustness guarantees
dynamic robustness under (FTRL), and this implication is essentially tight: without strategic
robustness, dynamic robustness cannot be ensured. To the best of our knowledge, this is the
first study of its kind for continuous games, and we believe that this two-way implication
elucidates the delicate interplay between static and dynamic considerations.

Appendix A. Auxiliary results

As a preamble to our analysis, we provide some basic properties of the regularizers and
the mirror maps, and present some auxiliary results from martingale theory and Markov
processes that we will use throughout the sequel.

A.1. Mirror maps and results from convex analysis. In this section, we provide a more detailed
discussion of key notions from convex analysis, including mirror maps and regularizers.

To begin, let (V, ∥·∥) be a finite-dimensional normed vector space. Its dual space is
denoted by (V∗, ∥·∥∗), where the dual norm is defined as

∥y∥∗ ≡ max{⟨y, x⟩ : ∥x∥ ≤ 1}, (A.1)

and ⟨y, x⟩ denotes the canonical pairing between y ∈ V∗ and x ∈ V . To maintain consistency
with the notation used throughout the paper, we will refer to V∗ as Y from this point onward.
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Given a closed convex set X ⊆ V and a point p ∈ X , we define the tangent cone TC(p)
and the polar cone PC(p) as follows:

TC(p) = cl{z ∈ V : p+ tz ∈ X for some t > 0} (A.2)

and

PC(p) = {y ∈ Y : ⟨y, z⟩ ≤ 0, for all z ∈ TC(p)} (A.3)

For a strongly convex regularizer h : X → R, the subdifferential of h at x ∈ X is defined
as

∂h(x) :={y ∈ Y : h(x′) ≥ h(x) + ⟨y, x′ − x⟩ for all x′ ∈ X} (A.4)
and we denote the domain of subdifferentiability of h as

Xh = {x ∈ X : ∂h(x) ̸= ∅} . (A.5)

In addition, the mirror map Q, defined via

Q(y) = argmax
x∈X

{⟨y, x⟩ − h(x)} (A.6)

is single-valued on Y, since the maximization problem admits a unique solution, as h is
strongly convex. Finally, by the optimality conditions of (A.6), we get that

x = Q(y) if and only if y ∈ ∂h(x) . (A.7)

since 0 ∈ y − ∂h(x). This readily implies that Xh = imQ. In general, we have

ri(X ) ⊆ Xh ⊆ X , (A.8)

where the first inclusion follows from standard results on the subdifferentiability of convex
functions [42, Chap. 26], whereas the second is immediate from the definition of Xh. This
leads to two contrasting regimes: (i) Xh = ri(X ), in which case h is called steep; and
(ii) Xh = X , in which case h is called non-steep.

Finally, we include here for future reference an elementary result concerning solid (convex)
cones.

Lemma A.1. Let K be a convex cone in Rd with nonempty topological interior, and let
z ∈ int(K). Then there exists a finitely generated cone K′ such that z ∈ intK′ ⊆ intK.

Remark. We stress here that, by intK we mean the topological interior of K (which is
nonempty by assumption), not the relative interior riK thereof (whis is always nonempty).

Proof. Since K is closed and z ∈ intK, there exists a closed ball B centered at z, which is
entirely contained in intK (an immediate consequence of the fact that z is well-separated
from the boundary bdK of K). Since B is not contained in any lower-dimensional subspace
of Rd, it is possible to find inductively d linearly independent vectors z1, . . . , zd ∈ B on
the boundary bdB of B such that z is contained in the convex hull ∆(z1, . . . , zd) (and, in
particular, in the relative interior thereof). Thus, letting K′ ≡ K(z1, . . . , zd) be the polyhedral
cone generated by z1, . . . , zd, we have K′ ⊆ K and z ∈ intK′ by construction, and our proof
is complete. ■

A.2. Statistical bounds and results from probability theory. In this section, we provide some
basic statistical bounds for (SPSA), and we present some results that we will use freely in
the sequel. We start with our bounds for (SPSA), specifically:

Proposition A.1. The estimator (SPSA) enjoys the following bounds:

∥E[v̂t | Ft]− v(xt)∥∗ = O(δt) and ∥v̂t∥∗ = O(1/δt) . (A.9)



ROBUST EQUILIBRIA IN CONTINUOUS GAMES 15

Proof. Letting ζt := δt(wt + (p− xt)/r), we write x̂t = xt + ζt, and we have for player i ∈ N :

ui(x̂t)wi,t = ui(xt)wi,t + ⟨∇ui(xt), ζt⟩wi,t +

∫ 1

0

⟨∇ui(xt + τζt)−∇ui(xt), ζt⟩dτwi,t (A.10)

Now, the middle term can be unfolded as

⟨∇ui(xt), ζt⟩wi,t = ⟨∇iui(xt), ζi,t⟩wi,t +
∑
j ̸=i

⟨∇jui(xt), ζj,t⟩wi,t (A.11)

and, noting that E[wi,t | Ft] = 0, we take conditional expectation, and we get:

E[⟨∇ui(xt), ζt⟩wi,t | Ft] = δt E[⟨∇iui(xt), wit⟩wi,t | Ft] = (δt/di)vi(xt) (A.12)

and
E[ui(xt)wi,t | Ft] = 0 (A.13)

Therefore, we have:

∥E[v̂i,t | Ft]− vi(xt)∥ =
∥∥∥∥E[∫ 1

0

⟨∇ui(xt + τζt)−∇ui(xt), ζt⟩dτwi,t

∣∣∣∣Ft

]∥∥∥∥ = O(δt) (A.14)

Now, for the second bound, since ui is continuous on a compact domain, it is bounded, and
we readily get that:

∥v̂i,t∥∗ = O(1/δt) (A.15)
as was to be shown. ■

Moving forward, we provide some useful results from probability theory. The first two
statements below are adapted from the classical textbook of Hall & Heyde [21], while the
third one is a simplified version of [30, Theorem 3.2] on the recurrence of a nonnegative
Markov process with diminishing drift. Namely, we have:

Theorem A.1. (Doob’s maximal inequality, [21, Corollary 2.1]) If St is a martingale, we
have:

P
(
sup
τ≤t
|Sτ | > t

)
≤ E[|St|]

t
for all t > 0. (A.16)

Theorem A.2. (Burkholder’s inequality, [21, Theorem 2.10]) Let St :=
∑t

τ=1 Dτ , where
(Dτ )τ∈N is a martingale difference sequence, and let q ∈ (1,∞). Then, there exists a constant
C that depends only on q such that:

E[|St|q] ≤ C E

∣∣∣∣∣
t∑

τ=1

D2
τ

∣∣∣∣∣
q/2
 (A.17)

Theorem A.3. (Lamperti [30, Theorem 3.2]) Let the non-negative stochastic process (xt)t∈N
be defined as

xt+1 = (xt + f(xt) + ξt)
+ (A.18)

for some x 7→ f(x) bounded measurable function, and ξt i.i.d. with E[ξt] = 0, V(ξt) = σ2 ̸= 0
and finite 2 + ε moment for some ε > 0. Then:

(i) if f(x) ≤ σ2/2x for all x large enough, the process is recurrent in the sense there
exists c <∞ such that

P
(
lim inf
t→∞

xt ≤ c
)
= 1 (A.19)

(ii) if f(x) ≥ θσ2/2x for some θ > 1 and all x large enough, the process is transient in
the sense that

P
(
lim
t→∞

xt =∞
)
= 1 (A.20)
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Appendix B. Analysis and results for strategic robustness

Our aim in this appendix is to provide a detailed proof for Theorem 1, which we restate
below for convenience.

Theorem 1. Let x∗ ∈ X be a joint action profile in G(N ,X , u). Then the following are
equivalent:

(i) x∗ is a strategically robust equilibrium.
(ii) ⟨v(x∗), z⟩ ≤ −m∥z∥ for some m > 0 and all z ∈ TC(x∗), where TC(x∗) is the

closure of all rays emanating from x∗ and intersecting X in at least one other point.
(iii) v(x∗) ∈ int(PC(x∗)), where PC(x∗) :={y ∈ Y : ⟨y, z⟩ ≤ 0, for all z ∈ TC(x∗)}.

Proof. We will go full-circle by showing (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

(i) =⇒ (ii). Suppose that x∗ ∈ X is a strategically robust equilibrium, and let ε > 0 be
such that x∗ is an equilibrium of any G̃ with dist

(
G, G̃

)
≤ ε.

For the sake of contradiction, suppose that there exists z ̸= 0, z ∈ TC(x∗) such that

⟨v(x∗), z⟩ = 0 . (B.1)

which readily implies that there exists player i ∈ N and zi ̸= 0, zi ∈ TCi(x
∗
i ), such that

⟨vi(x∗), zi⟩ = 0 . (B.2)

Fix some yi ∈ Yi such that ⟨yi, zi⟩ > 0, and let y ≡ (y1, . . . , yN ) ∈ Y with yj ≡ 0 for j ̸= i,
j ∈ N . Using (B.1) and the definition of y, we get that ⟨v(x∗) + ε∥y∥−1

∗ y, z⟩ > 0, and
therefore, there exists p ∈ X such that:

⟨v(x∗) + ε∥y∥−1
∗ y, p− x∗⟩ > 0 (B.3)

Now, define the game G̃ with payoff functions

ũi(x) :=ui(x) + ε∥y∥−1
∗ ⟨yi, xi − x∗

i ⟩ (B.4)

and ũj ≡ uj for all j ∈ N , j ̸= i. Then, the individual gradient vector of player i ∈ N is
given by

ṽi(x) = vi(x) + ε∥y∥−1
∗ yi (B.5)

and the distance between G and G̃ is equal to

dist
(
G, G̃

)
= sup

x∈X
∥v(x)− ṽ(x)∥∗ = ε∥y∥−1

∗ ∥y∥∗ = ε. (B.6)

Finally, we conclude that x∗ ∈ X is not an equilibrium of G̃, since for p ∈ X as above, we
have

⟨ṽ(x∗), p− x∗⟩ = ⟨v(x∗) + ε∥y∥−1
∗ y, p− x∗⟩ > 0 (B.7)

where the last inequality holds by (B.3). Thus, we arrive at a contradiction, i.e., ⟨v(x∗), z⟩ < 0
for all z ̸= 0, z ∈ TC(x∗). Finally, since {z ∈ V : z ∈ TC(x∗), ∥z∥ = 1} is compact, we
readily obtain

sup{⟨v(x∗), z⟩ : z ∈ TC(x∗), ∥z∥ = 1} ≤ −m (B.8)

for some m > 0. Therefore, for all z ∈ TC(x∗), we have:

⟨v(x∗), z⟩ ≤ −m∥z∥ (B.9)

as was to be shown.
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(ii) =⇒ (iii). First, note that the ∥·∥∗− ball of radius ε > 0 centered at v(x∗) can be
written as:

Bε(v(x
∗)) = v(x∗) + εB1(0) (B.10)

where Bε(y) :={y′ ∈ Y : ∥y′ − y∥∗ ≤ r} for y ∈ Y . Now, take any y ∈ B1(0) and z ∈ TC(x∗).
Then, for ε > 0 we have

⟨v(x∗) + εy, z⟩ = ⟨v(x∗), z⟩+ ε⟨y, z⟩
≤ −m∥z∥+ ε∥y∥∗∥z∥
≤ −(m− ε)∥z∥ (B.11)

Setting ε = m/2, we have for all z ∈ TC(x∗)

⟨v(x∗) + (m/2)y, z⟩ < −(m/2)∥z∥ (B.12)

which implies that v(x∗) + (m/2)y ∈ PC(x∗). Thus, we readily get that Bm/2(v(x
∗)) ⊆

PC(x∗), i.e., v(x∗) ∈ int(PC(x∗)).

(iii) =⇒ (i). Suppose that v(x∗) ∈ int(PC(x∗)). First, it directly implies that ⟨v(x∗), z⟩ ≤ 0,
for all z ∈ TC(x∗), i.e., x∗ is an equilibrium of G. In addition, there exists ε > 0 such
that Bε(v(x

∗)) ⊆ PC(x∗). Therefore, for any game G̃ with dist
(
G, G̃

)
< ε, we immediately

get that ṽ(x∗) ∈ PC(x∗), which implies that x∗ ∈ X is an equilibrium of G̃. Thus, x∗ is
strategically robust, and our proof is complete. ■

Appendix C. Analysis and results for dynamic robustness

In this appendix, we provide detailed proofs of the statements presented in Section 4,
along with several intermediate results that will serve as key building blocks.

C.1. Intermediate results. We begin this section with two results establishing sufficient
conditions for convergence, followed by a high-probability deviation bound for martingales.
We conclude with a variant of Farkas’ Lemma, which will be instrumental in deriving
convergence rates.

Proposition C.1. Let x∗ ∈ X and Z :={z1, . . . , zm} ⊆ V be a set of unit vectors, such that
any z ∈ TC(x∗) can be written as z =

∑m
j=1 λjzj for some λj ≥ 0. If limt→∞⟨yt, zj⟩ = −∞

for all zj ∈ Z, then limt→∞ Q(yt) = x∗.

Proof. Denote Q(yt) by xt, and suppose that lim supt→∞∥xt − x∗∥ > 0. Then, there
exists a subsequence (xtτ )τ∈N such that ∥xtτ − x∗∥ stays bounded away from zero, i.e.,
∥xtτ − x∗∥ ≥ c for some c > 0 and all τ ∈ N. Since ytτ ∈ ∂h(xtτ ), we readily get for
ztτ = (xtτ − x∗)/∥xtτ − x∗∥:

h(x∗) ≥ h(xtτ ) + ⟨ytτ , x∗ − xtτ ⟩
= h(xtτ )− ⟨ytτ , ztτ ⟩∥xtτ − x∗∥
≥ minh− ⟨ytτ , ztτ ⟩∥xtτ − x∗∥ . (C.1)

Now, we have ztk ∈ TC(x∗), and by assumption, ztτ =
∑m

j=1 λj,τzj for some coefficients
λj,τ ≥ 0. Therefore, the above inequality can be written as:

h(x∗) ≥ minh− ∥xtτ − x∗∥
m∑
j=1

λj,τ ⟨ytτ , zj⟩

≥ minh−
(
max
j′
⟨ytτ , zj′⟩

)
∥xtτ − x∗∥

m∑
j=1

λj,τ (C.2)
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Now, note that by the definition of ztτ , we have ∥ztτ ∥ = 1, and, thus:

1 = ∥ztτ ∥ =

∥∥∥∥∥∥
m∑
j=1

λj,τzj

∥∥∥∥∥∥ ≤
m∑
j=1

λj,τ∥zj∥ =
m∑
j=1

λj,τ (C.3)

where we used that ∥zj∥ = 1 for all j. Now, since limt→∞⟨yt, zj⟩ = −∞ for all zj ∈ Z, it
readily implies that

lim
t→∞

max
j′
⟨yt, zj′⟩ = −∞ (C.4)

Therefore, for all τ large enough, we have −maxj′⟨ytτ , zj′⟩ > 0, and, using that
∑m

j=1 λj,τ ≥ 1

and ∥xtτ − x∗∥ ≥ c for all τ ∈ N, we obtain:

h(x∗) ≥ minh+

(
−max

j′
⟨ytτ , zj′⟩

)
∥xtτ − x∗∥

m∑
j=1

λj,τ

≥ minh− cmax
j′
⟨ytτ , zj′⟩ (C.5)

Finally, letting τ →∞, we get that h(x∗) ≥ ∞, which is a contradiction. Thus, the result
follows. ■

Finally, using the above proposition, we establish the following corollary.

Corollary C.1. Let W(M) :={y ∈ Y : maxz∈Z⟨y, z⟩ < −M} for M > 0. Then, for any ε > 0,
there exists Mε > 0 such that for all y ∈ W(Mε) it holds ∥x∗ −Q(y)∥ < ε.

Proof. Suppose it does not hold. Then, there exists ε > 0 such that for any t ∈ N, one can
find yt ∈ Y such that maxz∈Z⟨yt, z⟩ < −t and ∥x∗ −Q(yt)∥ ≥ ε. Taking t→∞ leads to a
contradiction with Proposition C.1. ■

Lemma C.1. Let St := γ
∑t

τ=1 ξτ be a martingale with respect to a filtration (Ft)t∈N such
that E[|ξt|q] ≤ σq

t for all t ∈ N and some q ≥ 2. Then, for any µ ∈ (0, 1) and c > 0, it holds:

P
(
sup
s≤t
|Ss| > c(γt)µ

)
≤ Cq

γq(1−µ)
∑t

τ=1 σ
q
τ

t1+q(µ−1/2)
(C.6)

where Cq is a constant that depends only on c and q.

Proof. To bound the maximum absolute deviation of St, we apply Doob’s maximal inequality
(see Theorem A.1), and obtain:

P
(
sup
s≤t
|Ss| > c(γt)µ

)
≤ E[|St|q]

cq(γt)qµ
(C.7)

Now, we invoke Burkholder’s inequality (see Theorem A.2), from which we get:

E[|St|q] ≤ C ′
q E

( t∑
τ=1

γ2|ξτ |2
)q/2

 ≤ C ′
qγ

q E

( t∑
τ=1

|ξτ |2
)q/2

 (C.8)

where Cq is a constant that depends only on q. Since q ≥ 2, applying Jensen’s inequality, we
obtain: (

1

t

t∑
τ=1

|ξτ |2
)q/2

≤ 1

t

(
t∑

τ=1

|ξτ |q
)

(C.9)
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and, therefore,

E

( t∑
τ=1

|ξτ |2
)q/2

 ≤ tq/2−1 E

[
t∑

τ=1

|ξτ |q
]
≤ tq/2−1

t∑
τ=1

σq
τ (C.10)

Thus, combining the above with (C.7) and (C.8), we obtain:

P
(
sup
s≤t
|Ss| > c(γt)µ

)
≤

C ′
qγ

qtq/2−1
∑t

τ=1 σ
q
τ

cq(γt)qµ

≤ Cq
γq(1−µ)

∑t
τ=1 σ

q
τ

t1+q(µ−1/2)
(C.11)

for Cq ≡ C ′
q/c

q, and the proof is complete. ■

We finally provide a separation result in the spirit of Farkas’ lemma, that we will need for
establishing the convergence rates.

Lemma C.2. Let X = {x ∈ V : Ax = b, x ≥ 0} for A ∈ Rm×d, b ∈ Rd. Then, for all
x∗ ∈ X with act(x∗) :={β ∈ {1, . . . , d} : x∗

β = 0}, there exists P ≡ P (x∗) ≥ 1 such that for
all I ⊆ act(x∗) at least one of the following is true:

(i) I ̸= ∅ and there exists β ∈ act(x∗) \ I such that xβ ≤ P max{xα : α ∈ I} for all
x ∈ X .

(ii) There exists z ∈ ker(A) such that ∥z∥ ≤ P , zβ = 0 for β ∈ I and 1 ≤ zβ ≤ P for
β ∈ act(x∗) \ I. Then, there exists

Proof. For the proof, see Azizian et al. [6, Lemma 6]. ■

C.2. Main results of Section 4. With the necessary tools in place, we proceed to prove
the main results stated in Section 4. We start with the first result, establishing that a
non-equilibrium point cannot arise as a limit point of the sequence of play induced by
(FTRL).

Proposition 2. Suppose that (FTRL) is run with perfect gradient feedback of the form
v̂t = v(xt) for all t = 1, 2, . . . , and assume that xt converges to some x̂ ∈ X . Then x̂ is an
equilibrium of G.

Proof. Since x̂ is not an equilibrium, there exists p ∈ X with ⟨v(x̂), p− x̂⟩ > 0. Therefore,
by continuity of the function x 7→ ⟨v(x), p−x⟩, there exists a neighborhood U of x̂ and c > 0
such that ⟨v(x), p− x⟩ ≥ c for all x ∈ U .

Moreover, since cl(U) compact, we have supx∈cl(U)∥v(x)∥∗ = B < ∞. For the sake of
contradiction, suppose that xt → x̂. Then, xt ∈ U ∩ Bc/4B(x̂) eventually, i.e., there exists n0

such that xt ∈ U and ∥xt − x̂∥ < c/4B for all t ≥ n0.
Finally, since yt ∈ ∂h(xt), we have for t > t0:

h(p) ≥ h(xt) + ⟨yt, p− xt⟩

≥ h(xt) + ⟨yt0 , p− xt⟩+ γ

t−1∑
τ=t0

⟨v(xτ ), p− xt⟩

≥ h(xt) + ⟨yt0 , p− xt⟩+ γ

t−1∑
τ=t0

⟨v(xτ ), p− xτ + xτ − xt⟩

≥ h(xt) + ⟨yt0 , p− xt⟩+ γ

t−1∑
τ=t0

(⟨v(xτ ), p− xτ ⟩+ ⟨v(xτ ), xτ − xt⟩)
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≥ h(xt) + ⟨yt0 , p− xt⟩+ γ

t−1∑
τ=t0

(⟨v(xτ ), p− xτ ⟩ − ∥v(xτ )∥∗∥xτ − xt∥)

≥ h(xt) + ⟨yt0 , p− xt⟩+ γ

t−1∑
τ=t0

(c−B∥xτ − xt∥)

≥ h(xt)− ∥yt0∥∗∥p− xt∥+ γ

t−1∑
τ=t0

(c− c/2)

≥ minh− ∥yt0∥∗ diam(X ) + γc(t− t0)/2 (C.12)

Taking t → ∞, we obtain h(p) ≥ ∞, which is a contradiction. Therefore, the result
follows. ■

Moving forward, we show that equilibrium points in the relative interior cannot be limit
points of (FTRL), either. Formally, we have:

Proposition 3. Let x∗ ∈ ri(X ) be a Nash equilibrium of G(N ,X , u), and (xt)t∈N be the
sequence of play induced by (FTRL) with v̂t = v(xt) +Ut, where Ut i.i.d. with E[Ut] = 0 and
cov(Ut) ≻ 0 for all t ∈ N. Then:

P
(
lim
t→∞

xt = x∗
)
= 0 for any x1 ∈ Xh. (15)

Proof. Since x∗ an equilibrium point in ri(X ), we readily get that ⟨v(x∗), x − x∗⟩ = 0 for
all x ∈ X , and x∗ ∈ Xh. In view of this, there exists y∗ ∈ Y such that y∗ ∈ ∂h(x∗), i.e.,
x∗ = Q(y∗). Our goal is to show that the auxiliary process yt does not converge to ∂h(x∗).
However, there are infinitely many points in Y that belong to ∂h(x∗), so this attempt is
insufficient, in the sense that, showing that y∗ is not a limit point of the yt dynamics, does
not preclude that some other y ∈ ∂h(x∗) is not.

To tackle this issue, we will show that the space Y can be decomposed as Y = Ŷ ⊕ Ȳ
where all the “essential” deviations of the problem is in Ȳ. For this, we define the set

Ŷ = {y ∈ Y : ⟨y, p− x⟩ = 0, for all x, p ∈ X} . (C.13)

which is a subspace of Y, and as the following lemma suggests, is equal to the polar cone at
any point in the relative interior.

Lemma C.3. Let x0 ∈ ri(X ) and Ŷ = {y ∈ Y : ⟨y, p − x⟩ = 0, for all x, p ∈ X}. Then
Ŷ = PC(x0).

To preserve the clarity of the argument, we defer the proof of Lemma C.3 until the end of
this proposition. Letting Ȳ be the orthocomplement of Ŷ, we readily get that Y = Ŷ ⊕ Ȳ,
and any point y in Y can be uniquely written as y = ŷ + ȳ with ŷ ∈ Ŷ and ȳ ∈ Ȳ. Defining
the linear map Π : Y → Y as Πy = ȳ, and more importantly, under all points in ∂h(x∗)
under Π are essentially unique.

This is formalized in the following lemma, whose proof is relegated after this proposition.

Lemma C.4. Let x0 ∈ ri(X ) and y, y′ ∈ ∂h(x0). Then Πy ∈ ∂h(x0), and Πy = Πy′.

In view of the above, we are now ready to prove the result. Namely, fix some p ∈ X ,
p ̸= x∗ and let ξt :=⟨ΠUt, p− x∗⟩.

Then, setting σ2 ≡ (p−x∗)⊤Σ(p−x∗) > 0, we have ξt ∼ (0, σ2) i.i.d., and, so, there exists
ε, δ > 0 such that P(ξt > ε) = δ for all t ∈ N. Therefore, by the second Borel-Cantelli lemma
[9], we get P(A) = 1 for A ≡ {ξt > ε infinitely often}. For the sake of contradiction, suppose
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that P(B) > 0 for B ≡ {limt→∞ xt = x∗}. Fix some ω ∈ B. Then, for all t large enough, we
readily get that xt(ω) ∈ ri(X ), and, denoting zt :=Πyt and z∗ :=Πy∗, we readily get that

lim
t→∞

zt(ω) = z∗ (C.14)

Thus, setting αt ≡ ⟨zt − z∗, p− x∗⟩ we conclude by the above equality that limt→∞ αt = 0,
and therefore it holds

0 = lim
t→∞

(αt − αt−1)

= lim
t→∞
⟨Πv̂t, p− x∗⟩

= lim
t→∞
⟨Πv(xt), p− x∗⟩+ ⟨ΠUt, p− x∗⟩

= ⟨Πv(x∗), p− x∗⟩+ lim
t→∞

ξt

= lim
t→∞

ξt (C.15)

Therefore, ω /∈ A, which implies that B ⊆ Ac, with P(Ac) = 0. Thus, P(B) = 0, which is a
contradiction, and the result follows.

■

We now prove the two auxiliary lemmas presented in the proof of Proposition 3.

Lemma C.3. Let x0 ∈ ri(X ) and Ŷ = {y ∈ Y : ⟨y, p − x⟩ = 0, for all x, p ∈ X}. Then
Ŷ = PC(x0).

Proof. First, we will show that

PC(x0) = {y ∈ Y : ⟨y, p− x0⟩ = 0 for all p ∈ X} (C.16)

For this, suppose that there exist y ∈ PC(x0) and p′ ∈ X such ⟨y, p′ − x0⟩ < 0. Then, since
x0 ∈ ri(X ), there exists α > 0 such that x0 − α(p′ − x0) ∈ X . By the definition of the polar
cone, ⟨y, x0 − α(p′ − x0)− x0⟩ ≤ 0, or equivalently, ⟨y, p′ − x0⟩ ≥ 0, which is a contradiction.
Therefore, (C.16) holds, which implies that Ŷ ⊆ PC(x).

Now, for the inverse inclusion, let y ∈ PC(x0) and p, x ∈ X . Then, we have:

⟨y, p− x⟩ = ⟨y, p− x0 + x0 − x⟩
= ⟨y, p− x0⟩+ ⟨y, x0 − x⟩
= 0 (C.17)

where the last equality follows by (C.16). Thus, y ∈ Ŷ, and we conclude the result. ■

Lemma C.4. Let x0 ∈ ri(X ) and y, y′ ∈ ∂h(x0). Then Πy ∈ ∂h(x0), and Πy = Πy′.

Proof. For the first part, note that

⟨y, p− x0⟩ = ⟨ŷ + ȳ, p− x0⟩ = ⟨ŷ, p− x0⟩+ ⟨ȳ, p− x0⟩
= ⟨ȳ, p− x0⟩
= ⟨Πy, p− x0⟩ (C.18)

which directly implies that Πy ∈ ∂h(x0). For the second part, since x0 ∈ ri(X ), and
y, y′ ∈ ∂h(x0), we have that

⟨y − y′, p− x0⟩ = 0 for all p ∈ X (C.19)

Thus y − y′ ∈ PC(x0), and invoking Lemma C.3 we obtain that y − y′ ∈ Ŷ. Therefore,
applying the linear projection operator Π, we readily get that Π(y − y′) = 0, and, using
linearity, the result follows. ■
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We now turn to our main convergence theorems, showing that the iterates of (FTRL)
converge with high probability under both gradient-based and payoff-based feedback

Theorem 2. Let x∗ ∈ X be a strategically robust equilibrium of G(N ,X , u). Fix a confidence
level δ > 0, and let (xt)t∈N be the iterates of (FTRL) with feedback provided by (SFO), and
step-size γ > 0 sufficiently small. Then, there exists a neighborhood U of x∗ in Xh such that:

P
(
lim
t→∞

xt = x∗
)
≥ 1− δ if x1 ∈ U . (16)

Proof. Since x∗ strategically robust, v(x∗) lies in the interior of the PC(x∗). By Lemma A.1,
this implies in turn that there exists a polyhedral cone K generated by Z ≡ {z1, . . . , zr} for
r ∈ N, such that TC(x∗) ⊆ K and ⟨v(x∗), z⟩ < 0 for all z ∈ Z.4 Therefore, for all z ∈ Z, we
have ⟨v(x∗), z⟩ ≤ −m, and by continuity of the vector field v, there exists a neighborhood U
of x∗ and c > 0 such that ⟨v(x), z⟩ ≤ −c for all z ∈ Z and x ∈ U .

Fixing some z ∈ Z, we obtain:

⟨yt+1, z⟩ = ⟨yt, z⟩+ γ⟨v̂t, z⟩
= ⟨yt, z⟩+ γ⟨v(xt), z⟩+ γ⟨Ut, z⟩

= ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ γ

t∑
τ=1

⟨Uτ , z⟩ (C.20)

Now, we define the stochastic process (St)t∈N via St := γ
∑t

τ=1⟨Uτ , z⟩, which is a martingale,
since E[⟨Uτ , z⟩ | Fτ ] = 0.

Therefore, by Lemma C.1 for σt ≡ σ, q > 2 and µ ∈ (0, 1), whose value is determined
later, we get:

δt :=P
(
sup
s≤t
|Ss| > c(γt)µ

)
≤ Cq

γq(1−µ)σq

tq(µ−1/2)
(C.21)

where Cq is a constant that depends only on c and q. Thus, we readily have that:

P

⋂
t≥1

{
sup
s≤t
|Ss| ≤ c(γt)µ

} = 1− P

⋃
t≥1

{
sup
s≤t
|Ss| > c(γt)µ

}
≥ 1−

∞∑
t=1

P
(
sup
s≤t
|Ss| > c(γt)µ

)

≥ 1−
∞∑
t=1

δt (C.22)

where the second inequality comes from the union bound. Now, we need to ensure that∑∞
t=1 δt ≤ δ/r. For this, we need the sequence to be summable, which, using (C.21), is

guaranteed for q(µ− 1/2) > 1, or equivalently, µ ∈ (1/2 + 1/q, 1). Therefore, for γ > 0 small
enough, we obtain that

∑∞
t=1 δt ≤ δ/r.

Therefore, with probability at least 1− δ/r, the template inequality becomes:

⟨yt+1, z⟩ ≤ ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ c(γt)µ (C.23)

If we initialize y1 such that ⟨y1, z′⟩ < −M − c for all z′ ∈ Z, we get that ⟨yt, z⟩ < −M for
all t ∈ N with probability at least 1− δ/r. To see this, suppose that ⟨yτ , z⟩ < −M for all

4To resolve any ambiguities, the cone in question here is the polar of the cone provided by Lemma A.1.
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τ = 1, . . . , t. Then

⟨yt+1, z⟩ = ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ γ

t∑
τ=1

⟨Uτ , z⟩

≤ −M − c− cγt+ c(γt)µ (C.24)

For t ∈ N with γt < 1, we have −c+ c(γt)µ < 0, while for γt ≥ 1, it holds −cγt+ c(γt)µ < 0.
In both cases, we conclude that ⟨yt+1, z⟩ < −M , and by induction, we get the inequality.

Therefore, with probability at least 1− δ/r, we have:

⟨yt+1, z⟩ ≤ −M − c− cγt+ c(γt)µ (C.25)

and sending t→∞, we get ⟨yt, z⟩ → −∞.
Finally, repeating the same argument for all z ∈ Z and applying a union bound, we

readily get that ⟨yt, z⟩ → −∞ with probability at least 1− δ, and invoking Proposition C.1,
the result follows. ■

Having established the local convergence to x∗ with high probability, we proceed to the
convergence rate in the case of affinely constrained X and decomposable regularizer h.

Theorem 3. If, in addition, X is a polyhedral domain and h is decomposable with kernel θ,
on the event E :={limt→∞ xt = x∗} it holds:

∥xt − x∗∥ = ϕ(−Θ(t)) (17)

where ϕ is the rate function defined via

ϕ(z) :=

{
(θ′)−1(z) if z > θ′(0+)

0 if z ≤ θ′(0+)
(18)

Proof. By the definition of the iterates of (FTRL), we have:

Q(yt) = argmin
x∈X

{h(x)− ⟨yt, x⟩ : Ax = b, x ≥ 0} (C.26)

Introducing the Lagrangian

L(x, λ, µ) = h(x)− ⟨yt, x⟩+
m∑
i=1

λi(a
⊤
i x− bi)−

d∑
j=1

µjxj (C.27)

with λi ∈ R and µj ≥ 0, by the KKT conditions, we readily obtain:

yt = ∇h(xt) +

m∑
s=1

λiai − µ (C.28)

where ∇h(x) =
∑d

β=1 θ
′(xβ,t)eβ , since θ is continuously differentiable.

For the sequel, we define the set of active constraints at x∗ as act(x∗) :={β ∈ {1, . . . , d} :
x∗
β = 0}. Note that on the event of {limt→∞ xt = x∗}, the iterates xt lie in a neighborhood

of x∗, as shown in Theorem 2. Thus, all non-active indices α /∈ act(x∗) stay bounded away
from zero, and so |θ(xα,t)| remains bounded for all t.

We treat the two cases separately: (i) the steep case, where h is steep – equivalently
θ(0+) = −∞, and (ii) the non-steep case, where is h not steep, i.e., θ′(0+) > −∞.
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The steep case. We define the set of “good” indices I at step t as: β ∈ I if θ′(xβ,t) ≤ −Θ(t).
Our goal is to show that all indices act(x∗) of xt are “good”. Fix some t ∈ N.

Suppose that act(x∗) \ I ̸= ∅, and let P ≥ 1, as per Lemma C.2. Then,

• If condition (i) of Lemma C.2 holds, there exists β′ such that xβ′,t ≤ P max{xα,t : α ∈
I}, and thus, I ← I ∪ {β′}.

• If condition (ii) of Lemma C.2 holds, there exists z′ ∈ ker(A) such that ∥z′∥ ≤ P ,
z′β = 0 if β ∈ I and 1 ≤ z′β ≤ P if β ∈ act(x∗) \ I. By (C.28), and noting that
z′ ∈ ker(A) and µ = 0, since all constraints are non-active due to steepness of h, we
have:

⟨∇h(xt), z
′⟩ = ⟨yt, z′⟩ (C.29)

Moreover, it holds:

⟨∇h(xt), z
′⟩ =

d∑
β=1

θ′(xβ,t)z
′
β =

∑
β∈I

θ′(xβ,t)z
′
β +

∑
β∈act(x∗)\I

θ′(xβ,t)z
′
β +

∑
β/∈act(x∗)

θ′(xβ,t)z
′
β

=
∑

β∈act(x∗)\I

θ′(xβ,t)z
′
β + C (C.30)

for a constant C, since all non-active indices remain bounded away from zero, as
explained in the beginning. Now, note that z′ ∈ TC(x∗), and thus, by Lemma A.1, we
can write z′ as z′ =

∑r
i=1 ℓizi with ℓi ≥ 0, such that ⟨yt, zi⟩ ≤ −Θ(t) for all i = 1, . . . , r

as in the proof of Theorem 2. So, combining it with (C.35), (C.30), we obtain:∑
β∈act(x∗)\I

θ′(xβ,t)z
′
β ≤ −Θ(t) (C.31)

and therefore, there exists at least one β′ ∈ act(x∗) \ I such that

θ′(xβ′,t)z
′
β′ ≤ −Θ(t) (C.32)

Thus, I ← I ∪ {β′}.

Therefore, as act(x∗) is finite, we conclude inductively that θ′(xβ,t) ≤ −Θ(t) for all β ∈
act(x∗). Finally, we have that Rd = row(A) + span{eβ : β ∈ act(x∗)}, and thus, for all i, we
can write the standard basis vector ei as ei =

∑
β∈act(x∗) λi,βeβ + ai for some ai ∈ row(A)

xi,t − x∗
i = ⟨xt − x∗, ei⟩ =

〈
xt − x∗,

∑
β∈act(x∗)

λi,βeβ + ai

〉

=

〈
xt − x∗,

∑
β∈act(x∗)

λi,βeβ

〉

=
∑

β∈act(x∗)

λi,βxβ,t (C.33)

where we used that ⟨xt − x∗, ai⟩ = 0. Thus, since θ′(xβ,t) ≤ −Θ(t) for all β ∈ act(x∗), by
the equivalence of norms and the above, we conclude that

∥xt − x∗∥ = (θ′)−1(−Θ(t)) (C.34)
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The non-steep case. For the non-steep case, we follow a similar approach, but with some
modifications since the iterates of (FTRL) are not always in the interior of X .

Specifically, let the set of “good” indices I be defined as: β ∈ I if xβ,t = 0 or θ′(xβ,t) ≤
−Θ(t). Our goal is to show that all indices act(x∗) of xt are “good”. We construct I
sequentially, as before.

Suppose that act(x∗) \ I ̸= ∅, and let P ≥ 1, as per Lemma C.2. Then,

• If condition (i) of Lemma C.2 holds, there exists β′ such that xβ′,t ≤ P max{xα,t : α ∈
I}, and thus, I ← I ∪ {β′}.

• If condition (ii) of Lemma C.2 holds, there exists z′ ∈ ker(A) such that ∥z′∥ ≤ P ,
z′β = 0 if β ∈ I and 1 ≤ z′β ≤ P if β ∈ act(x∗) \ I. Therefore, we have

⟨∇h(xt), z
′⟩ = ⟨yt, z′⟩+ ⟨µ, z′⟩ = ⟨yt, z′⟩+

∑
β∈I

µβz
′
β +

∑
β∈act(x∗)\I

µβz
′
β +

∑
β/∈act(x∗)

µβz
′
β

= ⟨yt, z′⟩ (C.35)

where, in this case, we used that (i) z′β = 0 for β ∈ I, (ii) µβ = 0 by complementary
slackness for β /∈ act(x∗) since these constraints remain non-active for the whole process,
and (iii) µβ = 0, again by complementary slackness for β ∈ act(x∗)\I since if they were
active, we would have β ∈ I. This, with the same argument as before, we conclude that∑

β∈act(x∗)\I

θ′(xβ,t)z
′
β ≤ −Θ(t) (C.36)

and therefore, there exists at least one β′ ∈ act(x∗) \ I such that

θ′(xβ′,t)z
′
β′ ≤ −Θ(t) (C.37)

This holds until β′ vanishes, which can lead to µβ′ > 0. In either case, we have
I ← I ∪ {β′}.

Finally, since act(x∗) is finite, we conclude inductively that all for all β ∈ act(x∗), we have
either θ′(xβ,t) ≤ −Θ(t) or xβ,t = 0. As in the steep case, we conclude

∥xt − x∗∥ = ϕ(−Θ(t)) (C.38)

and our proof is complete. ■

We now shift to the payoff-based setting. The relevant result is restated below.

Theorem 4. Let x∗ ∈ X be a strategically robust equilibrium of G. Fix a confidence level
δ > 0, and let (xt)t∈N be the iterates of (FTRL) run with (SPSA) with δt ∝ 1/tp for some
p ∈ (0, 1/2) and step-size γ > 0 sufficiently small. Then, there exists a neighborhood U of x∗

such that:
P
(
lim
t→∞

xt = x∗
)
≥ 1− δ if x1 ∈ U . (19)

If, in addition, X is affinely constrained and h is decomposable with kernel θ, then, whenever
xt converges to x∗, we have:

∥xt − x∗∥ = ϕ(−Θ(t)) . (20)

Proof. First of all, we write v̂t in the following convenient form:

v̂t = v(xt) + Ut + bt (C.39)

with
Ut = v̂t − E[v̂t | Ft] and bt = E[v̂t | Ft]− v(xt) (C.40)

which, by Proposition A.1, satisfy the bounds ∥Ut∥∗ = O(1/δt) and ∥bt∥∗ = O(δt). Now, as
in the proof of Theorem 2, v(x∗) lies in the interior of the PC(x∗). By Lemma A.1 this in
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turn implies that there exists a polyhedral cone K generated by Z ≡ {z1, . . . , zr} for r ∈ N,
such that TC(x∗) ⊆ K and ⟨v(x∗), z⟩ < 0 for all z ∈ Z. 5 Therefore, for all z ∈ Z, we have
⟨v(x∗), z⟩ ≤ −m, and by continuity of the vector field v, there exists a neighborhood U of
x∗ and c > 0 such that ⟨v(x), z⟩ ≤ −c for all z ∈ Z and x ∈ U . Fix some z ∈ Z. Then,
unfolding the evolution of yt, we have:

⟨yt+1, z⟩ = ⟨yt, z⟩+ γ⟨v̂t, z⟩
= ⟨yt, z⟩+ γ⟨v(xt), z⟩+ γ⟨Ut, z⟩+ γ⟨bt, z⟩

= ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ γ

t∑
τ=1

⟨Uτ , z⟩+ γ

t∑
τ=1

⟨bτ , z⟩ (C.41)

Now, we define the stochastic process (St)t∈N via St := γ
∑t

τ=1⟨Uτ , z⟩, which is a martingale,
since E[⟨Uτ , z⟩ | Fτ ] = 0, and E[|⟨Uτ , z⟩|q | Fτ ] ≤ E[∥Uτ∥q∗ | Fτ ] = O((1/δt)q).

Therefore, by Lemma C.1 for σt = Θ(1/δt), q > 2 and µ ∈ (0, 1), whose value is determined
later, we get:

δt :=P
(
sup
s≤t
|Ss| > (c/2)(γt)µ

)
≤ Cq

γq(1−µ)
∑t

τ=1 σ
q
τ

t1+q(µ−1/2)
(C.42)

where Cq is a constant that depends only on c and q. Thus, for δt = δ/tp, there exist B > 0
such that:

t∑
τ=1

σq
τ ≤ Bδ−q

t∑
τ=1

τpq ≤ B′δ−qt1+pq (C.43)

where we used that
∑t

τ=1 τ
pq = Θ(t1+pq). So, using the above bound, (C.44) becomes:

δt ≤ C ′
q

γq(1−µ)δ−qt1+pq

t1+q(µ−1/2)
≤ C ′

q

γq(1−µ)δ−q

tq(µ−1/2−p)
(C.44)

Thus, we readily have that:

P

⋂
t≥1

{
sup
s≤t
|Ss| ≤ c(γt)µ

} = 1− P

⋃
t≥1

{
sup
s≤t
|Ss| > c(γt)µ

}
≥ 1−

∞∑
t=1

P
(
sup
s≤t
|Ss| > c(γt)µ

)

≥ 1−
∞∑
t=1

δt (C.45)

Now, we need to show that there exists µ ∈ (0, 1) and q > 2 such that
∑∞

t=1 δt ≤ δ/r.
In order for the sum to be finite, we need q(µ − 1/2 − p) > 1 which readily implies that
p < µ− 1/2− 1/q.

For the bias term, since ∥bτ∥∗ = Θ(δτ ), we have:
t∑

τ=1

⟨bτ , z⟩ ≤
t∑

τ=1

∥bτ∥∗∥z∥ ≤
t∑

τ=1

∥bτ∥∗ ≤ D

t∑
τ=1

δτ ≤ D

t∑
τ=1

δ/τp ≤ D′δt1−p (C.46)

for some D′ > 0, where in the last inequality we used that
∑t

τ=1 1/τ
p = Θ(t1−p).

5As before, to resolve any ambiguities, the cone in question here is the polar of the cone provided by
Lemma A.1.
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Therefore, for 1− µ < p, and γ < 1, we readily get that

γ

t∑
τ=1

⟨bτ , z⟩ ≤ D′γδtµ ≤ D′δ(γt)µ (C.47)

Therefore, we need to satisfy

1− µ < p < µ− 1/2− 1/q (C.48)

from which we obtain µ ∈ (3/4, 1). Thus, for p ∈ (0, 1/2), there exist µ ∈ (3/4, 1) and q > 2
that satisfy (C.47). So, for δ, γ sufficiently small we can guarantee that

γ

t∑
τ=1

⟨bτ , z⟩ ≤ (c/2)(γt)µ and
∞∑
t=1

δt ≤ δ/r (C.49)

Therefore, with probability at least 1− δ/r, the template inequality becomes:

⟨yt+1, z⟩ ≤ ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ (c/2)(γt)µ + (c/2)(γt)µ

≤ ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ c(γt)µ (C.50)

Initializing y1 such that ⟨y1, z′⟩ < −M − c for all z′ ∈ Z, we have ⟨yt, z⟩ < −M for all t ∈ N
with probability at least 1− δ/r. To see this, we proceed by induction, and suppose that
⟨yτ , z⟩ < −M for all τ = 1, . . . , t. Then

⟨yt+1, z⟩ = ⟨y1, z⟩+ γ

t∑
τ=1

⟨v(xτ ), z⟩+ γ

t∑
τ=1

⟨Uτ , z⟩+ γ

t∑
τ=1

⟨bτ , z⟩

≤ −M − c− cγt+ c(γt)µ (C.51)

For t ∈ N with γt < 1, we have −c+ c(γt)µ < 0, while for γt ≥ 1, it holds −cγt+ c(γt)µ < 0.
In both cases, we conclude that ⟨yt+1, z⟩ < −M , and by induction, we get the inequality.

Therefore, with probability at least 1− δ/r, we have:

⟨yt+1, z⟩ ≤ −M − c− cγt+ c(γt)µ (C.52)

and sending t→∞, we get ⟨yt, z⟩ → −∞.
As a final step, using the same argument for all z ∈ Z and applying a union bound, we

have that ⟨yt, z⟩ → −∞ with probability at least 1− δ, and by Proposition C.1, we get that

P
(
lim
t→∞

xt = x∗
)
≥ 1− δ . (C.53)

If, in addition, X is affinely constrained and h is decomposable with kernel θ, then the
argument in the proof of Theorem 3 applies verbatim, yielding:

∥xt − x∗∥ = ϕ(−Θ(t)) . (C.54)

whenever xt converges to x∗. ■

We conclude this appendix with Proposition 4, which illustrates that an extreme, non-
strategically robust equilibrium may exhibit fundamentally different behavior depending on
the choice of regularizer.

Proposition 4. Consider the 1-player game G with X = [0, 1], u(x) = − 3
4x

4/3 and x∗ = 0.
Let (xt)t∈N be the iterates of (FTRL) with γ < 1, and v̂t = v(xt) + Ut, where Ut are i.i.d.
standard normal random variables for all t ∈ N. Then, for any initial condition y1 ∈ R, we
have:
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(i) For h(x) = x log x, it holds P(limt→∞ xt = x∗) = 0.
(ii) For h(x) = −2

√
x, it holds P(limt→∞ xt = x∗) = 1.

Proof. We show each case separately.

(i) Writing down the (FTRL) dynamics, we have

yt+1 = yt + γ(−x1/3
t + Ut)

xt = sup
x∈[0,1]

(yt x− x log x) (C.55)

Solving the maximization problem in the definition of xt, we obtain:

xt =

{
exp(yt − 1), if yt ≤ 1

1, if yt > 1

or, equivalently, xt = 1(yt > 1) + 1(yt ≤ 1) exp(yt − 1) and the dual process can be written
as:

yt+1 = yt − γ 1(yt > 1)− γ 1(yt ≤ 1) exp
(
(yt − 1)/3

)
+ γUt (C.56)

It is clear that xt → 0 if and only if yt → −∞ as t goes to infinity. For notational convenience,
set zn ≡ −yt. Then, the evolution of the dual process becomes:

zt+1 = zt + γ 1(zt < −1) + γ 1(zt ≥ −1) exp
(
(−zt − 1)/3

)
− γUt (C.57)

Now, define the process

z′t+1 ≡
(
z′t + γ 1(z′t < −1) + γ 1(z′t ≥ −1) exp

(
(−z′t − 1)/3

)
− γUt

)+
, z′1 = z1 (C.58)

where Ut is the same random variable as in (C.57).
The rest of our proof relies on a series of claims, which we state and prove one-by-one.

Claim 1. The process (z′t)t∈N dominates (zt)t∈N, i.e., z′t ≥ zt for all t ∈ N.

The proof of Claim 1 lies at the end. Now, invoking Theorem A.3 with

f(z) ≡ γ 1(z < −1) + γ 1(z ≥ −1) exp
(
(−z − 1)/3

)
(C.59)

bounded and σ2 = γ2, it holds that

f(z) ≤ σ2

2z
for all z large enough (C.60)

Thus, (z′t)t∈N is recurrent, which implies that

P
(

lim
t→∞

z′t =∞
)
= 0 (C.61)

Finally, since (z′t)t∈N dominates (zt)t∈N by Claim 1, we obtain{
lim
t→∞

zt =∞
}
⊆
{
lim
t→∞

z′t =∞
}

(C.62)

which implies that

P
(
lim
t→∞

xt = x∗
)
= P

(
lim
t→∞

zt =∞
)
≤ P

(
lim
t→∞

z′t =∞
)
= 0 (C.63)

and the result follows.
Proof of Claim 1. Consider the function

g(z) := z + γ 1(z < −1) + γ 1(z ≥ −1) exp
(
(−z − 1)/3

)
(C.64)

Then:

• For z < −1: g′(z) = 1

• For z > −1: g′(z) = 1− γ/3 exp
(
(−z − 1)/3

)
> 1− γ/3 > 0
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Thus, g is strictly increasing for all z ∈ R. Now, for the sake of contradiction, suppose
that there exists ω ∈ Ω and a first time k + 1 ∈ N where the dominance does not hold, i.e.,

zk(ω) ≤ z′k(ω) and z′k+1(ω) < zk+1(ω) (C.65)

By the monotonicity property of g, we get that

g(zk(ω)) ≤ g(z′k(ω)) (C.66)

and, therefore, adding −γUτ (ω) in both sides

zτ+1(ω) ≤ z′τ + γ 1(z′t < −1) + γ 1(z′t ≥ −1) exp
(
(−z′t − 1)/3

)
− γUτ

≤
(
z′τ + γ 1(z′t < −1) + γ 1(z′t ≥ −1) exp

(
(−z′t − 1)/3

)
− γUτ

)+
≤ z′τ+1(ω) (C.67)

which is a contradiction. Thus, the proof of Claim 1 is complete.

(ii) In this setup, the (FTRL) dynamics are described by the system

yt+1 = yt + γ(−x1/3
t + Ut)

xt = supx∈[0,1]

(
yt x+ 2

√
x
) (C.68)

Solving the maximization problem in the definition of xt, we obtain:

xt =

{
(−yt)−2, if yt ≤ −1
1, if yt > −1

(C.69)

or, equivalently, xt = 1(yt > −1) + 1(yt ≤ −1)(−yt)−2 and the dual process can be written
as:

yt+1 = yt − γ 1(yt > −1)− γ 1(yt ≤ −1)(−yt)−2/3 + γUt (C.70)
For notational convenience, set zn ≡ −yt. Then, the evolution of the dual process becomes:

zt+1 = zt + γ 1(zt < 1) + γ 1(zt ≥ 1)z
−2/3
t − γUt (C.71)

It is clear that xt → 0 if and only if zt →∞ as t goes to infinity. Now, define the process

z′t+1 =
(
z′t + γ 1(z′t < 1) + γ 1(z′t ≥ 1)z′t

−2/3 − γUt

)+
, z′1 = z1 (C.72)

where Ut is the same randomness as in (C.71).

Claim 2. The process (z′t)t∈N dominates (zt)t∈N, i.e., z′t ≥ zt for all t ∈ N.

The proof of Claim 2 lies at the end. Now, invoking Theorem A.3 with

f(z) ≡ γ 1(z < 1) + γ 1(z ≥ 1)z−2/3 (C.73)

bounded, σ2 = γ2, and θ > 1, we have

f(z) ≥ σ2θ

2z
for all z large enough (C.74)

Thus, (z′t)t∈N is transient, which implies that P(A) = 1 for A = {ω ∈ Ω : limt→∞ z′t(ω) =∞}.
Now, fix some ω ∈ A. Since limt→∞ z′t(ω) =∞, there exists nω ∈ N such that z′t > 1 for

all n ≥ nω, and therefore

z′t+1 = z′t + γz′t
−2/3 − γUt

= z′nω
+ γ

t∑
τ=nω+1

(
z′τ

−2/3 − Uτ

)
(C.75)
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from which we conclude that
t∑

τ=nω+1

(
z′τ

−2/3 − Uτ

)
→∞ as t→∞ (C.76)

Finally, we have that

zt+1 = znω + γ

t∑
τ=nω+1

(
1(zτ < 1) + 1(zτ ≥ 1)z−2/3

τ − Uτ

)
(C.77)

and, since (z′t)t∈N dominates (zt)t∈N, and z′t > 1 for all t ≥ tω, we readily get that

t∑
τ=nω+1

(
1(zτ < 1) + 1(zτ ≥ 1)z−2/3

τ − Uτ

)
≥

t∑
τ=nω+1

(
z′τ

−2/3 − Uτ

)
(C.78)

Thus, by (C.76), we conclude that

t∑
τ=nω+1

(
1(zτ < 1) + 1(zτ ≥ 1)z−2/3

τ − Uτ

)
→∞ as t→∞ (C.79)

which implies that limt→∞ zt(ω) =∞. Therefore, we obtain that limt→∞ zt(ω) =∞ for all
ω ∈ A, and since P(A) = 1, it follows that

P
(
lim
t→∞

xt = x∗
)
= P

(
lim
t→∞

zt =∞
)
= 1 (C.80)

and the proof is complete.
Proof of Claim 2. Consider the function

g(z) := z + γ 1(z < 1) + γ 1(z ≥ 1)z−2/3 (C.81)

Then:

• For z < 1: g′(z) = 1 + γ > 0

• For z > 1: g′(z) = 1− 2γz−5/3/3 > 1− 2γ/3 > 0

Thus, g is strictly increasing for all z ∈ R. Now, for the sake of contradiction, suppose that
there exists ω ∈ Ω and a first time k + 1 ∈ N where the dominance does not hold, i.e.,

zk(ω) ≤ z′k(ω) and z′k+1(ω) < zk+1(ω) (C.82)

By the monotonicity property of g, we get that

g(zk(ω)) ≤ g(z′k(ω)) (C.83)

and therefore, adding −γUτ (ω) in both sides

zτ+1(ω) ≤ z′τ + γ 1(z′τ < 1) + γ 1(z′τ ≥ 1)z′τ
−2/3 − γUτ

≤
(
z′τ + γ 1(z′τ < 1) + γ 1(z′τ ≥ 1)z′τ

−2/3 − γUτ

)+
≤ z′τ+1(ω) (C.84)

which is a contradiction. Thus, the proof of Claim 2 is complete. ■
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