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Abstract—In this paper, we address the trade-off between ra-
diated power and achieved throughput in wireless multiple-input
and multiple-output (MIMO) systems that evolve over time in an
unpredictable fashion (e.g. due to changes in the wireless medium
or the users’ QoS requirements). Contrary to the static/stationary
channel regime, there is no optimal power allocation profile to
converge to (either static or in the mean), so the system’s users
must adapt to changes in the environment “on the fly”, without
being able to predict the system’s evolution ahead of time. In
this dynamic context, we formulate the users’ power/throughput
trade-off as an online optimization problem and we provide a
matrix exponential learning algorithm that leads to no regret
– i.e. the proposed transmit policy is asymptotically optimal in
hindsight, irrespective of how the system varies with time. As a
result, users are able to track the evolution of their individually
optimum transmit profiles remarkably well, even in arbitrarily
changing wireless environments.

I. Introduction

Current and emerging wireless systems are facing a crucial
trade-off between transmit power and achieved throughput: in
many applications (such as e-mail and voice calls), radiated
power must be reduced to the bare minimum in order to
preserve battery life; by contrast, in rate-hungry applications
(such as multimedia streaming and video calling), it is crucial
to optimize the allocation of the users’ available power so
as to maximize their throughput. Consequently, coupled with
the prolific deployment of multiple-input and multiple-output
(MIMO) technologies and the anticipated impact of massive
MIMO, next-generation wireless networks call for flexible
power control (PC) algorithms tailored to systems with several
degrees of freedom.

In its most basic form, power control allows wireless links
to achieve their required throughput while minimizing radiated
power and the induced interference (individually or globally),
thus increasing spatial spectrum reuse and battery life [1–3].
That being said, while the benefits of power control are rela-
tively easy to assess in networks with static channel conditions,
it is much harder to analyze the associated performance gains
(if any) in networks that vary with time. In the ergodic regime
(where channels follow a stationary ergodic process), the
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authors of [4, 5] provided power control algorithms that min-
imize the users’ transmit power while achieving a minimum
ergodic rate requirement, while [6] studied the problem of
ergodic rate maximization in fast-fading multi-carrier systems.
Beyond this ergodic case however, when the wireless medium
does not evolve according to an independent and identically
distributed (i.i.d.) sequence of random variables, power control
remains a very open issue.

In this paper, we drop all stationarity/i.i.d. assumptions and
we focus squarely on wireless systems that evolve arbitrarily
over time in terms of both channel conditions and user quality
of service (QoS) requirements. In this framework, standard
approaches based on linear programming (for static channels)
and/or stochastic convex optimization (for the ergodic case) are
no longer relevant because there is no underlying optimization
problem to solve – either static or in the mean. Instead, we treat
power control as a dynamically evolving optimization problem
and we employ techniques and ideas from online optimization
to quantify how well the system’s users adapt to changes in
the wireless medium (and/or track their individually optimum
transmit powers as they change over time).

The most widely used performance criterion in this setting
is that of regret minimization, a concept which was first
introduced by Hannan [7] and which has since given rise
to a vigorous literature at the interface of machine learning,
optimization, statistics and game theory – for a comprehensive
survey, see e.g. [8, 9]. Specifically, in the language of game
theory, the notion of regret compares the cumulative payoff

of an agent over a given time horizon to the cumulative
payoff that the agent would have obtained by employing the
a posteriori best possible action over the time horizon in
question. Accordingly, in the context of power control, regret
minimization corresponds to dynamic transmit policies that
are asymptotically optimal in hindsight, irrespective of how
the user’s environment and/or requirements evolve over time.

Regret minimization methodologies were recently used in
[10] to study the transient phase of the original Foschini–Mil-
janic (FM) power control algorithm [2] in static environments,
while [11] focused on the regret minimization properties of the
algorithm in dynamic single-input and single-output (SISO),
single-carrier systems. In [12], the authors considered a poten-



tial game formulation for the joint power control and channel
allocation problem in cognitive radio (CR) networks and they
employed a regret minimizing algorithm [13] to reach a Nash
equilibrium state. The same problem was also examined in the
context of infrastructureless wireless networks by the authors
of [14] who provided a potential game formulation and derived
a power control algorithm that minimizes the users’ internal
regret and converge to the game’s unique correlated – and,
hence, Nash – equilibrium. Finally, in a very recent paper, the
authors of [15] employed online optimization methodologies
to derive efficient power allocation policies for online rate
maximization in dynamic cognitive radio networks.

In this paper, we focus on wireless MIMO systems that
evolve arbitrarily over time (for instance, due to fading, inter-
mittent user activity, changing QoS requirements, etc.), and we
seek to provide an efficient power control scheme that allows
users to balance their radiated power against their achieved
throughput “on the fly”, based only on locally available
channel state information (CSI). In particular, we formulate the
users’ power/rate trade-off as a nonlinear online optimization
problem and we derive an adaptive no-regret power control
policy based on the method of matrix exponential learning
(MXL) [16–18].

The proposed MXL algorithm is provably asymptotically
optimal against the system’s evolution in hindsight; further-
more, it also enjoys the following desirable properties:

• Distributedness: users update their power allocation pro-
files based only on local channel state information.

• Asynchronicity: there is no need for a global update timer
to coordinate the users’ updates.

• Statelessness: transmitters do not need to know the net-
work’s topology or overall state.

• Reinforcement: each connection tends to move towards
better power/rate trade-offs.

Our theoretical analysis is supplemented by extensive numer-
ical simulations in Section IV where we illustrate the power
and throughput gains of the proposed power control algorithm
under realistic fading conditions.

II. SystemModel and Problem Formulation

Consider a set U = {1, . . . ,U} of wireless point-to-point
connections corresponding to the users of the wireless system.
Each connection u ∈ U consists of a transmit-receive pair
(tu, ru) with Mu antennas at the transmitter and Nu antennas
at the receiver. Thus, if xu ∈ �

Mu (resp. yu ∈ �
Nu ) denotes the

signal transmitted (resp. received) over connection u ∈ U, we
obtain the familiar signal model:

yu = Huuxu +
∑

v,u
Hvuxv + zu (1)

where zu ∈ �
Nu stands for the ambient noise in the channel (in-

cluding thermal, atmospheric and other peripheral interference
effects) and Hvu ∈ �

Nu×Mv denotes the channel matrix between
tv and ru. Unavoidably, the received signal yu is affected by
ambient noise and interference due to the transmissions of

t1 r1

tU rU

...
...

tu ru

zu

Huuxu yu

wu =
∑

v,u Hvuxv

Fig. 1. Example of a wireless network with several active connections where
we focus on a particular connection u between transmitter tu and receiver ru.
The network’s other active connections cause co-channel interference to the
connection under consideration, which is is treated as additive color noise.
The focal connection is also subject to ambient white noise.

other connections on the same subcarrier, so we will write

wu =
∑

v,u
Hvuxv + zu (2)

for the multi-user interference-plus-noise at the receiver ru of
connection u (for a schematic representation, see Fig. 1). In
this way, (1) attains the simpler form

yu = Huuxu + wu. (3)

In what follows, we will focus on a specific connection
u ∈ U, so, for clarity, we will drop the index u altogether and
we will write (3) more simply as:

y = Hx + w (4)

In this context, assuming Gaussian input and noise and
single user decoding (SUD) at the receiver (i.e. the multi-
user interference w is treated as additive color noise), the
transmission rate of the focal connection will be [19, 20]

R(Q) = log det
[
W + HQH†

]
− log det W, (5)

where Q = �
[
xx†

]
is the user’s input signal covariance matrix,

and W = �
[
ww†

]
denotes the covariance matrix of the multi-

user interference-plus-noise in the channel. Thus, if we write

H̃ = W−1/2H (6)

for the user’s effective channel matrix, Eq. (5) can be written
more compactly as:

R(Q) = log det
[
I + H̃QH̃†

]
. (7)

Throughout this paper, we focus on wireless users who
seek to minimize their radiated power on one hand while
maximizing their transmission rate on the other. Thus, to
account for this power minimization/rate maximization trade-
off, we will consider the general power control objective:

`(Q) = tr (Q) − φ (R(Q)) (8)



where φ : �+ → �+ is a nondecreasing function of the
user’s achievable transmission rate. In this way, `(Q) can
be interpreted as a “loss function”: higher values of `(Q)
indicate that the user is transmitting at very high power or
at very low rate (or both), so he is incurring a “loss” in his
power/rate trade-off. Accordingly, we will only assume that
φ is Lipschitz and concave: the first assumption is a mild
technical requirement which we only make for simplicity; the
second one reflects the effects of “diminishing returns” on high
data rates (a rate increase from 1 bps to 2 bps is much more
significant than an increase from 1, 000 bps to 1, 001 bps).

Example 1. As a special case of the objective (8), consider the
scenario where the focal user seeks to minimize his transmit
power tr (Q) subject to achieving a target transmission rate R∗.
This classical formulation of power control can be recovered
by considering a cost function φ of the form φ

(
R(Q) − R∗

)
with φ(r) = 0 if r ≥ 0: when the target transmission rate
is achieved (i.e. R(Q) ≥ R∗), the only term in the user’s loss
function (8) is the user’s total transmit power tr (Q); otherwise,
if the target transmission rate is not met, the user incurs a
positive loss of at least φ′(0−) ·

(
R∗−R(Q)

)
.1 By this token, the

quantity λ = φ′(0−) measures the tolerance of the connection
with respect to transmission rate deficits: smaller values of λ
correspond to softer rate requirements, while, in the large λ
limit, the loss function (8) stiffens to a hard constraint where
no violations are tolerated.

Of course, when the user’s effective channel matrices vary
with time, the user’s transmission rate will be given by

R(Q; t) = log det
[
I + H̃(t) Q H̃†(t)

]
, (9)

where H̃(t) denotes the user’s effective channel matrix at time
t.2 With this in mind, the user’s loss function at time t will be

`(Q; t) = tr (Q) − φ(R(Q; t); t), (10)

thus leading to the online power control problem:

minimize `(Q; t)
subject to Q ∈ X

(OPC)

where
X =

{
Q : Q < 0, tr (Q) ≤ P

}
(11)

is the problem’s state space and P > 0 denotes the user’s
maximum transmit power. As such, given that the user has no
control over the effective channel matrices H̃, we obtain the
following sequence of events:

1) At each instance t ≥ 0, the user selects a transmit power
profile Q(t) ∈ X.

1Recall that φ is assumed concave, so the user’s loss grows at least linearly
with the rate deficit R∗ − R(Q).

2In what follows, we will tacitly assume that H̃(t) is measurable and
bounded with respect to t. This assumption is justified by factors such as the
minimum distance between transmitters and receivers, antenna directivity, RF
circuit losses, etc. which make it impossible for the user’s (effective) channel
gains to become arbitrarily high. Furthermore, we assume that the variability
of H̃(t) is such that standard results from information theory remain valid
[19].

2) The user’s loss `(Q(t); t) is determined by the state of
the network and the behavior of all other users via the
effective channel matrix H̃(t).

3) The user employs some update rule to select a new
transmit power profile, and the process repeats.

The key challenge in this dynamic framework is that the
user does not know his objective function `(Q; t) ahead of time
(recall that `(Q; t) depends at each stage t on the evolution of
the environment and the transmit power profiles of all other
users), so he must try to predict his optimum transmit profile
“on the fly”. Consequently, static solution concepts (such as
Nash or correlated equilibria) are no longer relevant because
there is no stationary optimization criterion to achieve – either
static or in the mean.

Instead, given a time horizon T , we will compare the
cumulative loss incurred by the user’s chosen transmit power
profile to the hypothetical loss that the user would have
incurred if he had chosen the best possible transmit profile
in hindsight. More precisely, focusing on continuous time for
simplicity, we define the user’s cumulative (external) regret
as:

Reg(T ) = max
Q∗∈X

∫ T

0

[
`(Q(t); t) − `(Q∗; t)

]
dt. (12)

The notion of regret was first introduced in a game-theoretic
setting by Hannan [7] and it has since given rise to an ex-
tremely active field of research at the interface of optimization,
statistics and theoretical computer science – for a survey,
see e.g. [8, 9].3 The user’s average regret is then defined as
T−1 Reg(T ) and the goal of regret minimization is to devise a
dynamic transmit policy Q(t) which is asymptotically optimal
in hindsight, i.e. that leads to no regret:

lim supT→∞ Reg(T )
/
T ≤ 0, (13)

or, equivalently:
Reg(T ) = o(T ), (14)

irrespective of how the objective function (8) evolves over
time.

Obviously, if the user could somehow predict the solution
of (OPC) in an oracle-like fashion, we would have Reg(T ) ≤
0 in (12) for all T . In particular, if the user’s objective (8)
does not vary with time (or if it varies in a stochastic fashion,
following some i.i.d. process), a no-regret policy converges to
the problem’s static (or, respectively, average) solution [9]; as
such, the no-regret requirement (13) is an indicator that Q(t)
tracks the solution of (OPC) as it evolves over time.
Remark 1. In the machine learning literature, there exist more
sophisticated notions of regret (such as adaptive [21] or shift-
ing [22] regret) to further quantify the quality of this tracking;
however, due to space limitations, we will focus our theoretical
analysis almost exclusively on external regret minimization
(which requires less technical language to describe).

3The terminology stems from the fact that large positive values of Reg(T )
indicate that the user would have achieved a better power/rate trade-off in the
past by employing some fixed Q∗ instead of Q(t), making him “regret” his
choice.



III. Adaptive Power Control via Exponential Learning

A key element in the derivation of a no-regret transmit
policy for the online problem (OPC) will be the gradient
V = ∇Q ` of the user’s objective function (8). Specifically,
we have:

V = ∇Q ` = I − φ′(R) · ∇Q R, (15)

where, after some matrix calculus:

∇Q R = H̃†
[
I + H̃QH̃†

]−1H̃. (16)

In this way, the gradient of `(Q(t); t) evaluated at Q(t) will be:

V(t) = I−φ′(R(Q(t); t))·H̃†(t)
[
I+H̃(t) Q(t) H̃†(t)

]−1 H̃(t). (17)

Importantly, the user’s gradient matrix V(t) at time t is a simple
function of his signal covariance matrix Q(t) and his effective
channel matrix H̃†(t).The former is obviously known to the
receiver, while the latter can be measured at the receiver and
then fed back to the transmitter (e.g. during the downlink phase
of a time-division duplexing (TDD) scheme); in this way, V(t)
can be calculated based on purely local CSI, so any algorithm
relying on V(t) will be likewise distributed.

In view of the above, a first idea would be to update
the user’s power profile Q(t) along the direction of steepest
descent indicated by V(t), that is take Q̇ = −V [23]. However,
this approach would invariably violate the users’ semidefi-
niteness constraints (Q < 0), so it is not a viable transmit
policy. Instead, inspired by the matrix regularization methods
of [16–18], we will consider a learning scheme that tracks the
direction of steepest descent in a dual, unconstrained space
and then maps the result back to the problem’s state space via
matrix exponentiation. More precisely, we will concentrate on
the matrix exponential learning (MXL) process:

Ẏ = −V,

Q = P
exp(ηY)

1 + tr[exp(ηY)]
,

(MXL)

where η > 0 is a parameter that controls the user’s learning rate
(for an algorithmic implementation, see Algorithm 1 below).

The learning process (MXL) will be the main focus of our
paper, so some remarks are in order:
Remark 1. Intuitively, the exponentiation step in (MXL) as-
signs more power to the spatial directions that perform well;
the trace normalization then ensures that Q(t) satisfies the
feasibility constraints of (OPC) for all t ≥ 0, while the learning
parameter η sharpens the method’s reinforcement effect.4 In
particular, (MXL) can be seen as a “primal-dual” online mirror
descent (OMD) method [9] with exponential regularization; for
an in-depth discussion, see e.g. [9, 16–18, 24] and references
therein.
Remark 2. From an implementation perspective, Algorithm 1
has the following desirable properties:
(P1) It is distributed: each transmitter updates his power

profile based only on local CSI.

4For large η, (MXL) assigns almost all power to the transmit direction
which corresponds to the highest eigenvalue of V.

Algorithm 1: Matrix exponential learning (MXL)
parameter: η > 0

/* Initialization */

1 t ← 0; Y← 0;

2 repeat
3 t ← t + 1;

/* Pre-transmission: Set Power */

4 Q← P
exp(ηY)

1 + tr[exp(ηY)]
;

/* Transmission */

/* Post-Transmission Measurements */

5 R← log det
(
I + H̃QH̃†

)
;

6 V← I − φ′(R) · H̃†
(
I + H̃QH̃†

)−1H̃;
7 Y← Y − V;
8 until transmission ends;

(P2) It is asynchronous: power updates are performed without
signaling/coordination between connections.

(P3) It is agnostic: transmitters do not need to know the
topology (or state) of the wireless network.

(P4) It is reinforcing: each connection tends to optimize its
individual power vs. rate objective function.

Remark 3. In terms of feedback, Algorithm 1 requires that
a) the transmitter measures his achieved rate R; and b) the
receiver feeds back to the transmitter the received signal
covariance �

[
yy†

]
= W+HQH† (e.g. via broadcasting or over

a downlink duplex pilot). From a computational standpoint, it
is then easy to see that the comlplexity of each iteration of
Algorithm 1 is polynomial in the number of transmit antennas
M (typically of the order of M2.373 if users employ fast matrix
multiplication methods).

In this context, our main theoretical result regarding the
learning scheme (MXL) is as follows:

Theorem 1. The learning scheme (MXL) leads to no regret in
the online power control problem (OPC). Specifically, (MXL)
enjoys the regret bound:

1
T

Reg(T ) ≤ P
log(1 + M)

ηT
= O(1/T ), (18)

irrespective of the system’s evolution over time.

Proof: See Appendix A.
We close this section with a few remarks on optimizing the

performance of the learning scheme (MXL) (and, respectively,
Alg. 1):

a) Multi-user interference: Even though Theorem 1 fo-
cuses on a given connection, the focal connection is still
subject to interference from other connections in the network
(captured by the effective channel matrices H̃ which depend on
the interfering users’ transmit policies). In this light, Theorem
1 provides a worst-case performance guarantee which holds
even in the presence of malicious users (jammers).



b) Initialization: The initialization Y(0) = 0 is a conser-
vative choice reflecting the worst-case scenario where the user
begins with no information regarding his channel. Indeed, if
Y(0) = 0, the user’s initial transmit power will be P·M/(M+1),
which is asymptotically equal to P in the large M limit
(corresponding to massive MIMO transmitters); as such, the
user’s transmit power will likely be reduced under Algorithm
1 in the presence of good channel conditions. In particular,
if the transmitter can estimate his initial channel conditions,
it would be preferable to initialize power accordingly: if the
user expects good channel conditions, initial power should
be set lower (to save battery life); otherwise, if bad channel
conditions are expected, the user should transmit with high
power so as to avoid very low transmission rates during the
first frames.

c) The role of the learning parameter η: As we men-
tioned before, larger values of η tend to enhance the reinforce-
ment effect of (MXL) because the user’s power tends to be
allocated only along the maximum eigen-directions of V. On
the other hand, if η is chosen very large with respect to the
channels’ characteristic time scale, the exponent of (MXL)
might reach very high levels very quickly. This can lead
(MXL) to become too greedy in discrete-time implementations
(cf. Algorithm 1), in which case a slowly decreasing learning
parameter would be preferable; due to space limitations how-
ever, these considerations are delegated to a future paper.

IV. Numerical Results

To validate the theoretical analysis of Section III, we
conducted extensive numerical simulations over a wide range
of design parameters and specifications. In what follows, we
present a representative subset of these results, but the con-
clusions drawn remain valid in most typical mobile wireless
environments.

Throughout this section, we consider a wireless network
cell with U = 4 connections, each with M = 2 transmit
and N = 2 receive antennas. We focus on the uplink (UL)
case, and the receivers are assumed stationary whereas the
transmitters may be either stationary or mobile, depending on
the simulated scenario. The connections operate at a central
frequency fc = 2.5 GHz, and communication occurs over a
time-division duplexing (TDD) scheme with frame duration
T f = 5 ms. Specifically, transmission occurs during the UL
subframe while receivers process the transmitted signal and
provide feedback during the downlink (DL) subframe: upon
reception of the feedback, transmitters update their transmit
powers according to Algorithm 1, and the process repeats until
transmission ends. For demonstration purposes, we simulated
the case where each connection has a rate requirement R∗u (cf.
the model description and Example 1 in Section II) which is
constant with time but which varies across connections u ∈ U
so as to ensure diversity of QoS requirements.

For benchmarking, the first simulated scenario focuses on
the static regime where channel conditions do not change
throughout the transmission horizon while each user updates
his signal covariance matrix following Algorithm 1. To begin

with, Fig. 2a depicts the evolution of the user’s objective
function `(Q; t) over time: in tune with Theorem 1, users
converge to the minimum of their objective within a few
frames, thus optimizing their power/rate trade-off based on
their requirements.5 This is seen clearly in Figs. 2b and
2c where we plot the evolution of the user’s total transmit
power and the achieved/target rate gap R(t)/R∗. Despite the
agnostic initialization of Algorithm 1 at very high power levels
(representing a pessimistic estimate of channel conditions),
the users’ transmit power is quickly reduced to the minimum
level that can sustain their required rate (corresponding to an
achieved/target ratio of 1). This behavior is also clearly seen
in Fig. 2d where we plot each user’s (average) regret over
time.6 The worst-case upper bound predicted by Theorem 1
(dashed lines) quickly vanishes (at an O(1/T ) decay rate),
while the users’ actual regret becomes negative within only
a few frames, indicating that users are controlling their power
optimally with respect to their rate requirements.

Fig. 3 is devoted to fully time-varying systems. Specifically,
we consider a wireless network consisting of U = 4 wireless
2 × 2 MIMO connections with mobile transmitters moving at
2km/h and different tolerance levels for their QoS require-
ments (cf. the model description and Example 1 in Section
II). The users’ wireless channels are simulated using the
extended pedestrian A (EPA) model [25] and the evolution
of the aggregate channel gain tr

[
HH†

]
is shown in 3a for

reference purposes.
In this time-varying setting, the main challenge for the users

is to track the optimum signal covariance profile that balances
their transmit power against their achieved throughput (i.e.
that minimizes their loss) as this optimum profile evolves
over time. To that end, Fig. 3b depicts the evolution of the
users’ total transmit power under matrix exponential learning
(Algorithm 1). As can be seen, the users’ transmit power under
Algorithm 1 follows closely the evolution of the users’ channel
gains: users increase power to compensate for poor channel
conditions and decrease power in the presence of favorable
channel conditions. This is seen further in Fig. 3c where
we plot the users’ achieved/target rate gap R(t)/R∗, averaged
over time: the connections that have a softer tolerance for
the satisfaction of their QoS requirements (e.g. Connection 1)
are very aggressive in reducing transmit power when channel
conditions seem to allow it, whereas connections that are
less tolerant with respect to their QoS requirements (e.g.
Connection 2) are more conservative and transmit at relatively
higher powers (resulting in higher rates) as a precaution
against deep fading events.

Finally, as in the static channel case, Fig. 3d depicts the
users’ average regret over time: again, despite the pessimistic
high-power initialization of Algorithm 1, the users’ regret falls

5The observed oscillations in some connections have to do with arithmetic
issues and can be readily eliminated using a decreasing parameter η.

6For simplicity, instead of taking the maximum of (12) over the (infinite)
set X, we took the maximum over a sample of 100 covariance matrices in X
(including uniform beamforming profiles with all combinations of antennas
active and inactive).
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Fig. 2. Balancing power against achieved rate in a network consisting of U = 4 MIMO connections with static channel conditions. Fig. 2a depicts the
evolution of the trade-off objective `(Q; t) under Algorithm 1; in a similar vein, Fig. 2b depicts the users’ total transmit power (dashed lines correspond to the
users’ maximum transmit power), while Fig. 2c shows the achieved/target rate gap R

/
R∗. Finally, Fig. 2d shows the users’ average regret Reg(T )/T over time:

as predicted by Theorem 1, the users’ regret quickly becomes negative, indicating the long-term optimality of their transmit policy (given their requirements).

below the no-regret threshold in just a few frames, so users
achieve optimality much faster than the O(1/T ) bounds of
Theorem 1. The reason for this faster convergence is that
the worst-case bounds of Theorem 1 only become relevant
in very adverse (or adversarial) channel conditions, occuring
for example when users are being jammed by a third party: in
standard mobility scenarios (such as the one simulated here),
the evolution of the wireless medium is relatively tame from
a statistical perspective, so users can learn to track the system
much faster than in the adversarial case.

V. Conclusions

In this paper, we examined the trade-off between radiated
power and achieved throughput in wireless MIMO systems
that evolve dynamically over time as the result of time-varying

channel conditions and user QoS requirements. To account for
the system’s complete lack of stationarity (or any other type of
averaging behavior that could allow the use of traditional solu-
tion concepts such as Nash/correlated equilibria), we provided
a formulation based on online optimization and we derived a
matrix exponential learning algorithm that leads to no regret
– i.e. it is asymptotically optimal in hindsight, irrespective
of how the wireless system varies with time. Thanks to the
algorithm’s no regret property, the system’s users are able to
track their optimal transmit profile “on the fly”, even under
randomly changing channel conditions.

Importantly, the proposed algorithm is fully distributed
and requires only local CSI that is readily available at each
connection in the system. In future extensions of this work, we
intend to consider more general MIMO–OFDM systems where
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(d) Average Regret

Fig. 3. Balancing power against throughput in a network consisting of U = 4 MIMO connections with mobile transmitters and stationary receivers, all moving
at 2 km/h (pedestrian speed). For reference purposes, Fig. 3a depicts the evolution of the channel gains tr

[
H(t)H†(t)

]
over time. Fig. 3b shows the evolution

of the users’ total transmit power under Algorithm 1 (the dashed lines represent the users’ maximum transmit power), while Fig. 3c shows the achieved/target
rate gap R(t)/R∗ (averaged over time). Finally, as in the static channel case, Fig. 3d shows the users’ average regret Reg(T )/T : as predicted by Theorem 1,
the users’ regret quickly becomes negative, indicating that their transmit policy is asymptotically optimal in hindsight (given their rate requirements).

connections are established over several subcarriers, and where
users only have imperfect CSI at their disposal.

Appendix
Technical Proofs

Our goal in this appendix is to prove the regret bound (18)
for (MXL).

We begin by noting that the loss function `(Q; t) is convex
w.r.t. Q, since φ is concave and nondecreasing and the Shannon
rate function R(Q; t) is concave in Q [26]. With this basic
convexity result at hand, we obtain:

`(Q(t); t) − `(Q∗; t) ≤ tr
[
(Q(t) −Q∗) · V(t)

]
, (19)

where V(t) = ∇Q(t)`(Q(t); t) denotes the gradient of `(·; t)

evaluated at Q(t). Accordingly, to establish the no-regret bound
(18) for (MXL), it suffices to show that∫ T

0
tr

[
(Q(t) −Q∗) · V(t)

]
dt ≤ η−1P · log(1 + M) (20)

for all Q∗ ∈ X.
Proof of Theorem 1: By (MXL), we readily get:∫ T

0
tr

[
(Q(t) −Q∗) · V(t)

]
dt =

∫ T

0
tr

[
(Q∗ −Q(t)) · Ẏ(t)

]
dt

= tr
[
Y(T ) ·Q∗

]
−

∫ T

0
tr

[
Q(t)Ẏ(t)

]
dt, (21)

where we have used the fact that Y(0) = 0. By the exponential



update step of (MXL), the second term of (21) then becomes:

tr
[
QẎ

]
= P

tr
[
exp(ηY)Ẏ

]
1 + tr[exp(ηY)]

=
P
η

d
dt

log
[
1 + tr[exp(ηY)]

]
,

(22)
and hence, by plugging (22) back into (21) and integrating,
we get:∫ T

0
tr

[
(Q(t) −Q∗) · V(t)

]
dt = tr

[
Y(T ) ·Q∗

]
−

P
η

log
[
1 + tr[exp(ηY(T ))]

]
+

P
η

log (1 + M) , (23)

where we used again the fact that Y(0) = 0 (implying in turn
that tr[exp(ηY(0))] = M).

To proceed, we will require the inequality:

tr(PX) ≤ log
(
1 + tr(exp(X))

)
, (24)

valid for all Hermitian P,X, with P < 0, tr(P) ≤ 1. To that
end, let F(X) = log

(
1 + tr(exp(X))

)
− tr(PX), so it suffices to

show that minX F(X) ≥ 0 whenever P � 0 and tr(P) < 1 (the
boundary case det(P) = 0 or tr(P) = 1 follows by continuity).
Now, since tr(exp(X)) is convex in X and the logarithm is
concave and increasing, F will be itself convex, so if it admits
a critical point X∗, this point will be a (global) minimizer. By
differentiating, we then obtain:

∇XF(X) =
exp(X)

1 + tr(exp(X))
− P. (25)

Thus, setting ∇XF(X) = 0 and solving for X yields the
(unique) critical point:

X∗ = log P − log(1 + t)I, (26)

with t = tr(exp(X)). Moreover, setting p = tr(P) and tracing
(25) readily yields:

t = p/(1 − p), (27)

so the minimum value of F will be:

Fmin = F(X∗) = log(1 + tr(exp(X∗))) − tr(PX∗)
= log(1 + t) − tr(P log P) + log(1 + t) tr(P)
= − tr(P log P) − (1 − p) log(1 − p) ≥ 0, (28)

where, in the last step, we used the fact that P � 0 and 0 ≤
tr(P) ≤ 1.

The above establishes the validity of (24), as claimed. Thus,
returning to (23) and setting P = Q∗/P (so P < 0 and tr(P) ≤
1), X = ηY(T ), an immediate application of (24) gives:∫ T

0
tr

[
(Q(t) −Q∗) · V(t)

]
dt ≤

P
η

log (1 + M) , (29)

which is simply (20).
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