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Abstract

Understanding the convergence landscape of multi-agent learning is a fundamental problem
of great practical relevance in many applications of artificial intelligence and machine learn-
ing. While it is known that learning dynamics converge to Nash equilibrium in potential
games, the behavior of dynamics in many important classes of games that do not admit a
potential is poorly understood. To measure how “close” a game is to being potential, we
consider a distance function, that we call “potentialness”, and which relies on a strategic
decomposition of games introduced by Candogan et al. (2011). We introduce a numerical
framework enabling the computation of this metric, which we use to calculate the degree of
“potentialness” in generic matrix games, as well as (non-generic) games that are important
in economic applications, namely auctions and contests. Understanding learning in the lat-
ter games has become increasingly important due to the wide-spread automation of bidding
and pricing with no-regret learning algorithms. We empirically show that potentialness
decreases and concentrates with an increasing number of agents or actions; in addition, po-
tentialness turns out to be a good predictor for the existence of pure Nash equilibria and the
convergence of no-regret learning algorithms in matrix games. In particular, we observe that
potentialness is very low for complete-information models of the all-pay auction where no
pure Nash equilibrium exists, and much higher for Tullock contests, first-, and second-price
auctions, explaining the success of learning in the latter. In the incomplete-information
version of the all-pay auction, a pure Bayes-Nash equilibrium exists and it can be learned
with gradient-based algorithms. Potentialness nicely characterizes these differences to the
complete-information version.
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1 Introduction

Multi-agent systems and multi-agent learning have drawn considerable attention, owing to their massive
deployment in machine learning enabled applications and their increasing economic impact, with agents
automatically ordering goods, setting prices, or bidding in auctions (Yang & Wang, 2020). In contrast to
other applications of machine learning, the input in multi-agent learning is non-stationary and depends on
the strategic behavior and learning of other agents, which leads to challenging computation and learning
problems that go well beyond the “business as usual” framework of empirical risk minimization.

The literature on learning in games has a long history and asks what type of equilibrium behavior (if any)
may arise in the long run of a process of learning and adaptation, in which agents are trying to (myopically)
maximize their payoff while adapting to the actions of other agents through repeated interactions (Fudenberg
& Levine, 1998; Hart & Mas-Colell, 2003). To that end, many learning algorithms have been developed
ranging from iterative best-response to first-order online optimization algorithms in which agents follow
their utility gradient in each step (Mertikopoulos & Zhou, 2019; Bichler et al., 2023).

It is known that the dynamics of learning agents do not always converge to a Nash equilibrium (NE)
(Daskalakis et al., 2010; Flokas et al., 2020): they may cycle, diverge, or be chaotic, even in zero-sum games,
where computing Nash equilibria is tractable (Mertikopoulos et al., 2018; Palaiopanos et al., 2017). In fact,
(Hart & Mas-Colell, 2003) showed that in general uncoupled dynamics do not converge to Nash equilibrium
in all games. With this negative result at hand, there lacks a comprehensive characterization of games that
are “learnable”; however our understanding is much better for certain classes of games.

On the one hand, no-regret algorithms and dynamics do not converge in games with only mixed Nash
equilibria (Flokas et al., 2020; Giannou et al., 2021a). On the other hand, if the underlying game is an exact
potential game, then no-regret and other learning algorithms converge to an ε-NE with minimal exploration
(Heliou et al., 2017; Mertikopoulos et al., 2024). Importantly, even though many classes of games of interest
are not exact potential games (Candogan et al., 2013a;b), experimental evidence shows that even if games are
not exact potential games, learning dynamics often converge to Nash equilibrium. Beyond exact potential
games there is no good understanding of the behavior of learning dynamics.

Partially motivated by this, Candogan et al. (2011) introduced a game decomposition that allows one to
characterize how “close” a game is to being potential by resolving it into a potential and a harmonic com-
ponent (plus a “non-strategic” part which does not affect the game’s equilibrium structure and unilateral
payoff differences). In contrast to potential games, the exponential weight / replicator dynamics – perhaps
the most widely studied no-regret dynamics – does not converge in any harmonic game, and instead exhibit
a quasi-periodic behavior known as Poincaré recurrence (Legacci et al., 2024). Based on this dynamical di-
chotomy between potential and harmonic games, we consider a measure of potentialness and analyze generic
normal-form games, as well as several classes of games steming in economic applications. We show that
potentialness provides a useful indicator for both the existence of pure Nash equilibria and the convergence
of no-regret algorithms. While the latter was already part of the motivation of Candogan et al. (2013a)
the former is a novel connection emerging from our empirical exploration. In particular, we find that the
average potentialness in random games decreases and concentrates on a value with increasing numbers of
agents or actions: Games with a potentialness below 0.4 rarely exhibit convergence, while games with val-
ues larger than 0.6 mostly do. We also categorize specific games, such as Jordan’s matching pennies game
(Jordan, 1993), where learning dynamics are known not to converge (or, more precisely, to converge to a
non-terminating cycle of best responses).

Economically motivated games such as auctions and contests have more structure in the payoffs. The
analysis of these games is relevant today because pricing and bidding are increasingly being automated via
learning agents. Learning agents are used to bid in display ad auctions, but they are also used by automated
agents that set prices on online platforms such as Amazon (Chen et al., 2016). Whether we can expect the
dynamics of such multi-agent interactions to converge to an equilibrium or exhibit inefficient price cycles or
even chaos, is an economically important question. We find that the potentialness is very low for all-pay
auctions and much higher for Tullock contests, first- and second-price auctions. Indeed, our experiments
show that learning algorithms do not converge for all-pay auctions, but they do so for the other economic
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games. The low potentialness of the all-pay auction also connects to the fact that it does not possess a pure
Nash equilibrium.

In summary, we use the decomposition of Candogan et al. (2011) to define a metric that helps us characterize
whether a game is learnable under standard no-regret learning dynamics, and to what extent. This is in stark
contrast to a brute-force approach, where different initial conditions need to be explored. Our analysis of
economic games is motivated by the observation that first-order no-regret dynamics - such as the replicator
dynamics in particular - appear to converge in a wide array of classes of games with important applications,
such as auctions and contests. Known sufficient conditions for convergence such as monotonicity or variational
stability (Mertikopoulos & Zhou, 2019) are not even satisfied in simple economic games such as the first-price
auction (Bichler et al., 2025). However, the notion of potentialness provides a crisp characterization of these
differences as it does in simple normal-form games such as Matching Pennies and the Prisonner’s Dilemma.
Overall, potentialness provides us with a means to characterize convergence in the many games where known
sufficient conditions appear to be too strong. This can help us analyze algorithmic markets where learning
algorithms are increasingly used to submit bids or set prices (Bichler et al., 2024).

2 Related Literature

In this paper, we focus throughout on repeated normal-form games, where players move simultaneously
and receive the payoffs as specified by the combination of actions played. The theory of learning in games
examines what kind of equilibrium arises as a consequence of a process of learning and adaptation, in which
agents are trying to maximize their payoff while learning about the actions of other agents in repeated games
(Fudenberg & Levine, 1998). For example, fictitious play is a natural method by which agents iteratively
search for a pure Nash equilibrium (NE) and play a best response to the empirical frequency of play of other
players (Brown, 1951). Several algorithms have been proposed based on best or better response dynamics for
finite and simultaneous-move games, ultimately leading to a vast corpus of literature (Abreu & Rubinstein,
1988; Hart & Mas-Colell, 2000; Fudenberg & Levine, 1998; Hart & Mas-Colell, 2003; Young, 2004), while
more recent contributions draw on first-order online optimization methods such as online gradient descent
or online mirror descent to study the question of convergence (Mertikopoulos & Zhou, 2019; Bichler et al.,
2023).

Learning dynamics do not always converge to equilibrium (Daskalakis et al., 2010; Flokas et al., 2020).
Learning algorithms can cycle, diverge, or be chaotic; even in zero-sum games, where the NE is tractable
(Mertikopoulos et al., 2018; Palaiopanos et al., 2017). Sanders et al. (2018) argues that chaos is typical
behavior for more general matrix games. Recent results have shown that learning dynamics do not converge
in games with mixed Nash equilibria (Giannou et al., 2021a;b). On the positive side, Mertikopoulos & Zhou
(2019) showed conditions for which no-external-regret learning algorithms result in a NE in finite games if
they converge. However, in general, the dynamics of matrix games can be arbitrarily complex and hard to
characterize (Andrade et al., 2021).

While there is no comprehensive characterization of games that are “learnable” and one cannot expect
that uncoupled dynamics lead to NE in all games (Hart & Mas-Colell, 2003), there are some important
results regarding the broad class of no-regret learning algorithms. One can distinguish between internal
(or conditional) regret and a weaker version, called ‘external (or unconditional) regret’. External regret
compares the performance of an algorithm to the best single action in retrospect; internal regret, on the
other hand, allows one to modify the online action sequence by changing every occurrence of a given action by
an alternative action. For learning rules that satisfy the stronger no-internal regret condition, the empirical
frequency of play converges to the game’s set of correlated equilibria (Foster & Vohra, 1997; Hart & Mas-
Colell, 2000). The set of correlated equilibria (CE) is a non-empty, convex polytope that contains the convex
hull of the game’s Nash equilibria. The coordination in CE can be implicit via the history of play (Foster
& Vohra, 1997). On the other hand, algorithms that are no-external-regret learners converge by definition
to the set of coarse correlated equilibria (CCE) in finite games (Foster & Vohra, 1997; Hart & Mas-Colell,
2000). This set, in turn, contains the set of CE such that we get NE ⊂ CE ⊂ CCE. In contrast to correlated
equilibria, in a coarse correlated equilibrium, every player could be playing a strictly dominated strategy
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for all time (Viossat & Zapechelnyuk, 2013), which makes CCE a fairly weak, non-rationalizable solution
concept.

An important class of games in which a variety of learning algorithms converge to NE is that of potential
games (Monderer & Shapley, 1996). In these games, the difference in any player’s utility under a change
in strategy is captured by the variation of a global potential function; as a consequence, any sequence of
improvements by players converges to a pure NE (Heliou et al., 2017; Christodoulou et al., 2012; Anagnostides
et al., 2022). Remarkably, the class of congestion games is equivalent to that of potential games (Rosenthal,
1973; Monderer & Shapley, 1996); however, while many games are not potential games, no-regret algorithms
still converge to NE, raising the following question: what fundamental property enables this convergence?

Partially motivated by this question, Candogan et al. (2011) propose a decomposition of finite normal form
games into three components, with distinctive strategical properties. This decomposition can be leveraged
to approximate a given game with a potential game, which in turn can be used to characterize the long-term
behavior of the dynamics in the original game (Candogan et al., 2013a;b). In particular, Candogan et al.
(2013a) examine the convergence of best-response and logit-best-response dynamics – in the sense of Blum
& Kalai (1999) – and they show that, if only one player updates per turn, the dynamics remain convergent
in slight perturbations of potential games.1

An important caveat is that the class of dynamics considered by Candogan et al. (2013a) can result in positive
regret. Moreover, unlike the setting studied here, players do not move simultaneously but sequentially. Our
focus is broader, as we aim to understand the behavior of no-regret dynamics across the full spectrum of
potentialness – not just in near-potential games – and to determine where the convergence of regularized no-
regret learning methods fails. In doing so, we also provide a first positive answer to the open question posed
by Candogan et al. (2013a), who asked whether the replicator/follow-the-regularized-leader dynamics, a
staple among no-regret learning schemes, remains convergent under small perturbations of potential games.

3 Preliminaries

In this section, we recall the definitions of normal-form game, Nash equilibrium, and potential game.
Definition 1 (Normal-form game). A finite normal-form game consists of a tuple G = (N ,A, u), where

• N is a finite set of N players, indexed by i;

• A = A1 × · · · × AN , where Ai is a finite set of Ai actions available to player i;

• u = (u1, . . . , uN ), where ui : A 7→ R is a payoff or utility function for player i ∈ N .

An element a = (a1, . . . , aN ) ∈ A is referred to as an action profile; we denote by A =
∏

i Ai the total
number thereof.

A normal-form game is hence fully specified by the prescription of the strategies available to each player,
and of the outcomes resulting from a simultaneous and strategic interaction.

Rather than explicitly selecting an action – also called a pure strategy – from the available options, players
may instead mix, meaning they randomize over their available actions according to a probability distribution,
referred to as a mixed strategy.
Definition 2 (Mixed strategy). Given the normal-form game G = (N ,A, u), the set of mixed strategies
for player i is Si = ∆(Ai), the set of probability distributions (or lotteries) over Ai. An element s ∈ S is
called strategy profile.

A Nash equilibrium is a strategy profile such that no player has an incentive to unilaterally deviate from
their chosen strategy:

1Importantly, the dynamics considered by Candogan et al. (2013a) are not the simultaneous best-reply dynamics of Gilboa
& Matsui (1991) or the logit dynamics of Fudenberg & Levine (1999); Hofbauer & Sandholm (2009), but rather turn-by-turn
updates where each player observes the play of their opponents and plays a (logit) best-response.
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Definition 3 (Nash equilibrium). In a normal-form game G = (N ,A, u), a strategy profile s∗ =
(s∗

1, s∗
2, . . . , s∗

N ) ∈ S1 × . . .× SN is a Nash equilibrium if

ui(s∗
i , s∗

−i) ≥ ui(si, s∗
−i) for all i ∈ N , si ∈ Si, (1)

where s∗
−i = (s∗

1, s∗
2, . . . , s∗

i−1, s∗
i+1, . . . , s∗

N ).

A potential game is a game in which strategic interactions are fully captured by single a scalar function,
aligning individual players’ incentives with its maximization:
Definition 4 (Potential game). A game G = (N ,A, u) is a called potential if there exists a function
ϕ : A → R such that, for every player i ∈ N and every pair of action profiles a, a′ ∈ A that differ only in
the action of player i (that is, ai ̸= a′

i and a−i = a′
−i), the following condition holds:

ui(a)− ui(a′) = ϕ(a)− ϕ(a′). (2)

When this is the case, ϕ is called potential function of the game.

4 Potentialness of a game

In this section we provide an overview of a combinatorial decomposition technique for finite games in normal
form, originally introduced by Candogan et al. (2011). Subsequently, we leverage such decomposition to
define the potentialness of a game, a measure of its closeness to being a potential game. This measure,
closely related to the maximum pairwise difference introduced by Candogan et al. (2013a), can be used as a
predictor for the existence of strict pure Nash-equilibria (SPNE) in a game, and of the limiting behavior of
learning dynamics thereof.

Deviation map Given a finite game in normal form G = (N ,A, u), pairs of strategy profiles (a, a′) that
differ only in the strategy of one player are called unilateral deviations, and their space is denoted by E .
Representing a game in terms of utility differences between unilateral deviations rather than in terms of
utilities themselves captures the strategic structure of a game in an effective way, in the sense that games
with different utilities but identical utility differences between unilateral deviations share the same set of
Nash equilibria Candogan et al. (2011).

To achieve this representation of the game G = (N ,A, u), consider its response graph Γ(N ,A), that is the
graph with a node for each of the A pure strategy profile in A, and an edge for each of the E := |E| =
A
2

∑
i∈N (Ai − 1) unilateral deviations in E (Biggar & Shames, 2023).

This graph is an instance of a simplicial complex K, that is, loosely speaking, a collection of oriented k-
dimensional faces (points, segments, triangles, tetrahedrons, ...) with k ∈ {0, 1, . . . } (Jonsson, 2007). Given
a simplicial complex K one can build a family of vector spaces {Ck}k=0,1,..., called chain groups, where
each chain group Ck is the space spanned by the k-dimensional faces of the complex K, i.e., the space of
assignments of a real number to each k-dimensional face of the complex (Munkres, 1984).

In this work, we restrict our attention to the chain groups C0 and C1 on the response graph Γ(N ,A) of a
game. C0 ∼= RA is the space of assignments of a real number to each vertex a ∈ A, and C1 ∼= RE is the
space of assignments of a real number to each edge (a, a′) ∈ E ; an element in C1 is called flow on the graph.

Note that the potential function ϕ : A → R of a potential game is precisely an assignment of a number to
each pure strategy profile a ∈ A: as such, it is an element of C0. In a similar way, observe that the collection
of utility functions u = (ui)i∈N : A → RN is the assignment of a number ui(a) ∈ R to each pure strategy
profile a ∈ A for each player i ∈ N ; as such, it can be considered as an element of “N copies of C0”, that is
u ∈ U := C0 × · · · × C0.

The key observation is that the differences between unilateral deviations of a game G = (N ,A, u) can be
represented as a special flow Du in C1 on Γ(N ,A), called deviation flow of the game, by means of the
deviation map:
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Definition 5 (Deviation map). The deviation map of the game G = (N ,A, u) is the linear map

D :U → C1

u 7−→ Du
(3)

such that, for all u ∈ U and all (a, a′) ∈ E

(Du)(a,a′) = ui(a′)− ui(a) (4)

for the (necessarily existing and unique) i ∈ N such that ai ̸= a′
i.

In words, the deviation flow Du ∈ C1 assigns to each edge (a, a′) ∈ E of the response graph, i.e., to every
unilateral deviation of the game, the utility difference of the deviating player i ∈ N .

The image of the deviation map, Im D ⊂ C1, defines the space of feasible flows on a game’s response graph.
Among these, two types are particularly relevant: potential flows and harmonic flows.

Potential flows For a given number of players and actions per player, representing a game via its deviation
flow Du rather then its payoff u preserves all the strategic information of the game, allowing for a concise
characterization of potential games. To introduce it, we need the following definition:
Definition 6 (Gradient map). The gradient map2 is the linear map

d0 : C0 → C1

ϕ 7−→ d0ϕ
(5)

such that
(d0ϕ)(a,a′) = ϕ(a′)− ϕ(a) (6)

for all ϕ ∈ C0 and all (a, a′) ∈ E.

It is now immediate to show that
Proposition 1. A game G = (N ,A, u) is potential with potential function ϕ if and only if Du = d0ϕ for
some ϕ ∈ C0.

Proof. Let G = (N ,A, u) be a potential game with potential function ϕ. Then

Du(a,a′) = ui(a′)− ui(a) = ϕ(a′)− ϕ(a) = (d0ϕ)(a,a′)

for all (a, a′) ∈ E , where i ∈ N is the actor of the deviation (a, a′). Thus, Du = d0ϕ. Conversely, let
G = (N ,A, u) be a game with Du = d0ϕ for some ϕ ∈ C0. Then

ui(a′)− ui(a) = Du(a,a′) = (d0ϕ)(a,a′) = ϕ(a′)− ϕ(a)

for all i ∈ N and all (a, a′) ∈ E acted by i. Thus, the game is potential with potential function ϕ.

The proposition means that the space of potential games is the linear subspace D−1 Im d0 ⊂ U ; in light of
this we call the image of the gradient map, Im d0 ⊂ C1, the space of potential flows.

Harmonic flows Endowing C0 and C1 with an Euclidean-like inner product ⟨·, ·⟩k one can define the
divergence map ∂1 := d†

0 : C1 → C0 as the adjoint operator of the gradient map, namely ⟨X, d0ϕ⟩1 =
⟨∂1X, ϕ⟩0 for all X ∈ C1 and all ϕ ∈ C0. The flows in the subspace ker ∂1 ∈ C1 are called harmonic flows3,
and the games whose flow is harmonic, i.e., the games in D−1 ker ∂1 ⊂ U , are called harmonic games.

2The gradient map is an instance of so-called co-boundary maps; see Munkres (1984) for details.
3The term harmonic refers in combinatorial Hodge theory Dodziuk (1976) to the kernel of the Laplacian operator ker ∆1 =

ker ∂1 ∩ ker d1, where d1 is defined analogously to d0. As Candogan et al. (2011) show, each feasible flow belongs to ker d1,
making these two definitions of harmonic flows consistent.
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Hodge decomposition of feasible flows Leveraging the combinatorial Hodge decomposition theorem4

it can be shown that potential flows and harmonic flows completely characterize feasible flows:
Theorem (Candogan et al. (2011) — Combinatorial Hodge decomposition of feasible flows). The space of
feasible flows is the orthogonal direct sum of the subspaces of potential flows and harmonic flows:

Im D = Im d0 ⊕ ker ∂1 (7)

Equivalently, every feasible Du flow can be decomposed in a unique way as Du = Dup + Duh, where the
potential flow Dup ∈ Im d0 is the orthogonal projection of Du onto Im d0, and the harmonic flow Duh ∈ ker ∂1
is the orthogonal projection of Du onto ker ∂1.

The decomposition (7) takes place in the space Im D ⊂ C1 of feasible flows. In Appendix A.1, we discuss
how to derive a corresponding decomposition in the space U of actual payoffs, allowing for the unique
decomposition of any game’s payoff u ∈ U as u = uP + uH + uK, where uP is a normalized potential game,
uH a normalized harmonic game, and uK a non-strategic game; c.f. Figure 1 for an example, and Candogan
et al. (2011) for further details. However, the decomposition (7) in the space of feasible flows suffices to
introduce the measure of potentialness used in this work, as the deviation flow of non-strategic games is
identically zero (see Appendix A.1).
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Figure 1: Decomposition of the Shapley game.

Endowing U with an inner product structure, Candogan et al. (2011) show that uP is the potential game
closest to u. This allows Candogan et al. (2013a;b) to characterize the limiting behavior of dynamics in the
game u in terms of the properties of the potential game uP and of the distance between u and uP , a concept
that is made precise in the next paragraph.

Potentialness The potential component Dup of the deviation flow Du of a game can be used to build a
measure of how close to being a potential game the game is. To compute it, Candogan et al. (2011) introduce
the orthogonal projection onto the subspace of potential flows; by the properties of the Moore-Penrose
pseudo-inverse d̃0 : C1 → C0 of the gradient map (Golan, 1992) such projection is e := d0d̃0 : C1 → C1, so
that

Dup = eDu ∈ Im d0 ⊂ C1 (8)

Candogan et al. (2013a;b) use the deviation map to define the maximum pairwise difference between two
games as δ(u, u′) = ||Du − Du′||.5 In particular, since the potential component uP of a game u is (up
to a non-strategic game) the potential game closest to the original game, they use the maximum pairwise
difference δ(u, uP) = ||Du−Dup|| = ||Duh|| between a game u and its potential component uP as a measure
of closeness to being a potential game for the game u. In this spirit we give the following definition:

4See Jiang et al. (2011) for a concise presentation and proof.
5In this work we use the 2-norm, whereas Candogan et al. (2013a) use the infinity norm.
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Definition 7 (Potentialness). The potentialness of a game G = (N ,A, u) is the real number

P (u) := ||Dup||
||Dup||+ ||Duh||

(9)

Proposition 2. The potentialness of a game fulfills

(i) P (u) ∈ [0, 1]

(ii) P (u) = 1 ⇐⇒ δ(u, uP) = 0 ⇐⇒ u is a potential game

(iii) P (u) = 0 ⇐⇒ u is a harmonic game

Proof. Consider the game G = (N ,A, u) and its potentialness

P (u) := ||Dup||
||Dup||+ ||Duh||

(i) It is obvious that P (u) ∈ [0, 1];

(ii) Since δ(u, uP) = ||Duh|| it is also obvious that P (u) = 1 ⇐⇒ δ(u, uP) = 0. Let this be the case,
then Du = Dup + Duh = Dup ∈ Im d0, so Du = d0ϕ for some ϕ ∈ C0, i.e. the game is potential by
Proposition 1.
Conversely, let G = (N ,A, u) be a potential game. Then Dup = Du, since Dup is the orthogonal
projection of Du onto Im d0, and such projection leaves Du invariant since Du = d0ϕ itself belongs to
Im d0. Hence, ||Duh|| = 0.

(iii) It is obvious that P (u) = 0 ⇐⇒ ||Dup|| = 0; if this is the case then Du = Duh, so the game is
harmonic by definition.
Conversely, if the game is harmonic then Du = Duh by an argument analogous to the one in point (ii),
which implies that ||Dup|| = 0.

In light of these properties, a game’s potentialness provides a concise measure of its proximity to being a
potential game. In the next sections, we examine the computational complexity of computing potentialness,
and explore the existence of strict pure Nash equilibria (SPNE) as well as the asymptotic behavior of learning
dynamics as a function of potentialness.

Scalability To compute the potentialness of a game with payoff functions u ∈ U , two computationally
expensive steps are required: computing the deviation flow, u 7→ Du, and projecting it onto the space of
potential flows, Du 7→ eDu. Since these operations involve the linear maps D : U → C1 of Equation (3) and
e : C1 → C1 of Equation (8), the calculations reduce to matrix-vector multiplications.

Given a game G = (N ,A, u), the operators D and e depend only on the number of actions A and agents
N , not on the payoff function u ∈ U . Thus, the matrices representing these operators need to be computed
only once for each combination of N and A, allowing them to be precomputed and reused. However, this
preprocessing step is costly, as matrix size grows exponentially with the number of agents. The projection
Du 7→ eDu, the most computationally expensive step, involves the matrix e of size dim C1 × dim C1, where
dim C1 = A

2
∑

i∈N (Ai − 1). In games where all agents have the same number of actions, i.e., Ai = m for
all i ∈ N , the number of entries in e scales as O(N2m2N+2). For reference, in a game with five actions per
agent, the number of entries in e is of order 104 for N = 2, 105 for N = 3, and 107 for N = 4.

For the larger settings considered in Figure 2 (three agents with 12 actions each, and four agents with 7
actions each), computing these matrices takes approximately 2–3 minutes. However, this cost is incurred
only once. Once the matrices are available, computing potentialness is very fast, as the dominant cost
reduces to a matrix-vector multiplication of complexity O(N2m2N+2). The average runtime (over 100 runs)
for computing potentialness in our experiments, performed on a standard notebook, is shown in Figure 2.
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Figure 2: Average runtime for computing potentialness over 100 runs, with precomputed matrices.

5 Numerical Experiments

We conduct our numerical experiments on randomly generated and economically motivated games. Our
analysis focuses mainly on two aspects, namely, the existence of strict pure Nash-equilibria (SPNE) and the
convergence of learning dynamics as a function of the potentialness of the games.6

To analyze learning dynamics, we consider online mirror descent (OMD) (Nemirovskij & Yudin, 1983) with
entropic regularization, leading to the update steps outlined in Algorithm 1. OMD is a natural choice among
no-regret algorithms due to its favorable regret properties, and belongs to the broader class of follow-the-
regularized-leader (FTRL) algorithms (Shalev-Shwartz, 2012).

Algorithm 1: Online Mirror Descent
Input : initial mixed strategies si,0
for t = 1 to T do

for agent i = 1 to N do
observe gradient vi,t;
set si,t ← Psi,t−1(ηtvi,t);

end
end

The entropic regularization introduces in Algorithm 1 a prox-mapping Px : Rd → Rd of the form

Px(y) = (xj exp(yj))j = 1d∑d
j=1 xj exp(yj)

, (10)

where d ∈ N denotes the dimension of the player’s strategy space, i.e., d = Ai; see, e.g., Nemirovski (2005);
Juditsky et al. (2011) for further details.

The convergence properties of the algorithm depend on the chosen step-size ηt. We use a step-size sequence
of the form ηt = η0 · t−β for some η0 > 0 and β ∈ (0, 1], and consider Algorithm 1 to have converged to
an (approximate) NE of the game if the relative utility loss, ℓi(st) = 1 − ui(st)/ui(bri, s−i,t), falls below a
predefined tolerance of ε = 10−8 for all agents i ∈ N within a fixed number of iterations, T = 2 000. In the
above, bri denotes a best response of agent i given the opponents’ strategy profile s−i,t.

6The code is available on Github at https://github.com/MOberlechner/games_learning.
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Standard Games Before examining randomly generated games, we first briefly analyze the potentialness
of standard games. The results are summarized in Table 1.

Game Actions P (u)
Matching Pennies 2x2 0.00
Battle of the Sexes 2x2 0.94
Prisoners’ Dilemma 2x2 1.00
Shapley Game 3x3 0.36
Jordan Game (α, β) 2x2 [0.00, 0.50]

Table 1: Potentialness of standard matrix games. The payoff matrices for the first three games are from
Nisan (2007), while the matrix for the Shapley game is given in Figure 1. The matrix for the Jordan game
is taken from Jordan (1993, Def 2.1). OMD converges to a pure NE only in the Battle of the Sexes and the
Prisoner’s Dilemma, both of which exhibit relatively high values of potentialness.

Pure equilibria exist only in the Battle of the Sexes and the Prisoner’s Dilemma. The Prisoner’s Dilemma,
being a potential game, has a potentialness of exactly 1, whereas the Battle of the Sexes, despite not being
a potential game, still exhibits relatively high potentialness. In both cases, OMD converges to a pure NE.

Matching Pennies, the Shapley Game, and the Jordan Game are known to have only mixed equilibria.
Since OMD can converge only to strict NE (Giannou et al., 2021a), it does not converge in these games.
Consistently, Matching Pennies, as a harmonic game, has a potentialness of exactly zero, while the Shapley
and Jordan games, being neither harmonic nor potential, exhibit relatively low potentialness.

Interestingly, the potentialness of the Jordan Game, when the parameters of the payoff matrices are sampled
uniformly at random, varies between 0 and 0.5.

Random Games In this section, we investigate three key aspects of potentialness in random games. First,
we analyze how potentialness varies as a function of the number of agents and available actions. Second, we
explore the connection between potentialness and the existence of strict Nash equilibria. Third, we examine
the relationship between potentialness and the long-term behavior of learning dynamics in random games.

To generate a random game G = (N ,A, u) for a certain setting (number of agents N and actions per agent
Ai), we independently sample each payoff value from a uniform distribution, i.e., ui(a) ∼ U([0, 1]) for all
a ∈ A and i ∈ N ; our dataset consists of 106 games for each considered setting.
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Figure 3: Empirical distribution of potentialness in 106 randomly generated games for each considered
setting. Increasing the size of the games reduces the variance and the mean of the distribution.
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The resulting empirical distributions of potentialness for randomly generated games with different settings
are presented in Figure 3; this leads us to the following observation:

Observation 1. As the size of the game increases (in terms of either the number of agents or actions), both
the variance and the mean of the observed potentialness distribution decrease.

Our next objective is to analyze the connection between potentialness and the long-term behavior of learning
dynamics. As a natural intermediate step, we first examine the existence of strict Nash equilibria – strategy
distributions for which Equation (1) holds as a strict inequality – as a function of potentialness. The reason
is twofold. First, strict Nash equilibria are the only possible candidates for the convergence of learning
algorithms: Giannou et al. (2021a) show that a strategy distribution is asymptotically stable under FTRL
algorithms (such as Algorithm 1) if and only if it is a strict Nash equilibrium. Second, strict Nash equilibria
necessarily correspond to pure strategy profiles. Since potential games always admit at least one pure Nash
equilibrium (Monderer & Shapley, 1996), one might expect that games with high levels of potentialness have
a higher probability of possessing a strict (hence, pure) Nash equilibrium (SPNE).7
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Figure 4: Relationship between potentialness and existence of SPNE across different settings. Vertical axis:
empirical probability of SPNE existence as a function of the setting. Horizontal axis: Potentialness values.
The width of the horizontal lines represents the observed range of potentialness values for each setting,
corresponding to the support of the densities shown in Figure 3. The dot on each line indicates the average
potentialness for that setting. As game size increases, mean potentialness decreases, and the probability of
SPNE existence approaches 1− 1/e (dotted horizontal line).

Rinott & Scarsini (2000) showed that the probability of the existence of a pure Nash equilibrium in randomly
drawn games converges to 1−1/e as either the number of players or the number of actions per player increases.
This tendency is evident in Figure 4, which also illustrates the following: across different settings, as the
average potentialness increases, so does the probability of SPNE existence.

Next, we examine the relationship between SPNE existence and potentialness within the same setting. For
each setting, we discretize the potentialness range [0, 1] into 20 intervals Ik := ( k−1

20 , k
20 ] for k = 1, . . . , 20,

partition games accordingly, and compute the fraction of games in each group that have at least one SPNE;
the results are visualized in Figure 5. We summarize our findings in the following observation:

Observation 2. Both across different settings and within the same setting, a higher potentialness increases
the likelihood that a game has at least one SPNE.

7A pure Nash equilibrium fails to be strict if ties occur. In the context of random games, a pure Nash equilibrium is strict
with probability 1, as ties occur with probability zero.
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Figure 5: Relationship between potentialness and existence of SPNE within the same setting. Vertical axis:
empirical probability of SPNE existence as a function of potentialness. Horizontal axis: potentialness values.
For each setting, a higher potentialness increases the likelihood that a game has at least one SPNE.

Next, we examine the relationship between potentialness and the long-term behavior of learning dynamics in
random games. The existence of an SPNE ensures local convergence of learning algorithms (Mertikopoulos
& Zhou, 2019), prompting the question of whether higher potentialness not only increases the probability
of having an SPNE, but also influences its basin of attraction – the set of initial conditions leading to
convergence.

Following the same approach as before, we partition for each setting (number of agents and actions) the
potentialness range into 20 intervals, Ik := ( k−1

20 , k
20 ] for k = 1, . . . , 20, and group together games with

potentialness in Ik. For each group k, we run Algorithm 1 with step-size ηt = η0 · t−β , letting η0 = 23 and
β = 20−1. The initial condition is fixed to the uniform strategy, si,0 = A−1

i 1, for all agents i. The fraction of
converging instances in games that possess a SPNE is plotted against the group’s potentialness value, with
results shown in Figure 6 and summarized in Observation 3.
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Figure 6: Empirical probability of convergence of Algorithm 1 as a function of potentialness. The analysis
considers only random games with at least one SPNE; higher potentialness increases the likelihood of reaching
equilibrium.
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Observation 3. Higher potentialness increases the likelihood of reaching equilibrium using Algorithm 1,
assuming the existence of at least one SPNE.
Remark. Different initial conditions, uniformly sampled over the feasible space, lead to the same outcomes
as stated in Observation 3, as discussed in Appendix A.2. Employing smaller step-sizes similarly leads to
analogue results; however, bigger step-sizes ensure better convergence rates.

Economic Games As compared to random matrix games, many games analyzed in the economic sciences
have more structure in the payoffs. Arguably, one of the most important classes of economic games are
auctions and contests, which are widely used to describe strategic interaction in markets (Krishna, 2009).
In these games, the utility functions of agents have a specific form, and the allocation rule is monotonic in
the bids. Well-known auctions and contests include:

• First-Price Sealed-Bid (FPSB) Auction

ui(a, vi) = xi(a) · (vi − ai) (11)

• Second-Price Sealed-Bid (SPSB) Auction

ui(a, vi) = xi(a) · (vi −max
j ̸=i

aj) (12)

• All-Pay Auction
ui(a, vi) = xi(a) · vi − ai (13)

• War of Attrition (WoA)

ui(a, vi) = xi(a) · (vi −max
j ̸=i

aj)− (1− xi(a)) · ai (14)

• Tullock Contest

ui(a, vi) =
{

v · ai

Σjaj
− ai if Σjaj > 0

v
n else

(15)

In the above, ai ∈ Ai represents the bid of agent i, and a ∈ A =
∏

i∈N Ai denotes the complete bid (or
action) profile. Similarly, vi corresponds to agent i’s value, and xi(a) : A → [0, 1] is the allocation function,
which incorporates a random tie-breaking rule, given by

xi(a) =
{

1
nmax

if ai = maxj∈N aj ,

0 if ai < maxj∈N aj ,
(16)

where nmax denotes the number of bids that attain the maximum.

Auctions are typically defined over continuous action spaces, where each player’s bid is a real number,
normalized without loss of generality to the interval Ai = [0, 1]. However, the decomposition proposed by
Candogan et al. (2011) applies only to finite games. To make it applicable, we discretize each action space
Ai into Ai equidistant points. We remark that, for practical purposes, auctions are inherently discrete, as
bids can only be submitted up to a finite number of decimal places.

The choice of discretization appears to have little impact on a game’s potentialness. Figure 7 presents
potentialness levels computed for varying discretizations and agents valuations. As the discretization becomes
finer, the potentialness stabilizes at an asymptotic value; however, the number of pure Nash equilibria can
exhibit sharp changes. For instance, in the symmetric First-Price Sealed-Bid Auction, there is one strict NE
for Ai = 21, whereas for Ai = 20, an additional non-strict pure NE emerges alongside the strict NE.
Observation 4. The potentialness of the discretized economic games given in Equations (11) to (15) is an
inherent property of the underlying (continuous) game, and does not depend on the choice of discretization.
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Figure 7: Potentialness of the economic games given in Equations (11) to (15), with 2 agents. We consider
different discretizations (that is, number of actions), and different valuations. The solid lines show the
potentialness in the symmetric setting, where both agents have values v1 = v2 = 1, while the dashed line
shows the asymmetric settings with v1 = 3

4 , v2 = 1. As the discretization becomes finer, the potentialness
stabilizes at an asymptotic value.

A detailed analysis of the decomposition of first- and second-price auctions reveals that their harmonic
components are identical. When varying the payment rule through convex combinations of the first- and
second-price rules, only the potential and non-strategic components of the decomposition change. This
observation supports the intuition that the allocation rule determines the strategic difficulty posed by the
game. In contrast, contests, that have a smoothed version of this allocation, show higher level of potentialness.

Given a game decomposed into its potential and harmonic components, u = uP +uH, potentialness describes
the relative weight of the potential component over the harmonic one. One can then build a game with
prescribed level of potentialness by considering the convex combination uα := αuP + (1 − α)uH, with
α ∈ [0, 1]. Figure 8 shows the convergence behavior of Algorithm 1 as a function of potentialness in games
built with this procedure from the economic games given in Equations (11) to (15):
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Figure 8: Convergence of OMD in economic games. Each square corresponds to a convex combination
uα := αuP + (1−α)uH of the potential and harmonic components of the respective economic game (vertical
axis); the corresponding level of potentialness can be read on the horizontal axis. The color of the square
shows the empirical frequency of convergence to an equilibrium using OMD (η = 28, β = 1

20 ) for 102 randomly
generated initial strategies. The stars indicate the potentialness of the original economic game. For each
game, there exists a potentialness threshold above which the algorithm converges; this threshold is lower for
games with a higher original potentialness, suggesting that convergence in games with high potentialness is
relatively more robust against harmonic perturbations.
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We observe that, for each game, there exists a potentialness threshold beyond which the algorithm begins to
converge. As expected, this threshold coincides with the existence of an SPNE: When potentialness exceeds
a certain game-specific value, an SPNE exists, and and Algorithm 1 converges; below this threshold, no pure
equilibrium exists, and Algorithm 1 fails to converge. Furthermore, this threshold is lower for games with
a higher original potentialness, suggesting that convergence in games with high potentialness is relatively
more robust against harmonic perturbations.

Among the considered economic games, the all-pay auction is the “hardest to learn”, namely it is the one
with lowest potentialness, and hightest convergence threshold. Interestingly, while the all-pay auction in
the complete-information setting only has a mixed equilibrium, its incomplete-information counterpart can
admit pure Bayes-Nash equilibria (BNE). The work of Bichler et al. (2023) shows that BNE are learnable in
discrete games using first-order methods such as Algorithm 1 . To better understand the different equilibrium
structures between the complete and the incomplete information case, we extend our analysis to the richer
Bayesian framework, examining it through the lens of potentialness.

Bayesian Economic Games Bayesian (or incomplete-information) games are the standard approach in
auction theory to model the economic games we considered (Krishna, 2009). Compared to a normal-form
game, a Bayesian games B = (N ,V,A, F, u) is characterized by an additional type space V and a known
prior distribution F over this type space. Each player i ∈ N observes a private type, which is drawn from
Vi according to the prior distribution F . In the examples given in Equations (11) to (15), the private type
is the valuation vi. After observing their values, the agents play an action, i.e., submit a bid ai ∈ Ai, and
receive their utility ui(ai, a−i, vi), which depends on their type. A pure strategy in such a Bayesian game is
a function βi : Vi → Ai that maps players’ types to actions. Given a strategy profile, one can compute the
expected (ex-ante) utility ũi = Ev∼F [ui(βi(vi), β−i(v−i), vi)]. A Bayes-Nash equilibrium (BNE) is a strategy
profile β, where no player can increase the expected utility ũ by deviating.

As in the complete-information case, we consider only finite action spaces, and additionally assume finite type
spaces. This allows us to reformulate the Bayesian game as a finite normal-form game, decompose it using
Equation (7), and analyze its potentialness, as given by Equation (9). The actions of the induced normal-
form game consist of all the possible strategies of the original incomplete-information game. Specifically,
an agent with Vi types and Ai actions in the Bayesian game translates to an agent with AVi

i pure actions
in the normal-form representation. Clearly, the size of the resulting normal-form game grows rapidly and
quickly becomes intractable. To mitigate this issue, we restrict our analysis to non-decreasing strategies, as
is customary in auction theory. This reduces the number of strategies to

(
Vi+Ai−1

Ai−1
)
, enabling us to analyze

Bayesian games with two players and up to four actions and types, corresponding to 35 non-decreasing
strategies. The payoffs in the normal-form game represent the expected utilities in the Bayesian game, and
the pure Nash equilibria in the normal-form game correspond to Bayes-Nash equilibria the Bayesian game.

Following this procedure, we constructed the normal-form representation of Bayesian economic games with
four actions, up to four types, and a uniform prior distribution. Our findings, summarized in Figure 9
and Observation 5, reveal a notable pattern: the Bayesian version of each game exhibits higher potentialness
than its complete-information counterpart (where the number of types is one). Specifically, potentialness
increases as the number of types grows.

In particular, the increase in potentialness is substantial for the all-pay auction; with two or four types,
it even leads to the existence of a pure BNE. This is especially noteworthy because learning algorithms
successfully converge to equilibrium in Bayesian games with a BNE (Bichler et al., 2023), whereas in the
complete-information version of the all-pay auction – which only admits mixed Nash equilibria – convergence
does not occur, cf. Figure 8.

Observation 5. Potentialness consistently increases with the number of types in the Bayesian versions of
the considered games. In particular, while Algorithm 1 fails to converge in the complete-information all-pay
auction, it successfully converges to a pure Bayes-Nash equilibrium in the Bayesian version of the game.
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Figure 9: Potentialness of Bayesian economic games. We consider the Bayesian version of economic games
with two agents, each having four actions, Ai = 0.0, 0.3, 0.6, 0.9, and independent, uniformly distributed
types Vi = { i

Vi
| i = 1, . . . , Vi}, where Vi = 4 denotes the number of types. Potentialness consistently

increases as the number of types grows.

6 Conclusions

Understanding whether learning algorithms converge to a Nash equilibrium has been a long-standing question
in game theory, and characterizing which games permit convergence and which do not remains an open
problem in the study of learning in games. While it is well established that exact potential games guarantee
convergence, we extend this analysis by relaxing this condition, investigating convergence in games that are
quantitatively distant from being potential games. A decomposition technique allows us to measure how
“potential” a specific normal-form game is: For random matrix games, we find that potentialness serves as a
strong predictor for the existence of strict Nash equilibria, and for the convergence of online mirror descent.
Economically motivated games, such as auctions and contests, impose additional structure on payoffs. Here,
too, potentialness – observed to increase with the number of types – proves to be a reliable predictor of
convergence.

Unlike individual simulation runs, where convergence heavily depends on algorithm initialization, poten-
tialness provides an ex-ante predictor of average convergence, offering a systematic approach to studying
learning in games. This insight addresses a long-standing question in the literature by shifting the focus
from empirical simulations to a more principled measure of convergence potential.

Future research should aim to further validate these findings by examining a wider range of no-regret learning
dynamics and expanding the analysis to broader classes of games. Additionally, improving the computational
efficiency of potentialness, extending its application to continuous games, and leveraging it to design more
effective learning algorithms remain key open directions.
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A Appendix

A.1 Decomposition in the space of payoffs

The reason Candogan et al. (2011) work in the space C1 of flows rather than in the space U of payoffs to
achieve a decomposition of games is twofold: first, the combinatorial Hodge theorem holds true on the space
C1 of flows (and in general on every chain group Ck of a simplicial complex), while there is no such a theorem
for the space U of payoffs; second, two games u ̸= u′ such that Du = Du′, albeit having different payoffs,
display the same strategical properties and are effectively the “same” game8, so looking at the deviation flow
rather than at the payoff one gets rid of a redundancy that is intrinsic in the formulation of a game.

Non-strategic games To make this last point more precise Candogan et al. (2011) introduce the notion
of non-strategic games.
Definition 8. A finite game in normal form G = (N ,A, u) is called non-strategic if it has zero deviation
flow:

Du = 0 . (17)

The space of non-strategic games is denote by

K := ker D . (18)

In a non-strategic game, all players are indifferent among all of their choices:
Proposition 3 (Candogan et al. 2011). The game G = (N ,A, u) is non-strategic if and only if

ui(a′
i, a−i) = ui(a′′

i , a−i) , (19)

for all i ∈ N , all a−i ∈ A−i, and all a′
i, a′′

i ∈ Ai.

Since D : U → C1 is a linear map between vector spaces, the space of non-strategic games is a linear subspace
K ⊂ U . It follows by the definition of non-strategic games that two games have the same deviation flow if and
only if their difference is a non-strategic game, and in this case we say that the two games are strategically
equivalent.

Normalized games Being strategically equivalent is an equivalence relation on the space U of payoffs;
one can select a representative element in each equivalence class [u] by choosing a complement of K in U and
projecting u ∈ U onto such complement along K. A natural choice is that of using the orthogonal complement
K⊥ of the space of non-strategic games with respect to the Euclidean inner-product in U ; we refer to such
procedure as normalization, and following Candogan et al. (2011) we give the following definition:
Definition 9. A finite game in normal form G = (N ,A, u) is called normalized if

u ∈ K⊥ . (20)

Normalized games enjoy the “no-leftover” property: the sum of any player’s payoffs over their choices is zero
for any fixed choice by the other players.
Proposition 4 (Candogan et al. 2011). The game G = (N ,A, u) is normalized if and only if∑

a′
i
∈Ai

u(a′
i, a−i) = 0 (21)

for all i ∈ N and all a−i ∈ A−i.
8Quoting Candogan et al. (2013b), if [two games have the same deviation flow], then the equilibrium sets of these games

are identical. However, payoffs at equilibria may differ, and hence they may be different in terms of their efficiency (such as
Pareto efficiency) properties (see Candogan et al. (2011)).
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Decomposition in the space of payoffs After normalizing the space U of payoffs9 one can translate
the decomposition of feasible flows (Equation (7) in the main text) from Im D ⊂ C1 to U by means of the
Moore-Penrose pseudo-inverse D̃ : C1 → U of the deviation map.

Recall from Section 4 that the space of potential games is D−1 Im d0 ⊂ U , and that the space of harmonic
games is D−1 ker ∂1 ⊂ U . Their intersections with the space K⊥ ⊂ U of normalized games give the spaces of
normalized potential games and of normalized harmonic games:
Definition 10. The space of normalized potential games is the linear subspace

P := (potential games) ∩ K⊥ ⊂ U . (22)

The space of normalized harmonic games is the linear subspace

H := (harmonic games) ∩ K⊥ ⊂ U . (23)

Theorem (Candogan et al. (2011) — Combinatorial Hodge decomposition of finite normal form games).
The space U is the direct sum of the subspaces of normalized potential games, normalized harmonic games,
and non-strategic games:

U = P ⊕H⊕K . (24)

Equivalently, given a finite normal form game G = (N ,A, u) the payoff function u can be uniquely decomposed
as the sum u = uP + uH + uK of a normalized potential game uP , a normalized harmonic game uH, and a
non-strategic game uK.

Decomposition components Recall that the deviation map is a linear map D : U → C1 from the
space of payoffs to the space of flows. By the properties of the Moore-Penrose pseudo-inverse D̃ : C1 → U
of the deviation map (Golan, 1992), the operator Π := D̃D : U → U is the orthogonal projection onto
K⊥ = (ker D)⊥. Recall furthermore that e : C1 → C1 is the orthogonal projection onto the subspace of
potential flows.

These operator can be used to obtained explicit expressions for the components of the decomposition in the
space of payoffs:
Proposition 5 (Candogan et al. (2011)). Given the finite normal form game G = (N ,A, u) the components
uP , uH and uK of the combinatorial Hodge decomposition of finite normal form games are given by

• uK = u−Πu ∈ K ;

• uP = D̃eDu ∈ P ;

• uH = u− uK − uP ∈ H .

9That is, after quotienting away the kernel of the deviation map.
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A.2 Additional Numerical Experiments

Following the experiment illustrated in Figure 6, we grouped together games with similar potentialness, and
applied Algorithm 1 with η0 = 23 and β = 1/20. However, instead of fixing the uniform strategy as the
initial condition, we randomly sampled 25 initial strategies for each game. The first plot in Figure 10 shows
the empirical probability of convergence of Algorithm 1 as a function of potentialness in various settings.
The findings align with those of Figure 6, confirming that higher potentialness increases the likelihood of
reaching equilibrium – regardless of specific initializations.
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Figure 10: Empirical probability of convergence of Algorithm 1 in random games with SPNE as a function
of potentialness in various settings. Left: randomly drawn initialization points. Right: standard deviation
of the convergence probability.

On the second plot, we restrict our focus to settings with only 2 actions, and include the standard deviation
of the convergence probability (colored areas) along with empirical probability of convergence (solid lines)
of Algorithm 1 as a function of potentialness. We observe that the probability of convergence given a strict
NE – i.e., the size of the equilibrium’s basin of attraction – varies significantly among games with similar
potentialness, as reflected in the relatively large standard deviations. However, the overall relationship
between high potentialness and high convergence remains robust in expectation.
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