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Abstract. We consider three distinct discrete-time models of learning and evolution in
games: a biological model based on intra-species selective pressure, the dynamics induced
by pairwise proportional imitation, and the exponential /multiplicative weights algorithm
for online learning. Even though these models share the same continuous-time limit – the
replicator dynamics – we show that second-order effects play a crucial role and may lead to
drastically different behaviors in each model, even in very simple, symmetric 2× 2 games.
Specifically, we study the resulting discrete-time dynamics in a class of parametrized
congestion games, and we show that (i) in the biological model of intra-species competition,
the dynamics remain convergent for any parameter value; (ii) the dynamics of pairwise
proportional imitation for different equilibrium configurations exhibit an entire range
of behaviors for large step size (stability, instability, and even Li-Yorke chaos); while
(iii) for the exponential /multiplicative weights (EW) algorithm increasing step size will
(almost) inevitably lead to chaos (again, in the formal, Li-Yorke sense). This divergence
of behaviors comes in stark contrast to the globally convergent behavior of the replicator
dynamics, and serves to delineate the extent to which the replicator dynamics provide a
useful predictor for the long-run behavior of their discrete-time origins.

1. Introduction

Ever since it was introduced by Nash [34], the notion of a Nash equilibrium and its
refinements have remained among the most prominent solution concepts of noncooperative
game theory. As such, one of the most fundamental questions in the field has been to
specify whether – and under what conditions – players eventually end up emulating an
equilibrium (or equilibrium-like) behavior through repeated interactions; put differently,
whether a dynamic process driven by the agents’ individual interests converges to a rational
outcome, in which (classes of) games, etc.

Historically, this question fueled the intense interest in game dynamics brought about
by the inception of evolutionary game theory in the mid-1970’s, then the surge of activity
that followed in the field of economic theory in the 1990’s, and, more recently, through
various connections to machine learning and artificial intelligence, in theoretical computer
science. Accordingly, depending on the context, game dynamics are usually derived in
one of the following ways: (i) from a biological model of population evolution, typically
phrased in terms of the reproductive fitness of the species involved; (ii) from a set of
economic microfoundations that express the growth rate of a type (or strategy) within a
population via a revision protocol (an economic model prescribing an agent’s propensity to
switch to a better-performing strategy); or (iii) from some learning algorithm designed to
optimize a myopic performance criterion (such as the minimization of an agent’s regret),
in an otherwise agnostic setting where the players do not know the game being played.
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This has in turn generated an immense body of literature, see e.g., Hofbauer and Sigmund
[24] for the biological viewpoint, Fudenberg and Levine [16], Weibull [55] and Sandholm
[43] for a more economic-oriented approach, and Cesa-Bianchi and Lugosi [11] for the
algorithmic / information-theoretic aspects of the theory.

Now, depending on the precise context, the question of whether the players’ behavior
converges to equilibrium or not may admit a wide range of answers, from positive to negative.
Starting with the positive, a folk result states that if the players of a finite game follow a
no-regret learning process, the players’ empirical frequency of play converges in the long
run to the set of coarse correlated equilibria (CCE) – also known as the game’s Hannan set
[20]. This result has been pivotal for the development of the field because no-regret play
can be achieved through fairly simple myopic processes like the exponential /multiplicative
weights (EW) update scheme [2, 3, 28, 54] and its many variants [38, 46, 49]. On the downside
however (a) this convergence result does not concern the actual strategies employed by the
players on a day-by-day basis; and (b) in many games, CCE may violate even the weakest
axioms of rationalizability. For example, as was shown by Viossat and Zapechelnyuk [53], it
is possible for players to have negative regret for all time, but nonetheless play only strictly
dominated strategies for the entire horizon of play.

This takes us to the negative end of the spectrum. If we focus on the evolution of the
players’ mixed strategies, a series of well-known impossibility results by Hart and Mas-
Colell [21, 22] have shown that there are no uncoupled learning dynamics – deterministic or
stochastic, in either continuous or discrete time – that converge to Nash equilibrium (NE) in
all games from any initial condition.1 In turn, this leads further weight to examining the
question of equilibrium convergence within a specific class of games, and for a specific (class
of) game dynamics.

In this regard, one of the most – if not the most – widely studied game dynamics are
the replicator dynamics (RD) of Taylor and Jonker [51], arguably the spiritus movens of
evolutionary game theory. Originally derived as a model for the evolution of biological
populations under selective pressure in the spirit of Moran [33], the replicator dynamics were
subsequently rederived in economic theory via a mechanism known as pairwise proportional
imitation (PPI), originally due to Helbing [23],2 and, at around the same time, as the mean
dynamics of a stimulus-response model known as the exponential /multiplicative weights
(EW) algorithm, cf. Auer et al. [2], Littlestone and Warmuth [28], Vovk [54] and Rustichini
[40, 41].

This convergence of viewpoints is quite remarkable: even though the starting point of
these considerations is a set of conceptually very different and mathematically disparate
discrete-time models, they all share the replicator dynamics as a continuous-time limit. In
this way, by studying the replicator dynamics, one can hope to obtain plausible predictions
for the long-run behavior of the above models, at least when the time step δ of the underlying
discrete-time model is sufficiently small to justify the descent to continuous time. However,
since real-life modeling considerations often involve larger values of δ (e.g., as in the case of
species with longer evolutionary cycles or agents with faster revision rates), we are led to the
following natural question:

Do the discrete-time models underlying the replicator dynamics lead to
qualitatively different outcomes? And, if so, to what extent?

1The adjective “uncoupled” means here that a player’s update rule does not explicitly depend on the
other players’ strategies (except implicitly, through the player’s payoff function).

2See also Binmore and Samuelson [8] for a derivation via a related mechanism known as “imitation driven
by dissatisfaction”, complementing the “imitation of success”; for a comprehensive account, cf. Sandholm [43].
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Our contributions. One could plausibly expect that the answer to this question is most
likely positive in large, complicated games, with a wide range of different behaviors emerging
in the long run; on the other hand, in smaller, simpler games, the range of behaviors that
arise would probably be qualitatively similar, and only differ at a quantitative level (such as
the rate of convergence to an equilibrium or the like).

Somewhat surprisingly, we show that this expectation is too optimistic, even in the class
of potential games (which arguably possess the strongest convergence guarantees under the
replicator dynamics), and even for cases where agents are symmetric and only have two
actions at their disposal (the smallest meaningful game). In particular, we consider the case
of symmetric random matching in a 2× 2 congestion game, and we show that the different
discrete-time origins of the replicator dynamics exhibit the following qualitatively different
behaviors:

(1) In the biological model of intra-species competition, the dynamics converge to Nash
equilibrium for any value of the time step δ > 0.

(2) In the economic model of pairwise proportional imitation, there exist certain equilib-
rium configurations that are globally attracting for any value of δ, others for which
the game’s equilibrium is repelling for a range of values of δ, and yet others that lead,
through the loss of equilibrium stability and period doubling, to the emergence of
Li-Yorke chaos (for a different range of values of δ).

(3) Finally, in the case of the EW algorithm, all equilibrium configurations become
unstable and, unless gains from abandoning the most congested choice are equal,
Li-Yorke chaos emerges whenever the time-step exceeds a certain threshold depending
on the exact position of the game’s equilibrium.

In the above, the notion of Li-Yorke chaos – as introduced in the seminal paper of Li and
Yorke [26] – means that there exists an uncountable set of initial conditions that is scrambled,
i.e., every pair of points in this set eventually comes arbitrarily close and then drifts apart
again infinitely often. In the type of systems that we consider here, Li-Yorke chaos implies
other features of chaotic behavior like positive topological entropy or the existence of a set
on which one can detect sensitive dependence on initial conditions à la Devaney [39]. In this
sense, the system is truly unpredictable, which comes in stark contrast to the universally
convergent landscape that arises in the continuous-time limit of the process (and which is
only shared by the biological model above).

In this regard, the discrete-time origins of the replicator dynamics exemplify the mantra
“discretization matters” to the extreme: The result of descending from discrete to continuous
time and back is radically different, even in cases where the underlying continuous-time
dynamics exhibt a universally convergent landscape that would make all asymptotic pseudo-
trajectories of the process (stochastic or deterministic) converge [5]. We find this outcome
particularly intriguing, as it provides a concrete, quantitative cautionary tale for the extent to
which the replicator dynamics can serve as a meaningful predictor for the long-run behavior
of their discrete-time origins.

Related work. There is a significant corpus of recent works suggesting that complex, non-
equilibrium behaviors of boundedly rational agents (employing learning rules) seems to
be common rather than exceptional. In this aspect, the seminal work of Sato et al. [45]
showed analytically that even in a simple two-player zero-sum game of Rock-Paper-Scissors,
the (symmetric) replicator dynamics exhibit Hamiltonian chaos. Sato and Crutchfield [44]
subsequently extended this result to more general multiagent systems, opening the door to
detecting chaos in many other games (always in the continuous-time regime).



4 F. FALNIOWSKI AND P. MERTIKOPOULOS

More recently, Becker et al. [4] and Geller et al. [18] exhibited chaotic behavior for Nash
maps in games like matching pennies, while Sparrow et al. [50] and van Strien and Sparrow
[52] showed that fictitious play also possesses rich periodic and chaotic behavior in a class of
3x3 games, including Shapley’s game and zero-sum dynamics. In a similar vein, Piliouras and
Shamma [37] showed that the replicator dynamics are Poincaré recurrent in zero-sum games,
a result which was subsequently generalized to the so-called “follow-the-regularized-leader”
(FTRL) dynamics [31], even in more general classes of games [29]; see also [10, 25, 30, 32]
for a range of results exhibiting convergence to limit cycles and other non-trivial attractors.

It is also known that when FTRL is applied with constant step-size in zero-sum games it
becomes unstable and in fact Lyapunov chaotic [12], while there is growing evidence that a
class of algorithms from behavioral game theory known as experience-weighted attraction
(EWA) also exhibits chaotic behavior for two-agent games with many strategies in a large
parameter space [17], or in games with many agents [42]. In particular, Pangallo et al.
[36] showed experimentally that EWA leads to limit cycles and high-dimensional chaos in
two-agent games with negatively correlated payoffs. All in all, careful examination suggests a
complex behavioral landscape in many games (small or large) for which no single theoretical
framework currently applies.

However, none of the above results implies chaos in the formal sense of Li-Yorke. The first
formal proof of Li-Yorke chaos was shown for the EW algorithm in a single instance of two-
agent two-strategy congestion game by Palaiopanos et al. [35]. This result was generalized
and strengthened (in the sense of positive topological entropy) for all two-agent two-strategy
congestion games [14]. In arguably the main precursor of our work [13] topological chaos
in nonatomic congestion game where agents use EW was established. This result was then
extended to FTRL with steep regularizers [6] and EWA algorithms [7], but the resulting
framework does not apply to the range of models from biology and economic theory considered
here (species competition and revision protocols respectively).

Notation. In what follows, we will write v ·w =
∑m
i=1 viwi for the (Euclidean) inner product

between two real m-dimensional vectors v, w ∈ Rm, and v �w = (v1w1, . . . , vmwm) for their
Hadamard product. Finally, to simplify notation, given a function f : R→ R, we will thread
it over all elements of v ∈ Rm by writing f(v) := (f(v1), . . . , f(vm)).

2. Preliminaries

Throughout our paper, we will focus on games with a continuum of nonatomic players
modeled by the unit interval I = [0, 1], with each player choosing (in a measurable way)
an action – or pure strategy – from a finite set indexed by i ∈ A ≡ {1, . . . ,m}. Letting
xi ∈ [0, 1] denote the mass of agents playing i ∈ A, the overall distribution of actions at any
point in time will be specified by the state of the population x = (x1, . . . , xm), viewed here
as a point in the unit simplex X := ∆(A) =

{
x ∈ Rm+ :

∑
i∈A xi = 1

}
of Rm. The players’

payoffs in this setting are described by an ensemble of payoff functions ui : X → R+ (assumed
Lipschitz), with ui(x) denoting the payoff to agents playing i ∈ A when the population is at
state x. Putting everything together, we will write u(x) =

∑
i∈A xiui(x) for the population’s

mean payoff at state x ∈ X , v(x) = (u1(x), . . . , um(x)) for the associated payoff vector at
state x, and we will refer to the tuple G ≡ G(A, v) as a population game.3 Finally, a state
x ∈ X is a Nash equilibrium of the game G if every strategy in use earns a maximal payoff
(equivalently, each agent in population chooses an optimal strategy with respect to the
choices of others).

3We focus here on games played by a single population of nonatomic agents. The extension of our analysis
to multi-population settings requires more elaborate notation, but is otherwise straightforward.
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In the general context of population games, the most widely studied evolutionary game
dynamics are the replicator dynamics (RD) of Taylor and Jonker [51]. These are succinctly
described by the continuous-time system

ẋi = xi[ui(x)− u(x)] (RD)

which specifies that the per capita growth rate of the population share of a given strategy
i ∈ A is proportional to the difference between the payoff ui(x) of said strategy and the
mean population payoff u(x) = x · v(x) =

∑m
i=1 xiui(x). For an introduction to the vast

literature surrounding the replicator dynamics, see [24, 43, 55] and references therein.
A specific class of population games – and, indeed, the class that will be of most interest

to us – is obtained when two individuals are selected randomly from the population and are
matched to play a symmetric two-player game with payoff matrix M = (Mij)i,j∈A. In this
case, the payoff to agents playing i ∈ A at state x is ui(x) =

∑
j∈AMijxj , so the game’s

payoff field can be written in concise form as v(x) = Mx. Following standard conventions in
the field, we will refer to this scenario as symmetric random matching [19, 24, 43, 55].

3. Dynamics

In this section, we discuss and derive three established models for the evolution of large
populations in discrete time. All three models share the same continuous-time limit, namely
the replicator equation (RD); however, as we show in Section 4, the behavior of each model
is drastically different in discrete time, even in the simplest of games.

Most of the material presented in this section is not new, but we chose to include all
relevant details for self-completeness and uniformity of notation.

Model I: Intra-species competition. We begin with the biological microfoundations of an
evolutionary model for intra-species competition in the spirit of Moran [33].4 Here, each pure
strategy i ∈ A = {1, . . . ,m} represents a genotype in a population that reproduces asexually
and ui(x) represents the reproductive fitness of the i-th genotype when the population is
at state x ∈ X – i.e., the net number of offspring per capita in the unit of time. Then, if
zi(t) denotes the absolute size of the i-th genotype at time t and δ is the interval between
generations, the evolution of the population will be governed by the discrete-time dynamics

zi(t+ δ) = zi(t) + zi(t)ui(x(t))δ with xi(t) =
zi(t)∑
j∈A zj(t)

. (1)

Accordingly, expressing everything in terms of population states – that is, as a function of
the relative frequency xi(t) of each genotype – we obtain the autonomous dynamics

xi(t+ δ) =
zi(t+ δ)∑
j∈A zj(t+ δ)

=
zi(t) · [1 + ui(x(t))δ]∑
j∈A zj(t) · [1 + uj(x(t))δ]

=
xi(t) · [1 + ui(x(t))δ]

1 + u(x(t))δ
(I)

where, in the last step, we have used the fact that
∑
j∈A xj(t) = 1.

Formally, Model I is mathematically equivalent to the so-called “linear multiplicative
weights” algorithm in computer science and learning theory, cf. Arora et al. [1], Littlestone

4The case of inter-species competition is similar, but the notation is heavier so we do not treat it here.
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and Warmuth [28], Vovk [54] and references therein. In addition, for small δ, a simple
first-order Taylor expansion yields

xi(t+ δ)− xi(t) = xi(t) · [1 + ui(x(t))δ] ·
[
1− δu(x(t)) +O(δ)2

]
− xi(t)

= δxi(t)[ui(x(t))− u(x(t))] +O(δ2) (2)

so, in the continuous-time limit δ → 0, we get

ẋi(t) ∼
xi(t+ δ)− xi(t)

δ
= xi(t)[ui(x(t))− u(x(t))] +O(δ). (3)

In the above, the asymptotic equality sign “∼” is to be interpreted loosely and is only meant
to suggest that Model I represents an Euler discretization of (RD) up to a higher-order O(δ2)
correction term. Because this term is negligible in the continuous-time limit δ → 0, (RD) is
commonly regarded in the literature as the mean dynamics of Model I [24, 43].

Model II: Pairwise proportional imitation. The second model that we consider has its roots
in the mass-action interpretation of game theory and, more precisely, the theory of revision
protocols [43, 55]. Referring to the classical textbook of Sandholm [43] for the details,
suppose that each agent occasionally receives an opportunity to switch actions – say, based
on the rings of a Poisson alarm clock – and, at such moments, they reconsider their choice of
action by comparing its payoff to that of a randomly chosen individual in the population. A
revision protocol of this kind is typically defined by specifying the conditional switch rate
ρij(x) at which a revising i-strategist switches to strategy j when the population is at state
x ∈ X . In this case, the population share of agents switching from strategy i to strategy j
over a small interval of time δ will be be xiρijδ, leading to the inflow-outflow equation

xi(t+ δ) = xi(t) + δ

∑
j 6=i

xj(t)ρji(x(t))− xi(t)
∑
j 6=i

ρij(x(t))

 (4)

One of the most widely studied revision protocols of this type is the pairwise proportional
imitation (PPI) of Helbing [23], as described by the switch rate functions

ρij(x) = xj [uj(x)− ui(x)]+. (PPI)

Under this protocol, a revising agent first observes the action of a randomly selected opponent,
so a j-strategist is observed with probability xj when the population is at state x ∈ X . Then,
if the payoff of the incumbent strategy i ∈ A is lower than that of the benchmark strategy j,
the agent imitates the selected agent with probability proportional to the payoff difference
[uj(x)− ui(x)]+; otherwise, the revising agent skips the revision opportunity and sticks to
their current action.

Now, substituting the protocol (PPI) into (4), a straightforward calculation yields the
autonomous, discrete-time dynamics5

xi(t+ δ) = xi(t) + δxi(t)

∑
j 6=i

xj(t)[ui(x(t))− uj(x(t))]+ −
∑
j 6=i

xj(t)[uj(x(t))− ui(x(t))]+


= xi(t) + δxi(t)

∑
j 6=i

xj(t)[ui(x(t))− uj(x(t))]


= xi(t) + δxi(t)[ui(x(t))− u(x(t))] (II)

5Instead of Model I where δ can be arbitrarily large, in Model II the step size is bounded as otherwise its
iterations may fail to lie in the simplex.



DISCRETE-TIME REPLICATOR DYNAMICS: CONVERGENCE, INSTABILITY, AND CHAOS 7

where, in the second-to-last line, we used the fact that
∑
j 6=i xj(t) = 1 − xi(t). Just like

Model I, Model II can be seen as an Euler discretization of (RD); however, in contrast to its
biological counterpart, there is no O(δ2) correction term in Model II. Albeit negligible in the
limit δ → 0, we will see in Section 4 that the residual O(δ2) term that appears in Model I
plays a major role in the long-run behavior of the dynamics.

Model III: Learning with exponential weights. The last model we consider has its origins
in learning theory and, more specifically, the so-called multi-armed bandit problem, cf. Auer
et al. [2, 3], Cesa-Bianchi and Lugosi [11] and references therein. Following Hadikhanloo
et al. [19], this model can be described in our population setting as follows: at time t, the
performance of each strategy i ∈ A is scored by measuring its cumulative payoff over an
interval of time δ; subsequently, at time t + δ, the population is redistributed with each
strategy receiving a population share that is exponentially proportional to its cumulative
payoff up to time t+δ (i.e., agents select with exponentially higher probability those strategies
that perform better over time).

Formally, this simple stimulus-response model amounts to the exponential /multiplicative
weights update

yi(t+ δ) = yi(t) + δui(x(t)) with xi(t) =
exp(yi(t))∑
j∈A exp(yj(t))

(EW)

which, in the context of learning theory, forms the basis of the exponential-weights algorithm
for exploration and exploitation (EXP3) [2, 3].6 Thus, under (EW), the associated population
shares will be governed by the autonomous dynamics

xi(t+ δ) =
exp(yi(t+ δ))∑
j∈A exp(yj(t+ δ))

=
exp(yi(t)) exp(δui(x(t)))∑
j∈A exp(yj(t)) exp(δuj(x(t)))

=
xi(t) exp(δui(x(t)))∑
j∈A xj(t) exp(δuj(x(t)))

(III)

where, in the last line, we used the fact that xi(t) ∝ exp(yi(t)), as per (EW). A first-order
Taylor expansion then yields

xi(t+ δ)− xi(t) = xi(t)

[
exp(δui(x(t)))∑

j∈A xj(t) exp(δuj(x(t)))
− 1

]

= xi(t)

[
1 + δui(x(t)) +O(δ2)

1 + δu(x(t)) +O(δ2)
− 1

]
= xi(t)

[
(1 + δui(x(t)))(1− δu(x(t))) +O(δ2)− 1

]
= δxi(t)[ui(x(t))− u(x(t))] +O(δ2) (5)

so Model III can also be seen as an Euler discretization of (RD) up to an O(δ2) correction
term. Conceptually, this is similar to Model I, though the two corrections are, in general,
different; we will see in Section 4 that this difference plays a major role in the qualitative
behavior of dynamics when δ is not infinitesimally small.

6This particular instantiation of the algorithm is known as Hedge [2]; in some other threads of the
literature, (EW) is referred to as the multiplicative weights update (MWU) [1]. We employ the original
terminology of [2, 3] to distinguish it from the linearized version of [28].
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4. Analysis and results

As we saw, Models I–III admit the same continuous-time limit – the replicator dynamics
(RD) – so it would be natural to expect that they behave similarly in the long run, especially
when the time unit δ is infinitesimally small. However, when real-life modeling considerations
call for larger values of δ (e.g., as in the case of species with longer evolutionary cycles or
agents with faster revision rates), it is not clear if this heuristic holds true (and to what
extent), even when (RD) would suggest a unique long-run outcome. In view of this, our goal
in the sequel will be to examine in detail the asymptotic behavior of Models I–III, and to
see whether any qualitative differences arise between these models and/or the underlying
dynamics (RD).

For concreteness, we will focus on the two extremes of the spectrum of possible asymptotic
behaviors: (global) convergence on the one hand, and (deterministic) chaos on the other. The
reason for this is straightforward: if the dynamics are globally convergent, the population’s
initial state is eventually forgotten, and all initializations ultimately settle down to the
same state; instead, if the dynamics are chaotic, even arbitrarily small differences in the
population’s initial state would lead to drastically different behavior. As such, convergence
and chaos can be seen as antithetical to each other – and hence, as opposites in terms of
long-run predictions.

Now, to put all this on a solid footing, it will be convenient to recast Models I–III in
abstract recursive form as

xn+1 = f(xn) (6)
where xn := x(nδ) denotes the state of the population at time t = nδ, n = 1, 2, . . . , and the
dynamics’ update map f : X → X is defined as follows:
• Under Model I:

f(x) ≡ x+ δ v(x)� x
1 + δ u(x)

(7.I)

• Under Model II:

f(x) ≡ x+ δ[v(x)� x− u(x)x] (7.II)

• Under Model III:

f(x) ≡ x� exp(δv(x))

x · exp(δv(x))
(7.III)

In this setting we call the fixed point x of the map f
• attracting, if there is an open neighborhood U ⊂ X of x such that for every y ∈ U we

have lim
n→∞

fn(y) = x, where fn is a composition of the map f with itself n-times.

• repelling, if there is an open neighborhood U ⊂ X of x such that for every y ∈ U , y 6= x
there exists n ∈ N such that fn(y) ∈ X\U .

As we will study differentiable maps on the unit interval, the fixed point x is attracting if
|f ′(x)| < 1, and x is repelling when if |f ′(x)| > 1. If |f ′(x)| = 1 we need more information.
An orbit {fn(x)} is called periodic of period T if fn+T (x) = fn(x) for any n ∈ N. The
smallest such T is called the period of x. The periodic orbit is called attracting, if x is an
attracting fixed point of (X , fT ), and repelling, if x is a repelling fixed point of (X , fT ).

On the antipodes of convergence to the fixed point lays chaotic behavior. The most widely
used definition of chaos is due to Li and Yorke [26]:

Definition 1 (Li-Yorke chaos). Consider a dynamical system of the form (6) for some
continuous map f : X → X . A pair of points x, x′ ∈ X is said to be scrambled – or a
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Li–Yorke pair – if

lim inf
n→∞

dist(fn(x), fn(x′)) = 0 and lim sup
n→∞

dist(fn(x), fn(x′)) > 0. (8)

We then say that (6) is chaotic (in the Li–Yorke sense) if it admits an uncountable scrambled
set, i.e., a set S ⊆ X such that every pair of distinct points x, x′ ∈ S is scrambled.

Remark. The origins of Definition 1 can be traced back to the seminal paper of Li and
Yorke [26], where the notion of a scrambled set was introduced as a surrogate for mixing:
intuitively, any two (distinct) orbits starting in a scrambled set will come arbitrarily close to
each other and subsequently spring aside infinitely many times. In one-dimensional systems,
which we study here, Li-Yorke chaos implies other features of chaotic behavior like positive
topological entropy or existence of the set on which one can detect sensitive dependence on
initial conditions in the sense of Devaney [39].

In general, showing that a system exhibits chaotic behavior is a task of considerable
difficulty, and a satisfactory theory exists only for low-dimensional systems. On that account,
we will focus on a random matching scenario induced by the 2 × 2 symmetric game with
actions A = {A,B} and payoff bimatrix

A B
A (0, 0) (γA, γB)
B (γB , γA) (0, 0)

(9)

This is a normalized anti-coordination / congestion game where the parameters γA, γB > 0
reflect the benefit of deviating from the most congested choice: if the entire population plays
A, an agent would gain γB by deviating to B; and, likewise, if the entire population plays B,
an agent would gain γA by deviating to A.

For this game, the replicator dynamics (RD) boil down to the one-dimensional system

ẋ = x(1− x)[γA(1− x)− γBx] (10)

where, in a slight abuse of notation, we write x ≡ xA for the population share of A-strategists.
This system admits three fixed points, 0, 1, and p = γA/(γA + γB), with the following
stability properties:7

• For the fixed points at 0 and 1: letting RD(x) := x(1− x)[γA(1− x)− γBx] denote the
RHS of (10), we trivially get RD′(0) = γA > 0 and RD′(1) = γB > 0 so, by standard
results in dynamical systems theory [48], they are both linearly unstable under (10).

• For the fixed point at p: working as above, we get RD′(p) = −γAγB/(γA + γB) < 0, so
p is linearly stable under (10).

In fact, it is easy to see that p is the unique symmetric Nash equilibrium of (9) and, in
fact, it is a global evolutionarily stable state (ESS) thereof; as a result, the dynamics (10)
converge to p from every interior initialization x(0) ∈ (0, 1).

Given this robust, global convergence landscape and the existence of a (global) evolution-
arily stable state, one might expect that Models I–III enjoy similar convergence properties.
However, as we show below, the long-run behavior of Models I–III can be drastically different,
ranging from fully convergent to fully chaotic.

Theorem 1. With notation as above, the dynamics (6) with f given by Eqs. (7.I)–(7.III)
exhibit for the game (9) the following asymptotic behavior:

7Recall here that a point is stable if all trajectories that start sufficiently close to it remain close for all
time; otherwise, the point is called unstable. Moreover, if all nearby orbits converge to the point in question,
it is called attracting; and if a point is both stable and attracting, it is called asymptotically stable.
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• Under Model I: trajectories of all points of (0, 1) converge to Nash equilibrium p for
any δ > 0.
• Under Model II, which is well defined for δ ≤ δ∗ = min

{
4/p2, 4/(1− p)2

}
:

(1) Trajectories of all points of (0, 1) converge to Nash equilibrium p for δ ≤ 2/γAγB.
(2) If p ∈ (0, 1/3) ∪ (2/3, 1), then trajectories of all points of (0, 1) converge to Nash

equilibrium p for any δ.
(3) If p ∈ (1/3, 2/3), then for δ ∈ (2/γAγB , δ

∗) the (unique) Nash equilibrium p is
repelling and, except for a countable set of initial conditions, all trajectories do
not converge to equilibrium.

(4) If p ∈ ( 1
23 (31− 12

√
3), 1

23 (12
√

3− 8)), then there exists a unique δIIp such that f
has periodic orbits of all periods and is Li-Yorke chaotic for any δ ∈ (δIIp , δ

∗).
• Under Model III:

(1) Trajectories of all points of (0, 1) converge to Nash equilibrium p for δ ≤ 2/γAγB.
(2) If γA 6= γB, then there exists δIIIp such that if δ > δIIIp then f has periodic orbits

of all periods and is Li-Yorke chaotic.
(3) If γA = γB and δ > 2/γ2A, then f has a periodic attracting orbit {σδ, 1 − σδ},

where 0 < σδ < 1/2. This orbit attracts trajectories of all points of (0, 1), except
countably many points whose trajectories eventually fall into the repelling fixed
point at 1/2.

Theorem 1 shows that the dynamics given by the models we analyze, described by (RD) in
the continuous case, exhibit qualitatively different behaviors in the discrete case. This points
to a distinct nature of micro foundations of applications, and interpretations, of evolutionary
game theory in different scientific contexts. First, it puts its biological foundations and
foundations in economics and computer science at odds. In the biological model we see
convergence to the unique Nash equilibrium regardless of the length of the evolutionary
cycle. On the contrary, for Model II and Model III convergence to Nash equilibrium depends
on the revision rate and learning rate, respectively. The convergence result fails for these
models after crossing the value δ0 = 2/γAγB, when both systems become unpredictable.
Nevertheless, Model II and Model III differ in other aspects. For Model II once the Nash
equilibrium looses stability (which happens only if γA + γB < 3γA < 2(γA + γB)), the system
is going through period doubling bifurcation relatively fast, and for values of γA and γB close
to each other (p close to 1/2), leads to periodic orbits of any period and chaotic behavior (see
Figures 1, 2). On the other hand, increasing learning rate in Model III will inevitably lead to
chaotic behavior if only γa 6= γB , but the speed of period doubling road to chaos depends on
the asymmetry of gains γA and γB . In particular, for values of γA, γB for which in Model II
we detect chaos, in Model III the period doubling road to chaos can be (extremely) slow
(compare bifurcation diagrams in Figure 1).

4.1. Skeleton of the proof of Theorem 1. For the game (9) we can concentrate on the
population share of A-strategists. Then
• for Model I we get the map f Iδ : I 7→ I, of the unit interval I = [0, 1], given by

f Iδ (x) = x
1 + (γA + γB)δp(1− x)

1 + (γA + γB)δx(1− x)
. (11)

• for Model II we are interested in the dynamics of the map f IIδ : I 7→ I given by

f IIδ (x) = x(1− (γA + γB)δ(1− x)(x− p)). (12)
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(a) Bifurcation diagram for f IIδ with δ ∈ [4, 4
0.552

] (b) Bifurcation diagram for f IIIδ with δ ∈ [4, 34]

Figure 1: Bifurcation diagrams for f II
δ and f III

δ with the equilibrium p = 0.45.
The first bifurcation on both diagrams is at δ0 = 2/0.45 · 0.55 = 22

9
. But then

the second bifurcation for f II
δ is much faster (around δ = 10.5 while for f III

δ it is
around δ = 25). It is worth pointing out that period 3 can be detected for f II

δ at
δ = 12.5, while for f III

δ it is δ ≈ 55.5.

• for Model III we get f IIIδ : I 7→ I given by

f IIIδ (x) =
x

x+ (1− x) exp[(γA + γB)δ(x− p)]
. (13)

Thus, in the proof of Theorem 1 we will focus on dynamics of these maps and how it depends
on the choice of the step size δ. Without loss of generality we can assume that γA + γB = 1,
as otherwise we can proceed for the step size δ′ = (γA + γB)δ. We begin in Section 4.2
with the discussion on the conditions for global convergence for these maps. To this aim we
introduce Schwarzian derivative

Sf ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

,



12 F. FALNIOWSKI AND P. MERTIKOPOULOS

as negative Schwarzian derivative guarantees good behavior of the interval map. We will
show that under conditions, which all studied maps fulfill, existence of an interior attracting
fixed point will imply global convergence of dynamics to this point (see Proposition 1). In
Section 4.3 we use Proposition 1 to show global convergence of game dynamics introduced
by the map (11) for any δ. Dynamics of f IIδ is studied in Section 4.4. By similar argument as
for Model I we show that as long as p is attracting it attracts all points. Nevertheless, once
the step size crosses the value of 2/p(1− p) the system becomes unstable and for a range of
values of p close to 1/2 will eventually (for large δ) be chaotic. To show that we carefully
choose a point x0, which fulfills assumptions of Li-Misiurewicz-Panigiani-Yorke theorem [27].
Finally, in Section 4.5 we discuss dynamics of (13). Once more Proposition 1 guarantees that
p attracts all points from (0, 1) as long as the step size is smaller than 2/p(1− p). The map
f IIIδ is already known in the literature, see [13, 14, 35], and the complete proof of the rest of
the theorem comes from Theorems 3.10 and 3.11 from [14]. Here, for the completeness of
the presentation, we sketch the proof of Li-Yorke chaos for p 6= 1/2.

4.2. Auxiliary result. Let

F = {f : I 7→ I, Fixf = {0, p, 1}, 0, 1 repelling fixed points, p ∈ (0, 1)},
where Fixf denotes the set of fixed points of f .

Lemma 1. Let f ∈ F . If the trajectories of all points 0 < x < p are attracted to p, then the
trajectories of all points from (0, 1) are attracted to p. Similarly, if the trajectories of all
points 1 > x > p are attracted to p, then the trajectories of all points from (0, 1) are attracted
to p.

Proof. Assume that there is a point in (0, 1), whose trajectory is not attracted to p. Since
both 0 and 1 are repelling, by [47], f has a periodic orbit of period 2. If the trajectories of
all points x < p (respectively, x > p) are attracted to p, this periodic orbit has to lie entirely
to the right (respectively, left) of p. Thus, there is a fixed point to the right (respectively,
left) of p, a contradiction. �

Proposition 1. Let f ∈ F . Let f fulfill one of the following conditions
(1) f is increasing
(2) f is bimodal and its Schwarzian derivative is negative.

If p is attracting, then it is globally attracting.

Proof. If f is strictly increasing, then it does not have a periodic orbit of period 2, so p is
globally attracting.

Assume that f is bimodal. If p belongs to the left or right lap, then, by Lemma 1, p is
globally attracting. Assume that p belongs to the interior of the middle lap. Because the
Schwarzian derivative of f is negative, then, by Singer’s theorem [15], the interval joining
p with one of the critical points of f is in the basin of attraction A of p. We may assume
that this critical point is the left one, cl. There is a unique point y < cl such that f(y) = p.
Then f([y, cl]) = f([cl, p]) ⊂ A, so [y, p] ⊂ A. For every point x < y we have x < f(x) < p.
Therefore, the trajectory of x increases as long as it stays to the left of y. Since there are no
fixed points to the left of y, the trajectory has to enter [y, p] sooner or later. This proves
that (0, p] ⊂ A, so by Lemma 1, p is globally attracting. �

4.3. Game dynamics under Model I. We study the dynamics introduced by (11). First, f Iδ
is well-defined for every δ > 0, that is 0 ≤ f Iδ (x) ≤ 1 for every x ∈ [0, 1]. Obviously values
f Iδ (x) are always nonnegative and the condition f Iδ (x) ≤ 1 is equivalent to 1 + δx(1− p) ≥ 0,
which is always satisfied. Thus, f Iδ : [0, 1] 7→ [0, 1] for any δ > 0.
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To study dynamics introduced by f Iδ we look at fixed points and the derivative of f Iδ . So,
f Iδ (x) = x if and only if x = 0 or δp(1 − x) = δx(1 − x). Thus, our map has three fixed
points: 0, 1 and p. Now, we look at the derivative of f Iδ , which is equal to

(f Iδ )′(x) =
δx2 − 2pδx+ δp+ 1

(1 + δx(1− x))2
. (14)

We check stability of fixed points:

(f Iδ )′(0) = 1 + δγA > 0, (f Iδ )′(1) = 1 + δγB > 0

for any δ > 0. So, both 0 and 1 are repelling. Thus, f ∈ F . Moreover,

f Iδ
′(p) =

1

1 + δγAγB
,

so |(f Iδ )′(p)| < 1 and p is attracting for any value of δ > 0. Finally, we look at the monotonicity
of f Iδ . The sign of the derivative of f Iδ depends only on the sign of

Q(x) = δx2 − 2pδx+ δp+ 1.

Nevertheless,
∆ = 4δ(δp(p− 1)− 1)

is always negative as p ∈ (0, 1) and δ > 0. So, f Iδ has no extrema and, as (f Iδ )′(0) > 0, f Iδ is
an increasing map for any δ.

Therefore, by Proposition 1 we obtain the part of Theorem 1 on game dynamics under
Model I.8

4.4. Game dynamics under Model II. Game dynamics for the map f IIδ is well-defined only
when we cannot leave the simplex. Thus, we have to assume that

δ ≤ min
x∈(p,1)

1

(1− x)(x− p)
=

4

(1− p)2
and δ ≤ min

x∈(0,p)

1

x(p− x)
=

4

p2
.

Thus, f IIδ is well-defined when

δ ≤ δ∗ = min

{
4

p2
,

4

(1− p)2

}
.

Fixed points of f IIδ are 0 and solutions of the equation

δ(1− x)(x− p) = 0.

So the map f IIδ has three fixed points: 0, 1 and p ∈ (0, 1).
As

(f IIδ )′(x) = 3δx2 − 2δ(1 + p)x+ pδ + 1 (15)

we see that (f IIδ )′(0) = 1 + pδ and (f IIδ )′(1) = 1 + (1− p)δ so both 0 and 1 are repelling for
every δ. Thus, f ∈ F . Let’s look at stability of the interior fixed point p. This point will be
attracting as long as |(f IIδ )′(p)| < 1. We have

(f IIδ )′(p) = 1− δp(1− p),

so p is attracting as long as δ < 2
p(1−p) and repelling otherwise.

8Thus, if only the initial state of the population is polymorphic, then the system converges to the
evolutionary stable state p. On the other hand, as 0 and 1 are repelling, monomorphic populations are
sensitive to small perturbations.
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From (15) our map is increasing as long as δ < 3
1−p+p2 . Then, for δ >

3
1−p+p2 the map

f IIδ is bimodal with critical points

cl =
1 + p

3
− 1

3

√
δ(1 + p)2 − 3pδ − 3

δ
, and cr =

1 + p

3
+

1

3

√
δ(1 + p)2 − 3pδ − 3

δ
.

For interval maps with good behavior are those with negative Schwarzian derivative. We
should not expect that Sf IIδ < 0 for δ < 3

1−p+p2 as then f IIδ is a homeomorphism. For
δ > 3

1−p+p2 we have the following fact.

Lemma 2. If δ > 3
1−p+p2 , then Sf

II
δ < 0.

Proof. Elementary calculations give us

(f IIδ )′(x) = 3δx2 − 2δ(1 + p)x+ 1 + pδ,

(f IIδ )′′(x) = 6δx− 2δ(1 + p),

(f IIδ )′′′(x) = 6δ.

Schwarzian derivative is negative if and only if 2(f IIδ )′(f IIδ )′′′ − 3((f IIδ )′′)2 < 0, thus we want
to show that

12δ[3δx2 − 2δ(1 + p)x+ 1 + pδ]− 3[6δx− 2δ(1 + p)]2 < 0.

Thus,
δ(1 + p+ p2 − 4(1 + p)x+ 6x2) > 1

for any x. The minimum of g(x) = 1 + p+ p2 − 4(1 + p)x+ 6x2 is at x = 1+p
3 and is equal

to p2−p+1
3 . Therefore, Sf IIδ < 0 for δ > 3

1−p+p2 . �

Now we are able to describe what happens when p is attracting, that is when δ < 2/p(1−p).
By Lemma 2 and Proposition 1 we get that p attracts all trajectories as long as δ ≤

2/p(1− p). In particular, as long as δ∗ < 2/p(1− p) Nash equilibrium always attracts all
points. This implies first two results for Model II.

Our aim is to investigate the long-term behavior of the orbits of f IIδ . As for δ > 2/p(1− p)
all fixed points are repelling there is no convergence to the equilibrium, and we need to study
this case more thoroughly. In particular, we should look for periodic orbits, their stability,
or chaos. Figure 2 suggests existence of chaotic behavior for p near-uniform and large values
of δ. When speaking of chaos, we will use its most popular kind, Li-Yorke chaos.9

As we deal with the interval map to prove Li-Yorke chaos we can use odd period argument.
Thus, we will show the following proposition.

Proposition 2. If p ∈
(

1
23 (31− 12

√
3), 1

23 (12
√

3− 8)
)
, then there exists a unique δIIp such

that f IIδ has periodic point of period 3 for any δ ∈ (δIIp , δ
∗].

Proof. We assume that p ∈ (0, 1/2]. We will show that for p sufficiently close to 1/2 the
following conditions hold:

f IIδ

(
1 + p

6

)
>

1 + p

2
(16)

and

(f IIδ )2
(

1 + p

2

)
<

1 + p

6
. (17)

9For description of Li-Yorke chaos and its connections with other definitions of chaos we refer the reader
to [9, 39]
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Figure 2: Period diagrams of the small-period attracting periodic orbits associated
with the map f II

δ (drawn on the black background). The horizontal axes are
δ ∈ [4, 16] and the vertical axes are the asymmetry of cost p ∈ [0, 1]. The colors
encode the periods of attracting periodic orbits as follows: period 1 (fixed point,
which is Nash equilibrium p) = yellow, period 2 = red, period 3 = blue, period
4 = green, period 5 = brown, period 6 = cyan, period 7 = darkgray, period 8
= magenta, and period larger than 8 = white. The picture is generated from
the following algorithm: 20000 preliminary iterations are discarded. Then a
point is considered periodic of period n if |(f II

δ )n(x) − x| < 10−10 and it is not
periodic of any period smaller than n. As long as we are in the yellow region we
have convergence to Nash equilibrium, once we get out of this region almost all
trajectories will never converge to the fixed point.

Before justifying these inequalities let us show how (16) and (17) guarantee existence of
the periodic point of period 3. From (16), continuity of f IIδ and the fact that f IIδ (0) = 0,
f IIδ (p) = p we obtain existence of x0 ∈ (cl, p) such that f IIδ (x0) = 1+p

2 . From (17) and the
fact that f IIδ (x) > x when x < p, we have that

(f IIδ )3(x0) = (f IIδ )2(
1 + p

2
) <

1 + p

6
< cl < x0 < f IIδ (x0).

Therefore, from theorem by Li, Misiurewicz, Panigiani and Yorke [27], f IIδ has periodic
orbit of period 3. By f IIδ,p(x) = 1− f IIδ,1−p(x) we will conclude similar result for p > 1/2.10

Now we will show conditions (16) and (17). We begin with the first inequality, which is
equivalent to

− 5

216
δ(1 + p)3 +

1

6
(1 + p)(1 + δp) >

1 + p

2
.

Thus,

δ

(
− 5

36
(1 + p)2 + p

)
> 2.

10Although from numerical experiments we may conclude that periodic orbits of period 3 may arise for δ
smaller than those for which conditions (16) and (17) hold, it seems that it estimates presence of period 3
quite well, see Figure 3.
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Figure 3: Period diagrams of the small-period attracting periodic orbits associated
with the map f II

δ (drawn on the black background). The horizontal axes are
δ ∈ [8, 16] and the vertical axes are the asymmetry of cost p ∈ [1/3, 1/2]. The
colors encode the periods of attracting periodic orbits as follows: period 1 (fixed
point) = yellow, period 2 = red, period 3 = blue, period 4 = green, period 5 =
brown, period 6 = cyan, period 7 = darkgray, period 8 = magenta, and period
larger than 8 = white. The picture is generated from the following algorithm:
20000 preliminary iterations are discarded. Then a point is considered periodic
of period n if |(f II

δ )n(x)− x| < 10−10 and it is not periodic of any period smaller
than n. On the picture we also draw the black curves for conditions (16) and (17).

There is no positive δ which fulfills this condition as long as p ≤ 1
5 . If p > 1

5 , then
δ > 72

−5p2+26p−5 . As δ ≤ δ
∗ we obtain that (16) holds when

p ∈
(

1

23
(31− 12

√
3),

1

2

]
. (18)

Next we turn our attention to condition (17), which is equivalent to
3

256
(4− δ(1− p)2)(64− 16δ(1− p)2 + δ3(1− p)4(1 + p)2) < 1. (19)

Obviously if δ = δ∗, then the left hand side of (19) is equal to zero. Define

F (δ) =
3

256
(4− δ(1− p)2)(64− 16δ(1− p)2 + δ3(1− p)4(1 + p)2). (20)

We want to show that there is a unique δIIp such that for δ > δIIp values of F are smaller
than 1.

We know that F (0) = 3 and F (δ∗) = 0. The derivative of F is equal to

F ′(δ) =
3

256

(
−68(1− p)2 + 2δ(1− p)4 + 12δ2(1− p)4(1 + p)2 − 4δ3(1− p)6(1 + p)2

)
.

As F ′ is a polynomial of degree 3 and

F ′(0) = − 51

64(1− p)2
< 0,

with
F ′(δ∗) =

3

256
(−60(1− p)2 − 64(1 + p)2) < 0,
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we get that inside the interval [0, δ∗] the map F ′ can have 0 or 2 roots. As

F ′
(
δ∗

2

)
= − 3

16
(3− 10p+ 3p2) > 0

when p ∈ ( 13 ,
1
2 ], we exclude possibility of no roots. Thus, inside the interval [0, δ∗] the map

F has local minimum δmin and local maximum δmax, δmin < δmax. As F (δ∗) = 0 we know
that there exists δIIp such that (17) holds for δ > δIIp . To show uniqueness of δIIp we need to
show that F (δmin) > 1.

We have

F ′′(δ) =
3

128
(1− p)4(1 + 12δ(1 + p)2 − 6δ2(1 + p)2(1− p)2),

and simple calculations show that F ′′ has one positive root δ1. Thus,

0 < δmin < δ1 < δmax

and F is convex in (0, δ1).
Now take δ = δ∗

4 . Then F ′( δ
∗

4 ) = − 3
32 (11p2 − 26p + 11) < 0 as p < 1

2 <
1
11 (13 − 4

√
3).

Define an affine map

G(δ) = F ′
(
δ∗

4

)
· δ + F

(
δ∗

4

)
− F ′

(
δ∗

4

)
· δ
∗

4
.

Because F ′( δ
∗

4 ) < 0, the map G is decreasing. Convexity of F guarantees that F (δmin) ≥
G(δmin). Moreover, δ

∗

4 < δmin <
δ∗

2 . Thus, we have

F (δmin) ≥ G(δmin) > G

(
δ∗

2

)
,

where

G

(
δ∗

2

)
= F

(
δ∗

4

)
+
δ∗

4
F ′
(
δ∗

4

)
.

Let

H(p) = G

(
δ∗

2

)
− 1 =

−79p2 + 290p− 79

256(1− p)2
.

We have H(p) > 0 when p ∈ ( 1
79 (145 − 8

√
231), 1

79 (145 + 8
√

231)). Combining all
restrictions we obtain that

F (δmin) ≥ G(δmin) > G

(
δ∗

2

)
> 1

for p ∈
(

1
23 (31− 12

√
3), 12

]
. This completes the proof for p ∈

(
1
23 (31− 12

√
3), 12

]
.

Finally,

1− f IIδ,1−p(1− x) = 1− (1− x)(1− δx(p− x)) = x(1 + δ(p− x)− δx(p− x)) = f IIδ,p(x), (21)

which implies the assertion of the theorem for p ∈ ( 1
23 (31− 12

√
3), 1

23 (12
√

3− 8)). �

By Sharkovsky theorem [47] we obtain the assertion of the theorem.
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4.5. Dynamics of f IIIδ . The map (13) is already known and its dynamics was studied in
various papers [13, 14, 35]. For the completeness of the exposition we describe here crucial
properties of this map. Fixed points of f IIIδ are 0 and the roots of the equation

(1− x)(1− exp(δ(x− p))) = 0.

So fixed points of f IIIδ are 0, 1 and p. The derivative of f IIIδ is given by

(f IIIδ )′(x) =
(δx2 − δx+ 1) exp(δ(x− p))(
x+ (1− x) exp(δ(x− p))

)2 . (22)

Thus,

(f IIIδ )′(0) = exp(δp), (f IIIδ )′(1) = exp(δ(1− p)), (f IIIδ )′(p) = δp2 − δp+ 1.

We see that the fixed points 0 and 1 are always repelling, while p is repelling if δ > 2
p(1−p) .

The critical points of f IIIδ are solutions to δx2 − δx+ 1 = 0. Thus, if 0 < δ ≤ 4, then f IIIδ

is strictly increasing. If δ > 4, it has two critical points

κl =
1

2
−
√

1

4
− 1

δ
, κr =

1

2
+

√
1

4
− 1

δ
, (23)

so the map f IIIδ is bimodal.
Let us investigate regularity of f IIIδ . By Proposition 3.2 from [14] the map f IIIδ has negative

Schwarzian derivative for δ > 4.
For maps with negative Schwarzian derivative each attracting or neutral periodic orbit

has a critical point in its immediate basin of attraction. Thus, we know that if δ > 4 then
f IIIδ can have at most two attracting or neutral periodic orbits.

Thus, f IIIδ ∈ F , so from Proposition 1 we get that as long as δ < 2p/(1 − p), Nash
equilibrium attracts all trajectories from (0, 1).

Now, we sketch the proof of Li-Yorke chaos for f IIIδ when γA 6= γB. Although this fact
was already shown in [14], we present here this proof to give a proper comparison with the
proof of chaotic behavior for pairwise proportional imitation. To show chaotic behavior one
can use period 3 arguments once more. To do that we notice that f IIIδ (x) > x when x < p.
Moreover,

(f IIIδ )n(x) =
x

x+ (1− x) exp(δ
∑n−1
k=0((f IIIδ )k(x)− p))

.

So, (f IIIδ )3(x) < x if and only if

x+ f IIIδ (x) + (f IIIδ )2(x) > 3p. (24)

For 0 < p < 1/2 we take 3p− 1 < x < p. As lim
δ→∞

f IIIδ (x) = 1 and (f IIIδ )2(x) > 0 we see that

(24) will be fulfilled for sufficiently large δ. Thus, we can use Misiurewicz-Li-Panigiani-Yorke
theorem and Sharkovsky theorem and obtain Li-Yorke chaos for p < 1/2. As

ϕ ◦ f IIIδ,p = f IIIδ,1−p ◦ ϕ, where ϕ(x) = 1− x. (25)

we have the same result for p > 1/2.
The result for γA = γB follows from Theorem 3.10 from [14]. This completes the proof of

Theorem 1.
Finally, let us comment on the technical differences in the proof for Model II and Model III.

Both are done by using Li-Misiurewicz-Panigiani-Yorke theorem [27] and period 3 argument.
To show this we need to find a point x0 ∈ (0, 1) such that f3(x0) < x0 < f(x0) or
f3(x0) > x0 > f(x0). Nevertheless, in Model III the trick is to take very large step size
(depending on b). Moreover, when δ is sufficiently large, the choice of a point which fulfills
the condition is easy as we can take it from the large range of values, see Figure 5. This
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Figure 4: Map f II
δ and its third iterate when p = 0.5 with δ = 15 (left) and

δ = δ∗ = 16 (right).
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Figure 5: Map f III
δ and its third iterate when p = 0.35 with δ = 20 (left) and

δ = 35 (right).

can’t be done in Model II, where the step size is bounded. In addition, the condition for
the third iterate is met only on small interval which varies with the step size, see Figure 4.
Thus, we carefully choose then a point which first iterate lays close to the (right) critical
point, but values can be estimated analytically. This cannot be done for the f IIIδ map, where
we can get only numerical estimations.

5. Discussion

Our work shows that three distinct game dynamics in discrete time – a biological model
of intra-species competition in the spirit of Moran [33], evolution under the pairwise pro-
portional imitation protocol of Helbing [23] in economic theory, and learning with the
exponential /multiplicative weights algorithm from the theory of adversarial online learning
[2] – exhibit qualitatively different long-run properties, despite the fact that they all share
the same continuous-time limit – the replicator dynamics. This disconnection occurs even
in the simplest of games – a 2 × 2 symmetric random matching congestion game – and
leads to drastically different predictions (or lack thereof): a) the biological model guarantees
universal convergence to Nash equilibrium for all initial conditions and all equilibrium and
(hyper)parameter configurations; b) the economic model demonstrates the entire range of
possible behaviors for large δ (convergence, instability, periodic and chaotic behavior); and,
finally, c) fully chaotic behavior under the EW algorithm (for large δ). This divergence of
behaviors provides a crisp cautionary tale to the efect that “discretization matters”, and
serves to highlight the extent to which concrete conclusions can be drawn from the behavior
of continuous-time models – or, rather, the failure thereof.
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