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Abstract— In this paper, we study the equilibrium convergence
and stability properties of the widely used matrix multiplicative
weights (MMW) dynamics for learning in general quantum
games. A key difficulty in this endeavor is that the induced
quantum state dynamics decompose naturally into (i ) a classical,
commutative component which governs the dynamics of the
system’s eigenvalues in a way analogous to the evolution of
mixed strategies under the classical replicator dynamics; and
(ii ) a non-commutative component for the system’s eigenvectors.
This non-commutative component has no classical counterpart
and, as a result, requires the introduction of novel notions of
(asymptotic) stability to account for the nonlinear geometry
of the game’s quantum space. In this general context, we
show that (i ) only pure quantum equilibria can be stable and
attracting under the MMW dynamics; and (ii ) as a partial
converse, pure quantum states that satisfy a certain “variational
stability” condition are always attracting. This allows us to
fully characterize the structure of quantum Nash equilibria that
are stable and attracting under the MMW dynamics, a fact
with significant implications for predicting the outcome of a
multi-agent quantum learning process.

I. INTRODUCTION

The advent of quantum information theory – and, with it,
the associated “quantum advantage” [1]–[3] – has had a
profound impact on computer science and machine learning,
from quantum cryptography and shadow tomography [4],
to quantum generative adversarial networks (QGANs) and
adversarial learning [5]–[7]. At a high level, the advantages
of quantum-based computing are owed to the possibility of
preparing superpositions of binary-state quantum systems
known as qubits: classical bits cannot lie in superposition, so
the calculations that can be performed by classical computers
are de facto limited by their binary alphabet and memory
structure. In light of this, quantum computing has the potential
to greatly accelerate the development of artificial intelligence
algorithms and models, with Google’s “Sycamore” 54-qubit
processor training an autonomous vehicle model in less than
200 seconds [2].

In a similar manner, when such models are deployed in a
multi-agent context – e.g., as in the case of QGANs or au-
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tonomous vehicles – the landscape changes drastically relative
to classical non-cooperative frameworks. The main reason for
this is again the “quantum advantage”: due to the intricacies of
decoherence and entaglement – two quantum notions that have
no classical counterpart – quantum players can have a distinct
advantage over “classical” players, achieving higher payoffs
at equilibrium than would otherwise be possible [8], [9]. This
is again owed to the fact that probabilistic mixing works
differently in the quantum and classical worlds: in classical
games, a mixed strategy is a probabilistic convex combination
of the constituent pure strategies; in quantum games, a mixed
state is a probabilistic mixture of the quantum projectors
associated to each constituent state. Because of this, a mixed
quantum state can return payoffs that lie outside the convex
hull of classical mixed strategies, thus providing a tangible
advantage to players with access to quantum technologies.

Of course, the extent to which the advantage of quantum
players manifests itself is contingent on the players’ actually
reaching an equilibrium. The recent work of [10] has
shown that the problem of computing an approximate Nash
equilibrium of a quantum game is included in PPAD, so,
by the seminal work of [11], [12], it must be complete
for this class (since computing a quantum equilibrium is
at least as hard as computing a classical one). Thus, given
that the dimensionality of a quantum game is exponential
in the number of qubits available to each player, computing
a Nash equilibrium of a quantum game quickly becomes
an intractable affair, in all but the smallest games. On that
account, it seems more reasonable to turn to an online learning
paradigm, and instead ask:

• Are all Nash equilibria equally likely to occur as outcomes
of a multi-agent learning procedure?

• Is there a class of Nash equilibria with an inherent selection
bias – either for or against?

Our point of departure for these questions is a compact model
of learning based on the widely used matrix multiplicative
weights (MMW) algorithm, originally due to [13]. This
learning process can be seen as a quantum extension of the
standard Hedge / EXP3 algorithms for single-agent learning in
bandits and games [14]–[16], and it has been used extensively
for the computation of quantum Nash equilibria in two-player,
zero-sum quantum games [17]–[22]. To spotlight the structural
properties of the dynamics and to sidestep the technical issues
that arise from hyperparameter tuning and the like, we focus
throughout on a parameter-free, continuous-time formulation
of the dynamics, and we seek to characterize which quantum
Nash equilibria are stable and attracting under these dynamics
in general quantum games.
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Importantly, the quantum state dynamics induced by the
MMW learning rule decompose naturally into a “classical”
part plus a non-commutative “quantum” component: the
eigenvalues of the system follow an equation that is formally
analogous to the classical replicator dynamics for finite games,
while the system’s eigenvectors follow an autonomous flow
on the space of unitary matrices that has no classical analogue.
Because of this non-commutative structure, deriving the
dynamics’ equilibrium convergence properties is significantly
more difficult because of the nonlinear geometry of the game’s
state space. In particular, in contrast to finite games (where
pure strategies are isolated extreme points), the pure states
of a quantum game form a continuous manifold of stationary
points (all of them extreme), so the study of stability and
convergence questions becomes a highly involved affair.

Nonetheless, despite these topological complications, we
show that the MMW dynamics enjoy the following fundamen-
tal properties: (i ) only pure quantum equilibria can be stable
and attracting under MMW; and (ii) as a partial converse,
pure quantum states that satisfy a certain “variational stability”
condition are always stable and attracting. On that account,
our results lead to an implicit quantum “purification” principle:
under MMW, mixed states are inherently fragile, and only
pure quantum states can be consistently attracting.1 This fact
has significant implications for predicting the outcome of a
multi-agent quantum learning process, and it opens up several
research directions with potentially far-reaching implications
for the deployment of multi-agent quantum systems

II. PRELIMINARIES

We start by briefly reviewing some basics of quantum game
theory and introducing the necessary context for our results.

Notation: Given a (complex) Hilbert space H, we will use
Dirac’s bra-ket notation to distinguish between an element
|𝜓⟩ of H and its adjoint ⟨𝜓 |; otherwise, when a basis is
implied by the context, we will use the dagger notation “†”
to denote the Hermitian transpose 𝜓† of 𝜓. We will also write
ℍ𝑑 for the space of 𝑑×𝑑 Hermitian matrices, and ℍ𝑑

+ for the
cone of positive-semidefinite matrices in ℍ𝑑 . Finally, given
a real function 𝑓 : ℝ→ ℝ and a Hermitian matrix X ∈ ℍ𝑑

with unitary eigen-decomposition X =
∑𝑑

𝛼=1 𝑥𝛼u𝛼u†
𝛼, we

will write 𝑓 (X) for the matrix 𝑓 (X) = ∑𝑑
𝛼=1 𝑓 (𝑥𝛼)u𝛼u†

𝛼.

Quantum games: Following [9], [27], a quantum game
consists of the following primitives:
1) A finite set of players 𝑖 ∈ N = {1, . . . , 𝑁}.
2) Each player 𝑖 ∈ N has access to a complex Hilbert
space H𝑖 � ℂ𝑑𝑖 describing the set of (pure) quantum states
available to the player (typically a discrete register of qubits).
In more detail, a quantum state is an element 𝜓𝑖 of H𝑖

with unit norm, so the set of all such states is the unit sphere
Ψ𝑖 B {𝜓𝑖 ∈ H𝑖 : ∥𝜓𝑖 ∥ = 1} of H𝑖 . We will write Ψ B

∏
𝑖 Ψ𝑖

for the space of all ensembles 𝜓 = (𝜓1, . . . , 𝜓𝑁 ) of pure states
𝜓𝑖 ∈ Ψ𝑖 that are independently prepared by each 𝑖 ∈ N .

1In classical games, a version of the above results is sometimes referred
to as the “folk theorem” of evolutionary game theory [23]–[26].

3) The players’ rewards are determined by their individual
payoff functions 𝑢𝑖 : Ψ → ℝ. These payoff functions are not
arbitrary, but are obtained from a joint positive operator-
valued measure (POVM) quantum measurement process that
unfolds as follows [28]: First, we assume given a finite set
of possible measurement outcomes 𝜔 ∈ Ω that a referee
can observe from the players’ quantum states (e.g., measure
a player-prepared qubit to be “up” or “down”). Each such
outcome 𝜔 ∈ Ω is associated to a positive semi-definite
operator P𝜔 : H → H that acts on the tensor product
H B

⊗
𝑖 H𝑖 of the players’ individual state spaces; we

further assume that
∑

𝜔∈Ω P𝜔 = I so the joint probability of
observing 𝜔 ∈ Ω when the system is at state 𝜓 ∈ Ψ is

𝑃𝜔 (𝜓) = ⟨𝜓1 ⊗ · · · ⊗ 𝜓𝑁 |P𝜔 |𝜓1 ⊗ · · · ⊗ 𝜓𝑁 ⟩ (1)

The payoff to each player 𝑖 ∈ N is given by the outcome of
this measurement process via a payoff observable 𝑈𝑖 : Ω →
ℝ; specifically, in this context, 𝑢𝑖 (𝜓) denotes the player’s
expected payoff at state 𝜓 ∈ Ψ, viz.

𝑢𝑖 (𝜓) B ⟨𝑈𝑖⟩ ≡
∑︁

𝜔
𝑃𝜔 (𝜓)𝑈𝑖 (𝜔). (2)

A quantum game is then defined as a tuple Q ≡ Q(N ,Ψ, 𝑢)
with players, quantum states, and payoff functions as above.

Mixed states: In addition to pure states, each player 𝑖 ∈ N
can also prepare probabilistic mixtures thereof, known as
mixed states. In contrast to mixed strategies in classical,
finite games, these mixed states are not convex combinations
of their pure counterparts; instead, given a family of pure
quantum states 𝜓𝑖𝛼𝑖

∈ Ψ𝑖 indexed by 𝛼𝑖 ∈ A𝑖 , a mixed state
is described by a density matrix of the form

X𝑖 =
∑︁

𝛼𝑖∈A𝑖

𝑥𝑖𝛼𝑖
|𝜓𝑖𝛼𝑖

⟩⟨𝜓𝑖𝛼𝑖
| (3)

where 𝑥𝑖𝛼𝑖
≥ 0 is the mixing weight of 𝜓𝑖𝛼𝑖

, and we assume
that tr X𝑖 = 1 (the states 𝜓𝑖𝛼𝑖

are not assumed to be orthogonal
in this context). By Born’s rule, this means that if each
player 𝑖 ∈ N prepares a mixed state according to X𝑖 , the
probability of observing 𝜔 ∈ Ω under X = (X1, . . . ,X𝑁 )
will be 𝑃𝜔 (X) = ∑

𝛼 𝑥𝛼⟨𝜓𝛼 |P𝜔 |𝜓𝛼⟩, where, in multi-index
notation, 𝛼 = (𝛼1, . . . , 𝛼𝑁 ), 𝑥𝛼 =

∏
𝑖 𝑥𝑖𝛼𝑖

, and 𝜓𝛼 =
⊗

𝑖 𝜓𝑖𝛼𝑖
.

Thus, in a slight abuse of notation, the expected payoff to
player 𝑖 ∈ N under X will be

𝑢𝑖 (X) =
∑︁
𝜔∈Ω

∑︁
𝛼∈A

𝑥𝛼𝑃𝜔 (𝜓𝛼)𝑈𝑖 (𝜔) =
∑︁
𝛼∈A

𝑥𝛼𝑢𝑖 (𝜓𝛼) (4)

Equivalently, we can write the above as:

𝑢𝑖 (X) =
∑︁
𝜔∈Ω

𝑈𝑖 (𝜔) tr[P𝜔X1 ⊗ · · · ⊗ X𝑁 ]

= tr[W𝑖X1 ⊗ · · · ⊗ X𝑁 ] (5)

where the tensor W𝑖 =
∑

𝜔∈Ω𝑈𝑖 (𝜔)P𝜔 ∈ H for 𝑖 ∈ N
encloses all the relevant payoff information of the game and
is the quantum equivalent of the “payoff matrix” of player
𝑖 ∈ N . [In this regard, (5) gives a more concrete and concise
representation of the payoff structure of Q.]



Contrasting to other classes of games: The expression
(4) for a player’s expected payoff under a mixed state is
reminiscent of mixed extensions of classical finite games, but
this association is very tenuous. From a conceptual standpoint,
the principal differences are as follows:

1) There is an infinite continuum of pure states 𝜓 ∈ Ψ, not
a finite number thereof (as is the case in finite games).

2) The decomposition (3) of a density matrix into pure states
is not unique; generically, there may be a continuum
of (non-equivalent) families of pure states and mixing
weights giving rise to the same density matrix.

3) The convex superposition 𝜆𝜓+(1−𝜆)𝜓′ of two pure states
𝜓 and 𝜓′ may give rise to quantum interference terms
of the form |𝜓⟩⟨𝜓′ | and |𝜓′⟩⟨𝜓 | in the induced payoff;
these cross-terms have no analogue in finite games.

Continuous game reformulation: Because of the previous
discussion, treating a quantum game as a “tensorial” extension
of a finite game can be misleading. Instead, it would be clearer
for our purposes to view a quantum game as a continuous
game where each player 𝑖 ∈ N controls a matrix variable X𝑖

drawn from the “spectraplex”

X 𝑖 = {X𝑖 ∈ ℍ
𝑑𝑖
+ : tr X𝑖 = 1} (6)

and the player’s payoff function 𝑢𝑖 : X ≡ ∏
𝑗 X 𝑗 → ℝ is

linear in every player’s density matrix X 𝑗 ∈ X 𝑗 , 𝑗 ∈ N .
Since 𝑢𝑖 is linear in X𝑖 , letting V𝑖 (X) = ∇X⊤

𝑖
𝑢𝑖 (X) denote

the individual payoff gradient of player 𝑖, we can write the
payoff of player 𝑖 in terms of the gradient V𝑖 as:

𝑢𝑖 (X𝑖; X−𝑖) = tr[X𝑖V𝑖 (X)] for all X ∈ X . (7)

Nash equilibrium: In our quantum setting, the classical
solution concept of a Nash equilibrium (NE) characterizes
mixed quantum states X∗ ∈ X which discourage unilateral
deviations in the sense that

𝑢𝑖 (X∗) ≥ 𝑢𝑖 (X𝑖; X∗
−𝑖) for all X𝑖 ∈ X 𝑖 , 𝑖 ∈ N (NE)

where we write (X𝑖; X−𝑖) = (X1, . . . ,X𝑖 , . . . ,X𝑁 ) for the
choice of player 𝑖 relative to all other players. Since X 𝑖 is
convex and 𝑢𝑖 is linear in X𝑖 , the existence of Nash equilibria
follows from the seminal theorem of [29]. Standard arguments
[30], [31] show that the Nash equilibria of Q are precisely
the solutions of the variational inequality

tr[V(X∗) (X − X∗)] ≤ 0 for all X ∈ X (VI)

where V(X) = (V1 (X), . . . ,V𝑁 (X)). We will use this
equivalence freely in the sequel.

III. LEARNING DYNAMICS

The matrix multiplicative weights algorithm: The most
widely used algorithm for computing Nash equilibria of
quantum games is the so-called matrix multiplicative weights
(MMW) algorithm which, in our notation, unfolds as

Y𝑖 (𝑡 + 1) = Y𝑖 (𝑡) + 𝜂V𝑖 (X(𝑡))

X𝑖 (𝑡) =
exp(Y𝑖 (𝑡))

tr[exp(Y𝑖 (𝑡))]
(MMW)

where 𝜂 > 0 is a “learning rate” hyperparameter. This
algorithm was first introduced in the context of matrix learning
by [13], and can be seen as a matrix analogue of the well-
known “multiplicative / exponential weights” (EW) algorithm
for learning in bandits and games [16], [32]. In the context
of quantum games, [17] showed that (MMW) can be used
to compute the Nash equilibrium of two-player, zero-sum
quantum games by running it for 𝑇 iterations and taking the
time-average X̄ = (1/𝑇)∑𝑇

𝑡=1 X(𝑡) of the generated states;
if the learning rate of (MMW) is chosen appropriately –
specifically, as 𝜂 = O(1/

√
𝑇) – the algorithm’s output state

X̄ is an O(1/
√
𝑇)-equilibrium of the underlying game.

Beyond the two-player, zero-sum case however, the behavior
of (MMW) in general quantum games is not well understood.
Moreover, an additional limitation from a learning viewpoint
is that the guarantees of (MMW) concern the time-averaged
state X̄ and not the induced sequence of play X(𝑡). The
behavior of the former can be quite different from the
latter, even in min-max quantum games; in particular, as
was shown in [19], even in the continuous-time limit where
the algorithm’s learning rate is taken arbitrarily small, X(𝑡)
may fail to converge altogether.

In view of this, we will take an approach similar to [19],
and we will focus on the continuous-time limit of (MMW),
namely the dynamics

¤Y𝑖 = V𝑖 (X) X𝑖 = 𝚲(Y𝑖) B
exp(Y𝑖)

tr[exp(Y𝑖)]
(MMWD)

with Y𝑖 ∈ Y 𝑖 B ℍ𝑑𝑖 , as per (MMW). The benefit of this
reformulation is that it allows us to focus squarely on the
dynamics’ structural properties without being bogged down by
hyperparameter questions and the like. We begin our analysis
below by deriving the induced dynamics of the players’ mixed
quantum states X𝑖 ∈ X 𝑖 .
The quantum state dynamics of MMW: Under (MMWD),
the evolution of the players’ mixed states X (𝑡) is described
implicitly via that of the auxiliary matrix Y (𝑡). However,
obtaining an explicit expression for the dynamics of X (𝑡)
is considerably more difficult because the rules of matrix
calculus do not provide an analytic expression for the tensor
derivative. Following [33], we will circumvent this difficulty
by taking a unitary eigendecomposition of X of the form
X =

∑𝑑
𝛼=1 𝑥𝛼u𝛼u†

𝛼, where 𝑥𝛼 ≥ 0, u𝛼 ∈ H is a unit-norm
eigenvector of X corresponding to 𝑥𝛼. Since, in general, X
and V do not commute, the eigenvalues and eigenvectors of
X will evolve in a coupled manner determined by (MMWD).

To make this coupling explicit, we will suppress player
indices for notational simplicity, and we will differentiate X
in (MMWD) with respect to 𝑡. Doing this we obtain:

¤X =
1

tr[exp(Y)]
𝑑

𝑑𝑡
exp(Y) − exp(Y)

tr[exp(Y)]2 tr
[
𝑑

𝑑𝑡
exp(Y)

]
and hence, by taking Fréchet derivatives [34], we get:

𝑑

𝑑𝑡
exp(Y) =

∫ 1

0
𝑒 (1−𝑠)Y ¤Y𝑒𝑠Y 𝑑𝑠



= tr[exp(Y)]
∫ 1

0
X1−𝑠V(X)X𝑠 𝑑𝑠 (8)

which, after some algebraic manipulations, ultimately yields

¤X =

∫ 1

0
X1−𝑠V(X)X𝑠 𝑑𝑠 − exp Y

tr[exp(Y)]

∫ 1

0
tr[XV(X)] 𝑑𝑠

=

∫ 1

0
X1−𝑠V(X)X𝑠 𝑑𝑠 − tr[XV(X)]X (9)

Thus, applying u†
𝛼 to the left and u𝛽 to the right of (9), we

get:

u†
𝛼
¤Xu𝛽 =

∫ 1

0
𝑥1−𝑠
𝛼 𝑉𝛼𝛽𝑥

𝑠
𝛽 𝑑𝑠 − 𝑥𝛼𝛿𝛼𝛽

∑︁
𝜅

𝑥𝜅𝑉𝜅𝜅 (10)

Finally, denoting u†
𝛼
¤Xu𝛽 by [ ¤X]𝛼𝛽 , equation (10) gives the

quantum replicator dynamics (QRD):

[ ¤X]𝛼𝛽 =


𝑥𝛼 [𝑉𝛼𝛼 −∑

𝜅 𝑥𝜅𝑉𝜅𝜅 ] for 𝛼 = 𝛽

𝑥𝛽 − 𝑥𝛼

log 𝑥𝛽 − log 𝑥𝛼
𝑉𝛼𝛽 for 𝛼 ≠ 𝛽

(QRD)

The diagonal part of (QRD) is formally analogous to the
replicator dynamics of evolutionary game theory [35]–[37]
and captures the evolution of the eigenvalues of X (𝑡). Thus,
(QRD) provides an explicit expression for the evolution of
mixed states under (MMWD). Next, we will study in detail
how the classical and quantum components of (MMWD)
interface to determine the player’s long-run behavior.

IV. CONVERGENCE AND STABILITY

We are now in a position to proceed with our convergence
analysis. A key element to keep in mind here is that a
quantum game may admit several Nash equilibria, so it is not
reasonable to expect a global convergence result that applies
to all games – this, in fact, would violate the impossibility
result of [38]. In view of this, we will focus on the next
best thing, that is, to identify those quantum states that are
“locally stable and attracting” as formalized below.

Notions of stability and convergence: To state our results,
recall first that a flow on an abstract metric space Z is a
continuous map 𝜙 : ℝ × Z → Z such that (a) 𝜙0 (𝑧) = 𝑧;
and (b) 𝜙𝑡+𝑠 (𝑧) = 𝜙𝑡 (𝜙𝑠 (𝑧)) for all 𝑡, 𝑠 ∈ ℝ and all 𝑧 ∈ Z .
Informally, a flow is usually generated by the solution orbits of
a system of well-posed ordinary differential equations (ODEs),
such as (MMWD): in this interpretation, 𝜙𝑡 (𝑧) simply denotes
the position at time 𝑡 of the ODE solution that starts at 𝑧 at
time 𝑡 = 0.

With this in mind, given a point 𝑝 ∈ Z , we will say that

(i) 𝑝 is (Lyapunov) stable if any orbit of (MMWD) that
starts close enough to 𝑝 remains close enough; formally,
for every neighborhood U of 𝑝 in Z , we posit that
there exists some (smaller) neighborhood U ′ of 𝑝 in
Z such that 𝜙𝑡 (U ′) ⊆ U for all 𝑡 ∈ ℝ.

(ii) 𝑝 is attracting if all nearby orbits converge to 𝑝;
formally, there exists a neighborhood U such that
lim𝑡→∞ 𝜙𝑡 (𝑧) = 𝑝 for all 𝑧 ∈ U .

In what follows, we will seek to characterize precisely the
states that are “stable and attracting” under (MMWD) – or,
in more formal language, asymptotically stable.

Learning in the spectraplex: Moving forward, a quick
look at the quantum replicator dynamics (QRD) reveals the
following structural property: an eigenvalue of X that is
initially zero in (QRD) will always remain zero; likewise,
an eigenvalue that is initially positive, will always remain
positive. Formally, this means that the kernel ker(X) of X
remains invariant under (QRD); hence, given that the linear
span of a Hermitian matrix is the orthocomplement of its
kernel, the same holds for im(X).

The fact that the kernel – or, equivalently, the image – of a
density matrix remains invariant under (QRD) is the quantum
analogue of the fact that the support of a mixed strategy profile
remains invariant under the standard replicator dynamics. In
the context of finite games, an immediate consequence of
this invariance is that all pure strategy profiles are stationary
(as zero-dimensional faces of the simplex). This property
extends to (QRD) and, in fact, to the entire class of mixed-
state dynamics under study: formally, under (QRD), all pure
quantum states are stationary.

That being said, the major qualitative difference between the
quantum and classical regimes is that, in quantum games,
there is a continuum of pure states, namely the entire manifold
Ψ of rank 1 density matrices (a product of spheres). By
contrast, in finite games, the pure states are the corners of the
simplex Δ spanned by the player’s pure strategies, so they are
finite in number and isolated. As a result, in classical finite
games, a pure strategy profile can be asymptotically stable;
in quantum games, since every pure state is surrounded by
other invariant states, it cannot.

A second major difference is that, in finite games, strict Nash
equilibria are robust: a small perturbation of the payoffs
of the game does not change the game’s strict equilibria.
In quantum games, this robustness disappears: indeed, the
variational characterization (VI) of Nash equilibria means that
V(X∗) must be an element of the normal cone to X at X∗;
however, the normal cone to the spectraplex at a matrix of rank
1 has empty topological interior, so the required membership
property cannot be robust (for a graphical illustration, see
Fig. 1). In particular, any perturbation to the payoff structure
of a quantum game may displace the equilibrium in question
on the manifold of pure states Ψ.

Consistency and variational stability: In view of the above,
we can draw two major conclusions for the quantum setting:

1) Any concept of asymptotic stability must also include a
notion of consistency: a state cannot be accessed if it is
absent from the linear span of the dynamics’ initial state.

2) Any concept of robustness must incorporate a notion of
variational stability: small perturbations to an equilibrium
must tend to reinstate it.

We formalize these ideas as follows:



pNC∆(p)

x

v(x)

v(p)

U

NCX (P)

P

X

V(X)

U ∩ XP

V(P)

Fig. 1: The geometric discrepancy between the classical and quantum
regimes (left and right respectively). In finite games, the normal
cone NCΔ (𝑝) to the simplex at a pure strategy 𝑝 has nonempty
topological interior, so pure Nash equilibria are generically robust:
if 𝑣(𝑝) is normal to Δ at 𝑝, it will remain normal to Δ after a small
perturbation. On the other hand, in quantum games, the normal
cone NCX (P) to the spectraplex at a pure state P is a ray, so pure
Nash equilibria are not robust. We also note the different geometry
of pure states: in the simplex, pure strategies are isolated extreme
points; in the spectraplex, pure states form a continuous manifold.

Definition 1. The domain of consistency of a state P ∈ X
is the set X P B {X ∈ X : ker(X) ≤ ker(P)}, i.e., the set
of mixed states whose linear span contains that of P. Then,
given a flow 𝝌 : ℝ×X → X , we will say that:

1) P is consistently attracting if it attracts all nearby
consistent initializations, i.e., it admits a neighborhood U
such that lim𝑡→∞ 𝝌𝑡 (X) = P for all X ∈ U ∩X P.

2) P is consistently asymptotically stable if it is stable and
consistently attracting.

Finally, to ensure a certain degree of stability to perturbations,
we will consider the following notion of variational stability:

Definition 2. We say that X∗ ∈ X is variationally stable if
there exists a neighborhood U of X∗ in X such that

tr[V(X) (X − X∗)] < 0 for all X ∈ U\{X∗}. (VS)

Intuitively, Definition 1 captures precisely the accessibility
condition that we discussed above, while Definition 2 should
be seen as an equilibrium refinement in the spirit of the
seminal concept of evolutionary stability [39], [40].

With all this in hand, our main result is as follows:

Theorem 1. Fix some state X∗ ∈ X of a quantum game
Q ≡ Q(N ,Ψ, 𝑢). Then:

a) If X∗ is consistently asymptotically stable, then it is pure.

b) If X∗ satisfies (VS), it is consistently asymptotically stable.

Before presenting the proof of Theorem 1, some remarks
are in order. Perhaps the most important one is that, if the
standard notion of asymptotic stability is ruled out by the
geometry of the game’s state space, (MMWD) achieves the
next best thing: by definition, states that are consistently
asymptotically stable attract all but a measure zero of nearby
initial conditions, and Theorem 1 shows that only pure states
can have this property. This selection result has important
implications for quantum games because it shows that the
MMW rule essentially “collapses” an initial mixed state to a
specific pure state – and this, despite the fact that any mixed

state can be prepared by an infinity of combinations of pure
states.

On the flip side of all this, the implication that variationally
stable states are also (consistently) asymptotically stable
provides a relevant convergence criterion for (MMWD) and
indicates an inherent robustness to variations of player beliefs
and predictions. In particular, since (VS) only involves the
primitives of the underlying game, the fact that such states
are attracting under the MMW dynamics means that they
can be seen as universal attractors – and since only pure
states can have this property, we also infer indirectly that
variationally stable states are a fortiori pure.

The proof of the first part of Theorem 1 consists of three
steps. First, we construct a measure 𝜇 on riX that is invariant
under the flow 𝝌, i.e., 𝜇(𝐴) = 𝜇(𝝌𝑡 (𝐴)) for all measurable
sets 𝐴 of riX and 𝑡 ≥ 0, where by 𝝌𝑡 (𝐴) we denote the
image of 𝐴 after time 𝑡, and by riX the relative interior of
X . For this, we restrict the dynamics over the dual space Y
to a quotient space Z that has the same dimension as X ,
and invoke a volume-conservation argument. Next, we show
that if X∗ ∈ riX , it cannot be consistently asymptotically
stable. To prove this, we need the following lemma, which,
in words, says that if X∗ ∈ riX is consistently asymptotically
stable, then all the orbits starting nearby converge uniformly
in time, and whose proof lies at the end of the section.

Lemma 1. Suppose that X∗ ∈ riX is consistently asymp-
totically stable under (MMWD). Then, for every sufficiently
small compact neighborhood U of X∗ in riX , we have

lim
𝑡→∞

sup
X∈U

∥𝝌𝑡 (X) − X∗∥ = 0. (11)

Finally, we show that if X∗ is consistently asymptotically
stable, it is pure, using a reduction argument and considering
faces of X that contain X∗ in their relative interior.

The first two steps preclude convergence to full-rank equi-
libria, while excluding lower-rank equilibria requires more
delicate arguments, where the notion of consistency plays a
major role (and has no classical counterpart), and is succeeded
in the third step. With the above mind, we are now ready to
proceed to the proof of Theorem 1.

Proof of Theorem 1(a). We will present our proof in three
steps, as described earlier on.

Step 1: First, we will need to collapse the dual space Y of
V ≡ ℍ𝑑 to a subspace Z with constant trace. The reason for
this is that the map 𝚲 is not injective, since for all 𝜆 ∈ ℝ, we
have 𝚲(Y + 𝜆I) = 𝚲(Y). This means that the inverse image
of any point in im𝚲 always contains a copy of the real line.
This collapse is intended to “quotient out” this redundancy
so as to enable volume comparisons later on. To succeed this,
consider the transformed matrix variables

Z = Y − (1/𝑑) tr[Y]I (12)



so tr Z = 0 for all Y ∈ Y . Formally, this transformation can
be represented via the map 𝚷 : Y → Z , where

Z = {Z ∈ Y : tr Z = 0} (13)

and 𝚷 : Y ↦→ 𝚷(Y) = Z is defined via (12) above. As such,
Z can be seen as a representative of the equivalence relation
Y ∼ Y + 𝜆I, 𝜆 ∈ ℝ, so, in turn, Z can be identified with
the quotient Y/∼. By the definition of 𝚲, we have 𝚲(Y) =
𝚲(𝚷(Y)) = 𝚲(Z) for all Y ∈ Y , and (MMWD) gives

¤Z =
𝑑

𝑑𝑡
[Y − (1/𝑑) tr[Y]I] = ¤Y − (1/𝑑) tr[ ¤Y]I

= V(𝚲(Y)) − (1/𝑑) tr[V(𝚲(Y))]I
= V(𝚲(Z)) − (1/𝑑) tr[V(𝚲(Z))]I (14)

so we can rewrite (MMWD) in terms of Z as

¤Z = V(X) − (1/𝑑) tr[V(X)]I X = 𝚲(Z) (MMWDZ )

Since tr[ ¤Z] = tr[V(X)] − (1/𝑑) tr[V(X)] tr I = 0, it follows
that any traceless initial condition of (MMWDZ ) will remain
traceless – and hence remain in Z for all 𝑛 ≥ 0. We thus
conclude that (MMWDZ ) is a well-posed dynamical system
on Z with induced flow 𝜻 : ℝ × Z → Z . The following
proposition states that the (MMWDZ ) dynamics are volume-
preserving, and this key property will be used to construct
the invariant measure 𝜇.

Proposition 1. Let W ⊆ Z be an open set of initial
conditions of (MMWDZ ), and let W 𝑡 = 𝜻 𝑡 (W), 𝑡 ≥ 0,
denote the evolution of W under the flow 𝜻 : ℝ×Z → Z of
(MMWDZ ). Then, vol(W 𝑡 ) = vol(W) for all 𝑡 ≥ 0, where
the form vol(·) stands for the Lebesgue measure on Z .

The proof of Proposition 1 is based on the fact that each
player’s payoff function is individually linear in the player’s
own density matrix, so the individual gradient fields V𝑖 do
not depend on X𝑖 . The full proof lies at the end of the section.

Continuing with the proof of Theorem 1, by descending
to the quotient space Z , the map 𝚲 factors through Z as
𝚲0 : Z → X with 𝚲 = 𝚲0 ◦ 𝚷. Now, let 𝜆 denote the
Lebesgue measure on Z , and let 𝜇 denote the pushforward
of 𝜆 to X via 𝚲0, i.e., 𝜇(𝐴) = 𝜆(𝚲−1

0 (𝐴)) for all Borel sets
𝐴 ⊆ X . Finally, by Proposition 1 and since 𝜻 conjugates 𝝌
in the sense that 𝝌𝑡 ◦𝚲0 = 𝚲0 ◦ 𝜻 𝑡 for all 𝑡 ≥ 0, we get that
𝜇(𝝌𝑡 (𝐴)) = 𝜇(𝐴) for all Borel sets 𝐴 in riX and 𝑡 ≥ 0.

Step 2: We will now show that X∗ cannot belong to riX . For
the sake of contradiction, suppose X∗ ∈ riX is consistently
asymptotically stable, and let U be a sufficiently small
compact neighborhood of X∗, as per Lemma 1. Then, it
holds lim𝑡→∞ supX∈U ∥𝝌𝑡 (X) − X∗∥ = 0, which implies that:

lim
𝑡→∞

𝜇(𝝌𝑡 (U )) = 𝜇({X∗}) = 0 < 𝜇(U ). (15)

However, by Step 1 of the proof, we have that
lim𝑡→∞ 𝜇(𝝌𝑡 (U )) = 𝜇(U ), since 𝜇(𝝌𝑡 (U )) = 𝜇(U ) for all
𝑡 ≥ 0. Combining it with (15), we arrive at a contradiction.

Step 3: Suppose, finally, that X∗ is consistently asymptoti-
cally stable with rank(X∗) > 1. Note that if X∗ is full-rank,
it cannot be consistently asymptotically stable, as shown at
the Step 2 of the proof. Define the set:

AX∗ B {X ∈ X : ker(X) ≥ ker(X∗)} (16)

which is convex. Hence, considering the restriction of the
dynamics on AX∗ , Step 2 of the proof shows that a point in
riAX∗ cannot be consistently asymptotically stable on the
induced topology. So, it remains to show that X∗ cannot be
consistently asymptotically stable.

For the sake of contradiction, suppose it is. Then, according
to Definition 1, there exist U of X∗ in X such that
lim𝑡→∞ 𝝌𝑡 (X) = X∗ for all X ∈ U ∩ XX∗ . But, since U
is a neighborhood of X∗ in X , we have that

(U ∩XX∗ )∩AX∗ = U∩{X′ ∈ X : ker(X′) = ker(X∗)} (17)

is a neighborhood of X∗, and, thus, the restriction of U∩{X′ ∈
X : ker(X′) = ker(X∗)} on AX∗ is a neighborhood of X∗ in
AX∗ . Therefore, by our previous argument on the induced
dynamics on AX∗ , there exists X0 ∈ U∩{X′ ∈ X : ker(X′) =
ker(X∗)} such that 𝝌𝑡 (X0) ̸→ X∗, as 𝑡 → ∞. This contradicts
our assumption, so the proof is complete. ■

The second part of Theorem 1 leverages an energy argument
in the spirit of Lyapunov’s direct method. In the spirit of the
analysis of the classical EW algorithm [16], [25], a natural
choice of energy function is

𝐸 (𝑡) = tr[X∗ log X∗] + log tr[exp(Y(𝑡))] − tr[X∗Y(𝑡)] (18)

which is in turn linked to (VS) via Lemma 2 below:

Lemma 2. Let X (𝑡), 𝑡 ≥ 0, be a trajectory of play under
(MMWD), and let 𝐸 (𝑡) be defined as per (18). Then:

¤𝐸 (𝑡) = tr[V(X (𝑡)) (X (𝑡) − X∗)] (19)

By a direct calculation, it can be shown that (i) 𝐸 (𝑡) ≥ 0
with equality if and only if X∗ = 𝚲(Y(𝑡)); and (ii) 𝐸 (𝑡) → 0
if and only if 𝚲(Y(𝑡)) → X∗ as 𝑡 → ∞. Thus, putting
everything together, we conclude that lim𝑡→∞ 𝐸 (𝑡) exists;
then, by a trapping argument, it can be shown that there
exists a sequence of times 𝑡𝑛 → ∞ such that X (𝑡𝑛) → X∗,
which allows us to conclude that 𝐸 (𝑡) → 0 and ultimately
yields our claim. Specifically, we have:

Proof of Theorem 1(b). Suppose that X∗ is variationally sta-
ble, i.e., tr[V(X) (X−X∗)] < 0, for all X ∈ U\{X∗}, where U
is a neighborhood of X∗. Then, by Lyapunov’s direct method
for the energy function 𝐸 (𝑡) defined in (18), we get that X∗

is stable, thus, there exists neighborhood U ′ of X∗, such that
X(𝑡) ∈ U for all 𝑡 ≥ 0, if X(0) ∈ U ′. This means that if
X(0) ∈ U ′, then tr[V(X(𝑡)) (X(𝑡) − X∗)] < 0 for all 𝑡 ≥ 0.
In what follows, we will show that X(𝑡) → X∗.

Since X(𝑡) ∈ U for all 𝑡 ≥ 0, and using Lemma 2 along
with (VS), we obtain that ¤𝐸 (𝑡) = tr[V(X(𝑡)) (X(𝑡)−X∗)] < 0.
Hence, 𝐸 (𝑡) is decreasing if X(0) ∈ U ′.



Now, we will show that X∗ is an 𝜔-limit of the flow, i.e., there
exists a sequence {𝑡𝑛}𝑛∈ℕ such that X(𝑡𝑛) → X∗ as 𝑛 → ∞.
For the sake of contradiction, suppose such a sequence does
not exist. Then, ∥X(𝑡) − X∗∥ is bounded away from zero,
which implies that there exists 𝑐 > 0 such that

tr[V(X(𝑡)) (X(𝑡) − X∗)] < −𝑐 (20)

Integrating over time, we get 𝐸 (𝑡) − 𝐸 (0) < −𝑐𝑡, which
implies that 𝐸 (𝑡) → −∞ as 𝑡 → ∞. This contradicts the non-
negativity property of the energy function, thus, we conclude
that there exists a sequence {𝑡𝑛}𝑛∈ℕ such that X(𝑡𝑛) → X∗ as
𝑛 → ∞. Hence, we get that 𝐸 (𝑡𝑛) → 0 as 𝑛 → ∞. Therefore,
since 𝐸 (𝑡) is decreasing and 𝐸 (𝑡𝑛) → 0, we conclude that
𝐸 (𝑡) → 0 as 𝑡 → ∞. Thus, we conclude that X(𝑡) → X∗,
i.e., X∗ is consistently asymptotically stable. ■

Finally, we present the proofs of the intermediate results,
required for our analysis.

Proof of Lemma 1. First of all, since X∗ ∈ riX , we have
that ker(X∗) = {0}, which implies that XX∗ = riX . Hence,
for any open set 𝑂 in riX , it holds that 𝑂 ∩ XX∗ = 𝑂.
Now, let U0 be the basin of attraction of X∗, according to the
definition of the consistent asymptotic stability in Definition 1,
and let U ⊆ U0 be a compact neighborhood of X∗. Suppose,
for the sake of contradiction, that supX∈U ∥𝝌𝑡 (X) −X∗∥ ̸→ 0.
This implies that there exists 𝜀 > 0, a sequence {𝑡𝑛}𝑛∈ℕ with
𝑡𝑛 → ∞ as 𝑛 → ∞, and X𝑛 ∈ U for 𝑛 ∈ ℕ, such that

∥𝝌𝑡𝑛
(X𝑛) − X∗∥ ≥ 𝜀 for all 𝑛 ∈ ℕ (21)

Since U is compact, we may assume (by taking subsequences,
if necessary) that X𝑛 converges to some limit point X∞ ∈ U .
Now, since X∗ is Lyapunov stable, there exists a neighborhood
U ′ of X∗, such that the trajectory 𝝌𝑡 (X) remains within 𝜀/2-
distance of X∗, if X ∈ U ′, or,

∥𝝌𝑡 (X) − X∗∥ < 𝜀/2 for all 𝑡 ≥ 0 and X ∈ U ′ (22)

Define the hitting time 𝜏 B inf{𝑡 ≥ 0 : 𝝌𝑡 (X∞) ∈ U ′} as the
first time that the trajectory enters U ′ when starting from X∞.
It is easy to see that 𝜏 < ∞, since X∞ ∈ U ⊆ U0, and, thus,
∥𝝌𝑡 (X∞) − X∗∥ → 0 as 𝑡 → ∞ by the asymptotic stability
of X∗. By continuity of 𝝌, we readily get that there exists
a neighborhood D of X∞ such that 𝝌𝜏 (D) ⊆ U ′′, where
U ′′ is a neighborhood of X∗ with ∥𝝌𝑡 (X) − X∗∥ < 𝜀 for
all 𝑡 ≥ 0 and X ∈ U ′′. Since X𝑛 → X∞, we conclude that
X𝑛 ∈ D for all sufficiently large 𝑛, which, in turn, implies
that 𝝌𝜏 (X𝑛) ∈ U ′′. Moreover, by definition of the sequence
{𝑡𝑛}𝑛∈ℕ, we have that 𝑡𝑛 → ∞, which gives that 𝑡𝑛 > 𝜏 for 𝑛
sufficiently large, since 𝜏 < ∞, as argued. Thus, for 𝑛 large,
we have ∥𝝌𝑡𝑛

(X𝑛) − X∗∥ < 𝜀, which contradicts (21). ■

Proof of Proposition 1. The key observation here is that
the dynamics (MMWDZ ) are incompressible – that is,
divergence-free. Indeed, since V𝑖 does not depend on X𝑖

(it is not possible to suppress player indices here), we readily

Fig. 2: Convergence of trajectories to variationally stable equilibria
in a 2-player quantum anti-coordination game, visualized in Bloch
spheres. The green trajectories correspond to player 1, while the
red ones to player 2. The blue markers indicate the initial points of
the trajectories. In each subfigure separately, the trajectories starting
with markers of the same shape correspond to the the trajectories of
the two players obtained under the same execution of the dynamics.

have ∇Z⊤
𝑖
V𝑖 (𝚲(Y)) = 0 for all 𝑖 ∈ N . This immediately

implies that the field

W𝑖 (Z) = V𝑖 (𝚲(Z)) − (1/𝑑𝑖) tr[V𝑖 (𝚲(Z))]I (23)

has divZ (W(Z)) = 0, so (MMWDZ ) is incompressible. Our
claim then follows from Liouville’s formula [41]. ■

Proof of Lemma 2. Differentiating the energy function 𝐸 (𝑡)
with respect to 𝑡, and using (8) we obtain:

𝑑

𝑑𝑡
𝐸 (𝑡) = 1

tr[exp(Y(𝑡))]
𝑑

𝑑𝑡
tr[exp(Y(𝑡))] − tr[X∗ ¤Y(𝑡)]

=

∫ 1

0
tr
[
X1−𝑠V(X (𝑡))X𝑠

]
𝑑𝑠 − tr[X∗V(X(𝑡))]

= tr[V(X (𝑡)) (X (𝑡) − X∗)] (24)

and, the proof is complete. ■

V. SIMULATION SETUP

We consider a 2-player symmetric quantum game, which
is obtained as the quantum analog of the 2-player finite
symmetric game with 2 actions, {𝛼1, 𝛼2} and {𝛽1, 𝛽2} and

payoff matrix 𝑃 =

(
1 2
2 1

)
, same for both players. The

action profiles (𝛼1, 𝛽2), (𝛼2, 𝛽1) are strict Nash equilibria
of the finite game. The trajectories are visualized in Bloch
spheres [42]. The payoff information of the quantum game
is encoded in the Hermitian matrix 𝑊 = diag(1, 2, 2, 1), as
per (5), which is the same for both players. The green lines
correspond the trajectories of player 1, while the red ones to
the trajectories of player 2. The blue marker points correspond
to the initial points of the trajectories, and in each subfigure
of Fig. 2 separately, the trajectories starting with markers
of the same shape correspond to the trajectories of the two
players obtained under the same execution of the dynamics
(10 different initializations of the dynamics in total, 5 in each
subfigure). In the left subfigure, we see that the trajectories of
the first and second player converge to the density matrices(
1 0
0 0

)
and

(
0 0
0 1

)
, accordingly, i.e., the top and bottom

points of the sphere, while in the right subfigure, we see the



opposite. This is happening because the initial conditions of
the dynamics in the left subfigure lie in the basin of attraction
of the one variationally stable equilibrium, while in the right
subfigure lie in the basin of the other.

VI. CONCLUDING REMARKS

When quantum computing models are deployed in a multi-
agent context – from autonomous vehicles to quantum GANs
– the players’ interaction landscape changes dramatically
relative to classical interactions. The study of game-theoretic
learning in this quantum setting is still in its infancy, so it
is not clear at this stage what can be expected by quantum
players with bounded rationality. In this regard, the study
of the (MMWD) provides the following important insights:
the geometric structure of quantum state space leads to an
inflation of “learning traps” (stationary states) that have no
classical counterpart; nonetheless, the only states that can be
stable and attracting under (MMWD) are the game’s pure
quantum equilibria. Solidifying our understanding of the limits
of quantum game-theoretic learning is a particularly fruitful
research direction with potentially far-reaching implications
for the deployment of multi-agent quantum computing
systems.
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