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Abstract—Telecommunication networks are converging to a
massively distributed cloud infrastructure interconnected with
software defined networks. In the envisioned architecture, services
will be deployed flexibly and quickly as network slices. Our paper
addresses a major bottleneck in this context, namely the challenge
of computing the best resource provisioning for network slices
in a robust and efficient manner. With tractability in mind, we
propose a novel optimization framework which allows fine-grained
resource allocation for slices both in terms of network bandwidth
and cloud processing. The slices can be further provisioned and
auto-scaled optimally based on a large class of utility functions
in real-time. Furthermore, by tuning a slice-specific parameter,
system designers can trade off traffic-fairness with computing-
fairness to provide a mixed fairness strategy. We also propose
an iterative algorithm based on the alternating direction method
of multipliers (ADMM) that provably converges to the optimal
resource allocation and we demonstrate the method’s fast conver-
gence in a wide range of quasi-stationary and dynamic settings.

I. Introduction

The infrastructure of telecommunication networks is under-
going a radical transformation towards a massively distributed
cloud with network functionalities implemented as virtual net-
work functions (VNFs). When this transition is complete, ser-
vices will be instantiated as network slices – i.e. virtual net-
works utilizing transport and computing resources in order to
provide high-fidelity communications [1]. Unlike their physical
counterparts, VNFs can be launched, placed, and scaled flexibly
to meet fluctuating workload demands, thus opening new door-
ways for on-demand resource provisioning. However, quick and
accurate resource allocation for multiple network slices is a
formidable task, primarily due to the following reasons:

1) Each network slice requires specific functionalities, possi-
bly executed in a particular order.

2) The operation of a network slice involves (and requires the
close coordination of) several stakeholders: a) slice own-
ers; b) the cloud provider; and c) the network controller.

3) Each slice requires two types of resources, bandwidth and
processing power. As a result, resource allocation must be
balanced between these two components, and notions of
fairness and efficiency become much more intricate.

From a modeling standpoint, network slices can be repre-
sented as collections of interconnected VNFs. So far, the most
common approach in the literature is to treat a VNF as the unit
of computing. Thus, to provision resources for network slices,
considerable effort has been dedicated towards the problem
of VNF placement and routing [2–8]. This problem and its
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Fig. 1. System architecture under consideration.

variations are NP-hard, so the resulting resource allocation
techniques are cumbersome and inaccurate for large networks.
By this token, providing an efficient framework for allocating
resources to network slices remains a highly relevant problem.

To address this problem, we envision an architecture along
the lines of the emerging cloud-native paradigm [9, 10]. Ac-
cording to its principles, VNFs are divided into smaller compo-
nents, each of which is placed in a software container [11]. This
finer granularity allows network functionality to be launched
quickly anywhere in the cloud and simplifies load balancing
across different execution instances [12]. We refer to these
instances, collectively with their interconnections as µslices
(micro-slices); therefore, in a cloud-native setting, network
slices are composed of many µslices. Since the state of differ-
ent µslices is decoupled from one another, the corresponding
network slices can be scaled in and out without impacting
ongoing services. Hence, the cloud-native framework allows us
to focus on how to efficiently (re)distribute the transport and
processing load of a network slice instead of focusing on how
to individually place and interconnect each VNF.

A. Our contributions

The approach of zooming-out and viewing the big picture of
resource allocation, has been very successful in legacy commu-
nication networks, cf. [13]. With this in mind, we propose here
the first flexible and lightweight resource allocation framework
for network slicing by leveraging the cloud-native architecture
concepts and state-of-the-art methods from continuous opti-
mization. We summarize our contributions:
• We introduce a novel resource allocation framework which

allows us to provision and auto-scale slices in real time.
• We formulate the network slice resource allocation prob-

lem based on a tunable utility function subject to the
network’s bandwidth and the cloud’s processing power
capacities. Its solution allows the designer to drive the
system to any operational trade-off between traffic-fairness
and computing-fairness.



• We propose an iterative algorithm that provably solves
the network slicing resource allocation problem above by
leveraging the so-called alternating direction method of
multipliers (ADMM). By design, the algorithm incorpo-
rates the natural roles of the three stakeholders shown in
Fig. 1: (i) the slice owners (who admit user sessions and
require the scaling of the slice service); (ii) the network
controller (who provisions end-to-end paths interconnect-
ing cloud locations and allocates bandwidth to network
slices); and (iii) the cloud controller (who allocates pro-
cessor resources to serve incoming network flows).

• We demonstrate the algorithm’s very fast convergence,
a critical desideratum for quasi-stationary and dynamic
settings, e.g. when configuring new slices on-demand, or
auto-scaling slices based on fluctuating workloads, etc.

B. Related work

Prior work on resource allocation for network slicing focuses
on the joint routing and VNF placement problem, which de-
cides how to place VNFs on the physical network and which
routes to use to interconnect them [3]. This problem can be
cast as a minimum cost Virtual Network Embedding (VNE)
problem, which is known to be NP-hard [2]. An interesting
line of research focuses on adding practical constraints [5–
8] but the resulting generalizations are also NP-hard, so these
approaches become cumbersome if applied to multiple slices or
large physical networks.

The fractional counterpart of the integral routing and VNF
placement problem is studied in [14] where it is formulated
as a multicommodity-chain and a linear utility is minimized
via a dual stochastic subgradient algorithm [15]. This approach
is similar to backpressure methods where queueing is used to
relax the capacity constraints. A similar approach was also
used in [16] in a different context; however, despite being fully
distributed, dual ascent methods are often very slow in practice
due to the high coordination overhead required between net-
work nodes and links. [17] views the problem as a congestion
mitigation game between virtual network operators and evalu-
ates the price of anarchy. By contrast, modern software-defined
networking (SDN) and cloud controllers have a centralized
resource view which means that full distributedness is not
necessary; our ADMM-based solution scheme leverages pre-
cisely this intermediate degree of centralization, thus providing
significant performance gains in convergence time.

In our framework we include fairness considerations as those
encountered in the theory of joint routing and congestion con-
trol [13, 18]. In the context of network slicing, we generalize
these concepts to the case of two resources: network bandwidth
and cloud processing power. This provides an elastic framework
for slice autoscaling and resource sharing, with a significant
degree of flexibility in balancing these two resources.

II. SystemModel

In this section, we describe our system model and the basics
of the proposed resource allocation framework. To begin with,
we represent the underlying physical infrastructure as a directed

multi-graph G = (N ,L) with (i ) link bandwidth b` > 0 per
link ` ∈ L (measured in bits/s); and (ii ) processing power πn

per node n ∈ N (measured in flops/s). A node with a positive
processing power represents a cloud location with capability to
execute VNFs, while a node with zero processing power serves
only as an SDN router.

A. Slice model

We consider the co-existence of multiple slices on the same
physical network. For clarity and simplicity, we focus on sce-
narios where each slice serves network traffic from a single
source to a single destination, and hence we represent a slice by
a source-destination (S/D) pair. Slices with multiple S/D pairs
require an extension of the model, discussed in Section VI.

The definition of each slice includes a VNF forwarding
graph, which determines the sequence of execution of the
different VNFs. In this paper we consider simple VNF chains,
in which case the forwarding graph is a directed line network.
Extending to directed acyclic graphs (DAGs) is straightforward
by applying the flow decomposition theorem [19, Ch. 3] to
break the DAG into a set of paths, and then consider the set
of paths as one slice with multiple S/D pairs. Furthermore, we
collapse the entire forwarding graph (involving multiple VNFs)
to one amalgamated VNF. Notice, that under the assumption
that the VNF consists of multiple fine-grained and decoupled
instances (so it can be executed in fractions at multiple cloud
locations), this collapsing is done without loss of generality
in the model. We mention the similarity to the “big switch”
abstraction used for the network fabric in SDN. In what follows,
each slice will consist of a S/D pair and one VNF.

B. Routing and processing

Indexing each slice by s ∈ S = {1, . . . , S }, we will write
xs for the traffic volume it generates, and ys for the computing
power required to process it. We further posit that the traffic of
slice s can be split among a set Ps of paths joining its source
to its destination, and we write xsp for the amount of traffic
belonging to slice s and going through path p ∈ Ps. Thus, by
definition, we have

xs =
∑

p∈Ps
xsp for all s ∈ S. (1)

In terms of computing, the processing load of each slice can
be split among each of the nodes it is routed through. To model
this, let ysn be the amount of traffic belonging to slice s and
processed at node n, so ys =

∑
n∈N ysn (with the understanding

that ysn = 0 by default if slice s does not pass through node n).
This load can be decomposed further by considering the load
ysnp induced by slice s on node n and originating from path p
(with the analogous convention that ysnp = 0 if p does not go
through n). By definition, we have ysn =

∑
p∈Ps

ysnp and hence

ys =
∑

n∈N
ysn =

∑
n∈N

∑
p∈Ps

ysnp. (2)

Our basic assumption relating the traffic volume of a slice
and the required computing resources to process it is that
each unit of traffic requires ws units of computing. This linear
coupling of the two resources is discussed in the Internet draft
for VNF chaining resource management [20] and is commonly



observed in practice – for instance, in cloud routers [21].
Importantly, the traffic-to-processing ratio ws may be slice-
dependent: in particular, we have ws = 0 if slice s does not
require any processing, while ws could be very large if slice s
requires intensive processing for a relatively small amount of
traffic. The main premise is that the two core network services
(packet routing versus function processing) are interrelated and
their relation is fixed per slice.

With all this in mind, we obtain the basic relations
ysp = wsxsp and ys = wsxs. (3)

Motivated by the above, we introduce a new set of routing
allocation variables zsnp to denote the amount of traffic of the
s-th slice which is routed through path p ∈ Ps and is processed
at node n. This set of variables will be particularly useful to our
analysis because all of the previous variables can be described
in terms of zsnp via the elementary relations

xsp =
∑

n∈N
zsnp and xs =

∑
n∈N

∑
p∈Ps

zsnp, (4a)

ysnp = wszsnp and ys = ws

∑
n∈N

∑
p∈Ps

zsnp, (4b)

again assuming that zsnp = 0 if p does not pass through n.

Remark. Suppose that the routing allocation profile z =

(zsnp)s∈S,n∈N ,p∈Ps satisfies Eqs. (4a) and (4b) and each slice s
is composed of many smaller µslices of the same type but small
demand. Then, applying randomized rounding to z [22], we
obtain a feasible integral assignment (path and VNF placement)
for each µslice. Hence, even though we will be considering a
continuous model which is amenable to efficient algorithms,
the above ensures that we remain true to the practical system
constraints of µslice networks.

C. Capacity constraints and feasibility

Since multiple slices share the same physical network, the
bandwidth consumption at each link may not exceed the avail-
able link bandwidth. Thus, letting z` =

∑
s
∑

n∈p
∑

p3` zsnp

denote the amount of traffic being routed through link ` ∈ L,
we get the link bandwidth constraints:

z` =
∑

s∈S

∑
p3`

∑
n∈p

zsnp ≤ b` for all ` ∈ L. (5)

Likewise, letting yn =
∑

s ysn =
∑

s
∑

p3n ysnp denote the total
processing load at node n, and given that said load cannot
exceed the node’s processing capacity, we also have the node
processing constraints:

yn =
∑

s∈S

∑
p3n

wszsnp ≤ πn for all n ∈ N . (6)

In what follows, we will refer to b` and πn as resources
(provided by the network), and to xs =

∑
n∈p

∑
p∈Ps

zsnp and
ys = ws

∑
n∈p

∑
p∈Ps

ysnp as services (demanded from the net-
work by slice s). In this way, aggregating over all slices, the
profile of decision variables z = (zsnp)s∈S,n∈N ,p∈Ps captures the
service demands of each slice (in terms of both bandwidth and
processing), leading to the feasible region

Z =
{
z ∈

∏
s∈S

∏
n∈N �

Ps
+ : Eqs. (5) and (6) hold

}
. (7)

Since the constraints Eqs. (5) and (6) that define Z are linear
and no routing allocation variable zsnp can grow without bound,

it follows readily that Z is a compact convex polytope. In what
follows, we will use this property of Z freely.

III. Fairness and Service Balancing

To orchestrate the simultaneous operation of multiple slices,
the routing allocation profile z must balance the received ser-
vice for each slice s ∈ S. Our goal in this section is to provide
a general framework to optimize the allocation of the network’s
resources in this context.

A. Slice viewpoint: Pareto efficiency

To begin with, at the slice level, the primary objective is
to scale up the service of each slice s ∈ S until the network
resources are saturated (both in terms of bandwidth xs and
processing power ys = wsxs). Since the demand xs depends
linearly on the routing allocation variables zsnp (via Eqs. (4a)
and (4b) respectively), this means that solutions will lie at the
boundary of the feasible region Z . We formalize this via the
well-known concept of Pareto efficiency below:

Definition 1. We say that a routing allocation profile z ∈ Z is
Pareto efficient if, for any z′ ∈ Z , we have

x′s > xs for some s ∈ S ⇒ x′s′ < xs′ for some s′ ∈ S . (8)
where xs and x′s denote the total traffic demand of slice s in the
profiles z and z′ respectively, as induced by (4a). In words, the
routing allocation profile z is Pareto efficient if it is impossible
to improve the bandwidth service of a slice without penalizing
the bandwidth service of another.

Remark. As ys = wsxs, a Pareto efficient profile z is also
Pareto efficient with respect to processing demands (so it does
not matter if (8) is formulated in terms of x or y). However,
since the constraints for bandwidth and processing are different
(cf. Eqs. (5) and (6) above), it is possible that an increase in
the bandwidth demand xs could violate the node processing
constraints (6) because of the commensurate increase of the
computing demand ys = wsxs (and, conversely, increasing ys

might end up violating the link bandwidth constraints). These
interrelations are reflected in the definition of the feasible region
Z , hence the definition of Pareto efficiency in terms of the
routing allocation variables z.

B. Network viewpoint: Fairness of service

In view of the above, our primary efficiency requirement at
the slice level will be to achieve a resource allocation scheme
that is Pareto efficient. However, an important efficiency aspect
that is not taken into account by the definition of Pareto effi-
ciency is that increased service typically exhibits diminishing
returns: for instance, an increase from 1 bit/s to 2 bits/s is
often much more beneficial than an increase from 1001 bits/s
to 1002 bits/s. This becomes especially relevant in realistic
network conditions where, to avoid slice starvation, we also
need to ensure that service is distributed among slices in a fair
manner (similar to legacy TCP congestion control mechanisms
for packet flows). As such, the following key question arises:
is it possible to capture all of the above objectives in a flexible,
network-wide utility function?
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Fig. 2. Bandwidth and processing allocation for µslices: each link has bandwidth b` = 2 bits/s and each node provides processing πn = 2 flops/s, and we want to
provision a slice with traffic 2 bits/s and computing 1 flop/s (so ws = 1/2). In the top-right corner of Fig. 2, we depict a feasible resource allocation profile that
splits the traffic of the slice over three paths with routed volume 0.5, 0.5 and 1 bits/s respectively. In turn, this means that the top path incurs a processing load
of 0.25 flops/s, the middle one incurs 0.25 flops/s, and the bottom 0.5 flops/s. The bottom part of the figure shows integral allocations for µslices. Each integral
allocation involves a single path and VNF placement and there is a total of 5 possible integral allocations shown (one blue, two green and two red).

To do so, we will focus on the weighted α-fairness problem
maximize g(x) =

∑
s∈S

Uα(θsxs), (9)
where θs ≥ 0 is a slice-specific balancing parameter and the
α-fair utility model Uα(·) is defined for α ∈ [0,∞) as

Uα(ξ) =

 ξ1−α

1−α if α ≥ 0, α , 1,
log ξ if α = 1.

(10)

Before illustrating the relation between the optimization prob-
lem (9) and (8), we briefly discuss the role of the fairness
parameter α and the balancing parameter θ.

We begin with the α-fairness model (9). Letting ξs = θsxs

denote an abstract service demand by slice s,1 we see that
different values of α lead to different fairness criteria for the
service demand profile ξ = (ξs)s∈S . Specifically, as α ranges
from 0 to∞, we have the following cases of special interest:
• α = 0: sum-utility maximization
• α = 1: proportionally fair allocation [23],
• α = 2: potential delay fair allocation [13],
• α→ ∞: max-min fair allocation [24].
In our setting however, there is an extra degree of complica-

tion because we need to balance two types of service demands
per slice: traffic (xs) and processing (ys). Indeed, by choosing
θs = ws, ∀s ∈ S, and in light of ys = wsxs, ∀s ∈ S, (9) becomes

maximize
∑

s∈S
Uα(ys),

whose solution for different values of α corresponds to an α-fair
allocation with respect to processing. For example, if α = 1,
the traffic-fair allocation (θs = 1) will scale slices so that they
occupy resources in a proportionally-fair manner with respect
to traffic; instead, the computing-fair allocation (θs = ws)
will scale them in a different manner so that computing is

1For instance, depending on the value of θs, we could have ξs = xs for θs = 1
(bandwidth demand) or ξs = ys for θs = ws (processing demand).

proportionally fair. This difference is highlighted in the example
of Fig. 3 where we consider a toy network with one link, one
node, and two slices and we showcase four examples depending
on fairness orientation (traffic or computing), and the limiting
resource (bandwidth or processing).

Clearly, both traffic and computing balancings are of prac-
tical interest, depending on the context: For example, in TCP
flows with software firewalls, traffic is more important; how-
ever, for computation-intensive flows, computing power is
much more important, so fairness should be established with
respect to the latter. Intermediate cases are also relevant and
can be obtained if the received service is valued by slice s as
Uα(βsxs +(1−βs)ys) for some (slice-specific) mixing parameter
βs ∈ [0, 1]. Obviously, if we change the value of β, the
various sum-utility, proportional, and max-min fair solutions
will yield different resource allocation profiles, reflecting the
different way of balancing bandwidth and processing demands.
In particular,

• If θs = 1, ∀s, (9) describes traffic-fair balancing solutions.
• If θs = ws, ∀s, (9) yields computing-fair solutions.
• If θs = βs + (1 − βs)ws, ∀s, (9) describes a mixed traffic-

computing fair balancing.
• Finally, if θs = 1 for some slices and θs = ws for the

rest, this describes networks with a combination of traffic-
driven and processing-driven slices.

Now, to relate the weighted α-fairness optimization problem
(9) to the notion of Pareto efficiency, we begin with the ob-
servation that solving (9) converges as α → ∞ to a weighted
max-min allocation [24, 25]:

Definition 2. We say that a routing allocation profile z ∈ Z is
weighted max-min fair with weights θ if, for all z′ ∈ Z , we have
∃s ∈ S, x′s > xs =⇒ ∃s ∈ S, x′s′ < xs′ and θs′ xs′ ≤ θsxs, (11)
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Fig. 3. Fair autoscaling of slices.

where xs and x′s denote the total traffic demand of slice s in the
profiles z and z′ respectively. We can improve a coordinate only
by worsening a poorer (in weighted-sense) one.

Proposition 1. If z ∈ Z is Pareto efficient, then it is also
weighted max-min fair with weights

θs =

1/xs if xs > 0,
∞ otherwise.

(12)

Proof: Choose another profile z′ ∈ Z such that for some
s we have x′s > xs, to prove the result it suffices to show
(11) holds. Since z ∈ Z is Pareto, it immediately follows
from the definition that there must exist s′ such that x′s′ < xs′ .
Additionally, x′s > xs also implies x′s > 0 (since xs ≥ 0), so we
obtain θs′ xs′ = 1 ≤ θsxs and our proof is complete.

Thus, combined with the fact that solving (9) for α → ∞

gives a weighted max-min fair allocation, we conclude that
Pareto-efficient routing solutions are just a limiting special case
of the network-wide utility framework (9).

Summing up the above, we obtain the general slice resource
allocation problem:

maximize g(x) =
∑

s∈S
Uα(θsxs), (Opt)

subject to yn ≤ πn for all n ∈ N , (13a)
z` ≤ b` for all ` ∈ L, (13b)

xs =
∑

p∈Ps

∑
n∈p

zsnp, (13c)

yn =
∑

s∈S

∑
p3n

wszsnp, (13d)

z` =
∑

s∈S

∑
p3`

∑
n∈p

zsnp. (13e)

From a mathematical viewpoint, the true decision variables in
(Opt) are the routing allocation variables z ∈ Z . However, the
augmented formulation above is more transparent because it
illustrates the interplay between service demands and network
resources. Specifically, by increasing xs, we increase traffic and
computing and hence scale out the slice service s; instead,
by decreasing xs, we scale in. As such, the solution of (Opt)
ensures that the slices are scaled in a fair and efficient manner.

IV. Distributed Algorithm for Slice Autoscaling

Even though the mathematical optimization problem (Opt)
provides a concise and robust framework for “fair and bal-
anced” resource allocation for network slices, it is not clear how
such an optimum allocation could be achieved in practice. Our
goal in this section will be to address two main challenges that
arise in this context, namely:

1) How can (Opt) be solved in an efficient manner?

2) Is it possible to provide a distributed solution based on
easy optimization problems for (i ) the network’s users;
(ii ) the network controller; and (iii ) the cloud controller?

In [16], the authors propose a solution algorithm for a similar
problem based on a dual subgradient method which relaxes both
capacity constraints for processing and bandwidth (Eqs. (13a)
and (13b) respectively). In our case however, the dimensionality
of these constraints would render a dual subgradient approach
very slow in practice, even for moderately-sized networks.
Moreover, until a dual subgradient method converges (which
could take a very large number of iterations), intermediate
iterations would typically violate bandwidth and processing
capacities (since the objective tends to saturate them), so cutting
the algorithm short would exhaust the network’s capacity both
in terms of bandwidth and processing.

For this reason, we take a different approach and instead
relax the equality constraints (13c)–(13d) in (Opt). Doing so
allows us to design a provably convergent algorithm based on
the alternating direction method of multipliers (ADMM), which
ensures consistency by alternating the optimizing entities in
(Opt). In the rest of this section we describe this construction.

A. Distributed ADMM scheme

As we discussed in Section III, the true decision variables in
(Opt) are the routing allocation variables z = (zsnp)s∈S,n∈N ,p∈Ps :
the bandwidth and processing demand profiles (x = (xs)s∈S and
y = (yn)n∈N respectively) could be dropped if we sought a more
parsimonious representation of (Opt). However, in addition
to providing conceptual clarity, the augmented form of (Opt)
allows us to directly relax the equality constraints (13c)–(13d)
by introducing the augmented Lagrangian:

Lρ(x, y, z, λ) =
∑

s∈S
Uα(θsxs) − ρ〈λ, r〉 −

ρ

2
‖r‖2,

=
∑

s∈S
Uα(θsxs) −

ρ

2
‖r + λ‖2 +

ρ

2
‖λ‖2, (14)

where:
• ρ > 0 is a penalty parameter, whose role is to control the

impact of the quadratic constraint penalization.2

• λ = (λs, λn)s∈S,n∈N is a vector of multipliers associated to
the equality constraints (13c)–(13d).

• r = (rs, rn)s∈S,n∈N is the corresponding residual vector

rs = xs −
∑

p∈Ps

∑
n∈p

zsnp, (15a)

rn = yn −
∑

s∈S

∑
p3n

wszsnp. (15b)

• 〈·, ·〉 and ‖·‖ denote the standard (Euclidean) inner product
and norm respectively.

2Due to the form of the augmented Lagrangian, ρ essentially becomes the
step size of the multiplier update.
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Then, by standard results in convex optimization [26], the
optimum value of (Opt) can be expressed as

max
x,y,z≥0

s.t. (13b),(13a)

min
λ

Lρ(x, y, z, λ). (16)

Armed with this formulation, we may view the variables x,
y, z and λ as belonging to different agents that can alternate
turns to optimize each variable in a round-robin fashion, a much
simpler task than solving the joint optimization. Motivated by
this observation, we consider the ADMM-like recursion:

xt+1 = arg max
x≥0

Lρ(x, yt, zt, λt), (17a)

yt+1 = arg max
y≥0

s.t. Eq. (13a)

Lρ(xt+1, y, zt, λt), (17b)

zt+1 = arg max
z≥0

s.t. Eq. (13b)

Lρ(xt+1, yt+1, z, λt), (17c)

λt+1 = λt + rt+1, (17d)
where t = 0, 1, . . . denotes the epoch of the algorithm.

Importantly, the specific alternation of variables in (17) is
aligned with the decision makers in the original context of the
problem. Specifically,
a) Eq. (17a) is the slice owner problem (solved over x).
b) Eq. (17b) is the cloud provider problem (solved over y).
c) Eq. (17c) is the network provider problem (solved over z).
d) Eq. (17d) is the dual variable update.

With this in mind, we note that the slice owner and cloud
problems above can be readily parallelized because there are no
cross-terms involving xs and yn in (14). Also, the update of dual
variables can all be done by the network provider (alternatively,
each entity – slice owner or cloud provider – can compute its
residual and update its corresponding dual variable).

B. Problem splicing and decomposition

In what follows, we discuss in detail how to splice the
method over the various optimizing entities, viz. a) the slice
owners; b) the network provider; and c) the cloud provider. The
signaling interface between the various entities can be seen on
Fig. 4.

a) The slice owner problem: At the slice level, since the
objective and the constraints of (17a) are both separable in xs,
the problem can be distributed by asking each slice owner to
solve the “congestion control” problem:

maximize
s.t. xs≥0

Uα(θsxs) −
ρ

2

(
xs + λt

s −
∑

p∈Ps

∑
n∈p

zt
snp

)2
(18)

Problem (18) is concave (as the objective is the sum of two
concave functions). Since xs is only constrained from below
by 0, the solution of (18) at the (t + 1)-th stage is the (unique,
positive) solution of the stationarity equation

θ1−α
s x−αs = ρ

(
xs + λt

s −
∑

p∈Ps

∑
n∈p

zt
snp

)
. (19)

Algorithm 1 DSRA algorithm

0: Fix ρ > 0; set t ← 0; initialize x0, y0, z0, λ0.
1: repeat
2: Determine xt+1 from (19); {Slice flow control}
3: Determine yt+1 from (21); {Processing allocation}
4: Determine zt+1 from (22); {Routing allocation}

5: λt+1
s ← λt

s + xt+1
s −

∑
p∈Ps

∑
n∈p

zt+1
snp; {Slice price}

6: λt+1
n = λt

n + yt+1
n −

∑
s∈S

∑
p3n

wszt+1
snp; {Node price}

7: t ← t + 1; {Next iteration}
8: until convergence
9: return allocation profile (xt, yt, zt)

The solution xt+1 is then fed back to the network and cloud
providers (see below).

b) The cloud provider problem: At the (t + 1)-th epoch,
the cloud provider must solve the optimization problem:

minimize
∑

n∈N

(
yn + λt

n −
∑

s∈S

∑
p3n

wszt
snp

)2

subject to 0 ≤ yn ≤ πn.
(20)

As before, the cloud provider problem is separable with respect
to yn (since both the objective and the constraints of (20) are
separable in yn). As a result, the required load demand at the
(t + 1)-th iteration is

yt+1
n =

[∑
s∈S

∑
p3n

wszt
snp − λ

t
n

]πn

0
, (21)

where, in standard notation, [y]b
a = max{a,min{y, b}}. After the

cloud controller has determined yt+1, it passes the information
to the network controller.

c) The network provider problem: At the (t + 1)-th epoch,
the network provider must solve the problem:

minimize
∑

s∈S

(
xt+1

s + λt
s −

∑
p∈Ps

∑
n∈p

zsnp

)2

+
∑

n∈N

(
yt+1

n + λt
n −

∑
s∈S

∑
p3n

wszsnp

)2

subject to zsnp ≥ 0, z` ≤ b`.

(22)

The obtained routing solution zt+1 prescribes how routing
should be made inside the network and can be instantiated by
means of an SDN controller. It is easy to see that (22) is a
convex quadratic program, so it can be solved in polynomial
time using Karmarkar’s algorithm [27–29].3 The solution of the
problem zt+1 along with the updated dual prices λt+1 are fed
back to the cloud provider and the slice owners, and the process
repeats.

In summary, we may characterize our proposed framework as
lightweight, since each entity must solve simple optimizations.
For a pseudocode implementation, see the distributed slice
resource allocation (DSRA) algorithm below (Algorithm 1).

C. Algorithm and convergence

In view of all this, our main convergence result is as follows:

3In our simulations we use a Column Generation method for quadratic
programming to efficiently explore the paths with sparse intermediate solutions.



Theorem 1. The routing allocation profile (xt, yt, zt) returned
by Algorithm 1 satisfies the following optimality guarantees:

g(xt)→ max g as t → ∞, (23a)
rt → 0 as t → ∞, (23b)
yt

n ≤ πn for all n ∈ N , (23c)
zt
` ≤ b` for all ` ∈ Z , (23d)

where max g is the maximum value of the core optimization
problem (Opt) and rt is the residual vector (15).

In particular, the above theorem states that the routing alloca-
tion profile zt returned by Algorithm 1 is asymptotically optimal
with respect to the slice resource allocation problem (Opt)
and satisfies the network’s bandwidth and capacity constraints
for all t. Theorem 1 is our main theoretical guarantee for
Algorithm 1, so we close this section with a few remarks (to
maintain the flow of the discussion, the proof of Theorem 1 is
relegated to Appendix A:

(i) The algorithm provably converges to a solution of (Opt).
Moreover, even if it is cut short prematurely, its output
will not exhaust the network’s resources (in terms of either
bandwidth or processing).

(ii) Algorithm 1 allows the key network entities (slice owners,
the cloud provider and the network provider) to coordinate
towards obtaining an optimal slice resource allocation.

(iii) As an iterative method, Algorithm 1 is inherently adaptive
to changing environments – e.g. if the network has ele-
ments that fluctuate over time (wireless links, intermittent
link failures, changing traffic demands, etc).

(iv) Algorithm 1 enjoys the fast convergence rate of ADMM:
as we show by simulations in the next section, it outper-
forms the approach of relaxing the capacity constraints.

V. Numerical Results

In this section, we evaluate the performance of the slice
resource allocation scheme developed in the previous sections
via extensive numerical simulations. Even though we only
present here a representative subset of results, our conclusions
apply to a wide range of network parameters and specifications.
For concreteness, we focus on two complementary settings:
a) a small toy network to illustrate the flexible functionality
of our framework with respect to network slice allocation; and
b) large networks to demonstrate the scheme’s fast convergence
and scalability properties.

A. Small network example

We begin by considering a compact mobile edge cloud
topology as illustrated in Fig. 5. The network’s infrastructure
includes two ingress nodes (a and b), two edge cloud servers (c
and d), and a single egress core cloud node e. For our experi-
ments we assume that all bandwidth and processing capacities
are equal to 1, except on backhaul links (c, e) and (d, e) that are
assumed to have unlimited capacity, and nodes a, b, e that are
assumed to have zero processing power: this corresponds to a
scenario where nodes a and b are SDN nodes while node e is
excluded from processing due to high latency.

Fig. 5. Toy network used to illustrate the various fairness/balancing trade-offs.
In this setting, we want to provision resources for two slices,

one with processing-to-bandwidth ratio w1 = 2, and another
with w2 = 1/2. As such, Slice 1 has two possible paths, (a, c, e)
and (a, d, e), and can receive processing either at cloud c or d;
on the other hand, Slice 2 only has the path (b, d, e) and can
receive processing at d. The resource allocation problem in this
case is to determine the traffic load per path and processing load
per server that optimizes fairness in the sense of (Opt).

In Tables I–III, we present the results for different band-
width/traffic balancings, as captured by the parameters θ =

(θ1, θ2): i ) Table I describes bandwidth-fair allocations; ii ) Ta-
ble II is processing-fair; and iii ) Table III presents a hybrid
bandwidth/processing-fair allocation. For each case, we present
the optimal allocation for α = 0 (maximum total service),
α = 1 (proportional fair service), α = 2 (potential delay fair
service), and α = 10 (max-min fair service). Focusing for
example on this last case, we see that the allocation equalizes
service among the slices: in Table I with respect to bandwidth,
in Table II with respect to processing (as much as possible while
maintaining Pareto efficiency), and in Table III with respect to a
mixed requirement. On the contrary, the first line of each table
corresponds to the resource allocation profile that maximizes
the total respective service.

TABLE I
Bandwidth-fair allocation: θ = (1, 1).

α
Slice 1 Slice 2

Path (a, c, e) Path (a, d, e) Path (b, d, e)
0 0.5001/1.0001 0.0308/0.0616 0.9692/0.4846
1 0.5001/1.0001 0.2503/0.5006 0.7497/0.3748
2 0.5001/1.0002 0.2499/0.4998 0.7501/0.3751
10 0.5000/1.0000 0.2501/0.5001 0.7499/0.3750

TABLE II
Processing-fair allocation: θ = (2, 0.5).

α
Slice 1 Slice 2

Path (a, c, e) Path (a, d, e) Path (b, d, e)
0 0.5000/1.0000 0.3844/0.7689 0.4622/0.2311
1 0.5001/1.0001 0.2503/0.5006 0.7497/0.3748
2 0.4999/0.9999 0.0000/0.0000 1.0000/0.5000
10 0.5001/1.0000 0.0000/0.0000 1.0000/0.5000

TABLE III
Mixed processing/bandwidth-fair allocation: θ = (2, 1).

α
Slice 1 Slice 2

Path (a, c, e) Path (a, d, e) Path (b, d, e)
0 0.5002/1.0005 0.3336/0.6671 0.6664/0.3332
1 0.5001/1.0001 0.2503/0.5006 0.7497/0.3748
2 0.5000/1.0000 0.1217/0.2435 0.8783/0.4391
10 0.4999/0.9999 0.0237/0.0475 0.9763/0.4881



Fig. 6. Convergence to optimal utility and feasibility for 36-node grid (left) and
39-node fat tree topology (right).

B. Large network test-cases

For testing the optimization framework of Sections III and IV
in large networks, we consider below a) a 6 × 6 square grid
topology with 36 nodes; and b) a 39-node fat-tree topology,
typical of datacenter networks (cf. Fig. 6). In both networks,
roughly 20% of nodes were chosen randomly to represent
clouds with processing capabilities, while link and node capac-
ities were drawn uniformly from [0, 1]. The network’s fairness
parameter was set to α = 0.9 and, in both cases, we deployed
between 70 and 80 slices with processing-to-bandwidth ratios
ws uniformly drawn from [0, 1] (and θs = 1 for all s).

To assess the performance of Algorithm 1, we compare
the utility gains per iteration against a dual descent algorithm
(DDA) that operates by relaxing the problem’s capacity con-
straints, as in the method proposed by [16]. Since DDA is based
on relaxing the problem’s capacity constraints, the number of
iterations required to explore the best paths in the network is
immense. In practical scenarios (where path explosion is a key
limiting factor), this would immediately disqualify DDA; how-
ever, to have a comparison benchmark for the DSRA algorithm
(which does not encounter this difficulty because it relaxes the
problem’s equality constraints), we implemented an enhanced
dual descent algorithm (E-DDA) which is fed the optimal paths
by the DSRA algorithm. Despite this artificial boost, we see that
the DSRA algorithm greatly outperforms E-DDA and achieves
convergence within a few iterations (less than ten), in both
network topologies.

VI. Conclusions and Perspectives

In this paper, we introduced a novel, flexible and lightweight
resource allocation framework for network slicing by fusing
cloud-native design principles with state-of-the-art methods

from continuous optimization. The proposed framework admits
a natural decomposition with respect to the problem’s various
stakeholders: a) the slice owners (who request bandwidth and
processing resources); b) the cloud provider (who allocates
computing resources); and c) the network provider (who as-
signs end-to-end paths and provides bandwidth). By virtue
of this natural splicing, we were able to design an ADMM-
based algorithm for distributed slice resource allocation which
allows network slices to be provisioned and auto-scaled in real
time, while ensuring optimality and efficiency from a traffic-fair
and/or computing-fair standpoint.

For simplicity, we focused on network slices comprising
a single source-destination pair, used as ingress/egress nodes
respectively. Allowing for multiple such entries is a promising
extension of our work that would require all S/D flows associ-
ated to the same slice to be scaled in or out together. This can
be achieved by introducing an additional decision variable in
(Opt) to control the relative weight of each S/D pair in a given
slice; we intend to explore this in future work.

Finally, in many practical situations arising in the standard-
ization activities for network slicing, the allocation of resources
to network slices has to satisfy additional constraints such as
slice isolation and satisfaction of delay constraints. Regarding
the former, these constraints typically take the form of box
constraints that can be handled efficiently in our ADMM frame-
work by incorporating a separable barrier function per slice.
The latter may be addressed in a robust manner by using a
weighted hop-count metric to bias the paths towards proximal
cloud servers. We intend to explore this problem in future work.

Appendix A
Convergence of Algorithm 1

Before presenting the proof of Theorem 1, we introduce for
simplification some additional notation. First, in what follows,
we write k = [snp] for the multi-index [snp] with s ∈ S, n ∈ N ,
p ∈ Ps. Doing so allows us to write the equality constraints of
(Opt) in a much more compact form by introducing the matrices
A,B,C with components

Ask = 1p∈Ps 1n∈p =⇒ xs =
∑

k Askzk, (24a)
Bnk = ws 1p∈Ps =⇒ yn =

∑
k Bnkzk, (24b)

C`k = 1`∈p 1n∈p =⇒ z` =
∑

k C`kzk. (24c)
To distinguish between slice and node aggregation, we will also
write λS = (λs)s∈S and λN = (λn)n∈N for the profile of slice
and node multipliers respectively. Finally, given a sequence of
vectors pt, t = 0, 1, . . . , we will write ∆

t2
t1 p = pt2 − pt1 for the

drift increment process of p and ∆
t2
t1g(p) = g(pt2 ) − g(pt1 ) for

every function g taking p as an argument.
To proceed, we will need the following auxiliary lemma:

Lemma 1. Let ut = (Azt,Bzt, λt). Then, the “drift” of the
distance between ut and an optimum solution (x∗, y∗, λ∗) of
(Opt) is decreasing and satisfies the following inequality:
∆t+1

t ‖A∆∗z‖2 + ‖B∆∗z‖2 + ∆t+1
t ‖∆∗λ‖

2 (25)

≤
2
ρ
〈∆t+1
∗ ∇g(x; θ),∆t+1

∗ x〉 −
∥∥∥A∆t+1

t z
∥∥∥2
−

∥∥∥B∆t+1
t z

∥∥∥2
−

∥∥∥∆t+1
t λ

∥∥∥2
.



Proof: The function Lρ(x, y, z, λ) is concave in (x, y, z).
Thus, by the first-order optimality conditions for u∗ and ut at
the t-th iteration, we obtain

0 ≥ 〈∇g(x∗),∆∗x〉 − ρ〈r∗ + λ∗,∆∗r〉, (26)

and 0 ≥ 〈∇g(xt+1),∆t+1x〉
− ρ〈xt+1 − Azt + λt

S ,∆t+1x〉 − ρ〈yt+1 − Bzt + λt
N ,∆t+1y〉

+ ρ〈rt+1 + λt
S ,A∆t+1z〉 + ρ〈rt+1 + λt

N ,B∆t+1z〉, (27)
for all feasible (x, y, z). Then, applying the above to the t-th
iterate of the algorithm and the optimum of (Opt), we obtain

ρ〈∆t
∗λ

t + ∆t+1
∗ r,∆t+1

∗ r〉 + ρ〈A∆t+1
t z,∆t+1

∗ x〉 + ρ〈B∆t+1
t z,∆t+1

∗ y〉
≤ 〈∆t+1

∗ ∇g(x),∆t+1
∗ x〉. (28)

Using the dual update (17d), the first term above may be written
equivalently as ρ〈∆t+1

∗ λ,∆
t+1
t λ〉. Then, rearranging terms, we

obtain

ρ〈∆t+1
∗ λ,∆

t+1
t λ〉 + ρ〈A∆t+1

t z,A∆t+1
∗ z〉 + ρ〈B∆t+1

t z,B∆t+1
∗ z〉

≤ 〈∆t+1
∗ ∇g(x),∆t+1

∗ x〉−ρ〈A∆t+1
t z,∆t+1

t λS 〉−ρ〈B∆t+1
t z,∆t+1

t λN〉.

By the optimality of zt and zt+1 for (22), we also have
ρ〈rt + λt−1

S ,A∆t+1
t z〉 + ρ〈rt + λt−1

N ,B∆t+1
t z〉 ≤ 0, (29)

ρ〈rt+1 + λt
S ,A∆t

t+1z〉 + ρ〈rt+1 + λt
N ,B∆t

t+1z〉 ≤ 0. (30)
Using rt + λt−1 = λt and rt+1 + λt = λt+1, and summing
up the two equations yields directly the announced inequality.
Our assertion then follows by noting that 2〈∆t+1

t p,∆t+1
∗ p〉 =

‖∆t+1
t p‖2 + ∆t+1

t ‖∆∗p‖
2 for any vector p.

Proof of Theorem 1: We explain now how Theorem 1
can be deduced from Lemma 1. Due to the capacity constraints
(13a) and (13b), optimal values u∗ are necessarily finite (though
not necessarily unique). By the concavity of g, the first term on
the right-hand side is non-positive. As all other terms are non-
positive as well, it follows that the left-hand side is non-positive.
This means that the distances between Azt and Az∗ ≡ x∗,
between Bzt and Bz∗ = y∗, and between λt and λ∗ only decrease
with each iteration, so they must converge to some finite limit.
It follows that the right-hand side must actually tend to 0 and,
hence, ∆t+1

t λ ≡ rt+1 → 0 as t → ∞, implying in turn that the
consistency constraints (13c)–(13d) are met as t → ∞.

Focusing again on the left-hand side, since the optimal value
u∗ is bounded and the distance to it converges, we can always
extract converging subsequences from

(
ut)

t∈�. Thus, letting ū
be a limit-point of such a subsequence, (26) readily yields
〈∇g(x̄),∆∗−x〉 ≤ 0. By concavity, this implies g(x̄) ≤ g(x∗). As
a result, asymptotically as t → ∞, the allocations (xt, yt, zt)
obtained by Algorithm 1 satisfy (13c)–(13d), and achieve the
optimum of (Opt). Furthermore, for all t, zt and yt satisfy
(13b)–(13a) by (17b)–(17c), so our proof is complete.
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