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ABSTRACT. In this paper, we examine the convergence landscape of multi-agent learning
under uncertainty. Specifically, we analyze two stochastic models of regularized learning
in continuous games—one in continuous and one in discrete time—with the aim of
characterizing the long-run behavior of the induced sequence of play. In stark contrast to
deterministic, full-information models of learning (or models with a vanishing learning
rate), we show that the resulting dynamics do not converge in general. In lieu of this,
we ask instead which actions are played more often in the long run, and by how much.
‘We show that, in strongly monotone games, the dynamics of regularized learning may
wander away from equilibrium infinitely often, but they always return to its vicinity in
finite time (which we estimate), and their long-run distribution is sharply concentrated
around a neighborhood thereof. We quantify the degree of this concentration, and we
show that these favorable properties may all break down if the underlying game is not
strongly monotone—underscoring in this way the limits of regularized learning in the
presence of persistent randomness and uncertainty.

1. INTRODUCTION

In its most abstract form, the standard model for online learning in games unfolds as
follows:

(1) At each stage of the process, every participating agent selects an action.

(2) The agents receive a reward determined by their chosen actions and their individual
payoff functions.

(3) The agents update their actions, and the process repeats.

In this general context, the agents have to contend with various—and varying—degrees of
uncertainty: a) uncertainty about the game, the strategic interests of other players, and/or
who else is involved in the game; b) uncertainty about the outcomes of their actions, and
which update directions may lead to better outcomes; and ¢) uncertainty stemming from the
environment, manifesting as random shocks to the players’ payoffs and / or other disturbances.
In this regard, uncertainty could be either endogenous or exogenous; but, in either case, it
leads to players having to take decisions with very limited information at their disposal.
Our goal in this paper is to quantify the impact of uncertainty on multi-agent learning—and,
more precisely, to understand the differences that arise in the players’ long-run behavior
when such uncertainty is present versus when it is not. A natural framework for exploring
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this question is within the greater setting of no-regret learning and, in particular, the family
of “follow-the-regularized-leader” (FTRL) algorithms and dynamics [39, 65, 66]. This class
contains several mainstay learning methods—Ilike online gradient descent (or, in our case,
ascent) [75], the exponential / multiplicative weights (EW) algorithm and its variants (HEDGE,
Exp3, etc.) [1, 2, 41, 70], and many others—so it has become practically synonymous with
the notion of online learning in games. Accordingly, we seek to answer the following questions:

What is the long-run distribution of regularized learning under uncertainty?
Which actions are played more often, and by how much?

Do the dynamics concentrate—and, if so, where?

Our contributions in the context of related work. Needless to say, the interpretation of these
questions is context-specific, and it depends on the particular learning setting at hand. In
this paper, motivated by applications to machine learning, signal processing and data science
(which typically involve continuous action spaces and rewards), we focus on continuous
games, and we consider two models of regularized learning, one in continuous time, and one
in discrete time.

In continuous time, we model the dynamics of FTRL in the presence of uncertainty as
a stochastic differential equation (SDE) perturbed by a general It6 diffusion process, i.e.,
a continuous-time martingale with possibly colored and/or correlated components. In the
context of finite games, models of this type have been studied by, among others, Bravo &
Mertikopoulos [11], Foster & Young [21]|, Fudenberg & Harris [22] and Mertikopoulos &
Moustakas [44, 45], the first two in an evolutionary setting, the latter as a continuous-time
model of the EW algorithm in the presence of random disturbances. Follow-up works in
this direction include [11-13, 19, 26, 29, 50] on finite games, while [34-36, 48| considered a
regularized learning model in convex minimization problems. The model which is closest to
our own is that of [47, 49], who study the regret properties and guarantees of a stochastic
version of the dual averaging dynamics of Nesterov [58], and the work of Bailey et al. [5] and
Cauvin et al. [13] (in discrete and continuous time respectively).

At a high level, our findings reveal a crisp dichotomy between games that are null-monotone
(like bilinear min-max games or zero-sum bimatrix games), and games that are strongly
monotone (like Kelly auctions, Cournot competitions, joint signal covariance optimization
problems, etc.). Specifically:

(1) In null-monotone games: Uncertainty induces a persistent drift away from equilibrium:
the dynamics reach greater distances from equilibrium in finite time (which we
estimate) and they require, on average, infinite time to return. In particular, if the
game admits an interior equilibrium, the dynamics diffuse away—escaping in the
mean toward infinity or to the boundary of the game’s action space—and they exhibit
no concentration in any region of interior actions.

(2) In strongly monotone games: Uncertainty still induces a persistent outward drift, but
this is now partially countered by the dynamics’ deterministic component. Thus, in
stark contrast to the null-monotone case, the players’ learning trajectories end up
in a near-equilibrium region whose size scales with the level of uncertainty, and we
estimate both the size of this region and the time required to reach it. Somewhat
paradoxically, the dynamics return with probability 1 arbitrarily close to where they
started, infinitely often, in a way reminiscent of Poincaré recurrence in bimatrix
min-max games [53, 60]; however, these returns can be exceedingly far apart, so there
is no antinomy.
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In discrete time, we consider a standard implementation of FTRL with a constant learning
rate and stochastic first-order oracle feedback. Variants with a vanishing learning rate have
been studied extensively in the stochastic approximation literature, and they are known to
exhibit favorable convergence guarantees in, among others, strongly monotone games, cf.
[61, 55] and references therein. At the same time however, these properties typically come
at the expense of the algorithm slowing down to a crawl; for this reason, owing to their
simplicity, robustness, and superior empirical performance, constant / non-vanishing learning
rate schedules tend to be much more common in practice.

On the downside, the long-run behavior of FTRL is much less understood in this case.
To the best of our knowledge, the most relevant results come from recent works by Loizou
et al. [42] and Huang & Zhang [28], who established upper bounds on the mean distance to
equilibrium for stochastic gradient descent / ascent in strongly monotone games, and Vlatakis
et al. [69], who studied the ergodic properties of constant step-size variants of the stochastic
extragradient and stochastic gradient descent—ascent algorithms for weakly quasi-strongly
monotone variational inequalities. Dually to this, in the null-monotone regime, Bailey
et al. [5] and Cauvin et al. [13] showed that FTRL exhibits a similar tendency to escape
from interior equilibria in finite min-max and harmonic games respectively (the former in
discrete time, the latter in continuous time). Our analysis is inspired by the same principles
underlying these works, and it provides an extension thereof to more general games.

One reason that results about the statistics of the long-run behavior of FTRL are
particularly scarce in the literature is that, in discrete time, even the most basic tools of
stochastic analysis are often inapplicable; for an illustration of the difficulties involved, see
e.g., Azizian et al. [3, 4] and references therein. Nevertheless, based in no small part on the
insights gained by our continuous-time analysis, we manage to establish the following version
of the strong-null dichotomy in discrete time:

(1) In null-monotone games with an unbounded action space, the sequence of play under
FTRL drifts away to infinity on average (though not necessarily with probability 1).

(2) In strongly monotone games, we show that the mean time required to reach a given
distance from the game’s equilibrium is finite, and we provide an explicit estimate
thereof. If the game’s equilibrium is interior, we also show that FTRL converges
strongly to a unique invariant measure, which is concentrated in a certain region
around the game’s equilibrium, which we also estimate.

We find these results particularly appealing as they provide a solid glimpse into the distribu-
tional properties of multi-agent regularized learning under uncertainty.

2. PRELIMINARIES

2.1. Continuous games. Throughout the sequel, we consider games with a finite number
of players and a continuum of actions per player. Formally, players will be indexed by
i€ N ={1,...,N} and, during play, each player will be selecting an action x; from a closed
convex subset X; of some d;-dimensional normed space V;. Aggregating over all players,
we will write X = [[, &; for the space of the players’ joint action profiles z = (z1,...,2n)
and d = )", d; for the dimension of the ambient space V =[], V;. Finally, we will use the
shorthand = = (z;;x_;) when we want to highlight the action of player i € N against the
action profile x_; = (z;);x; of all other players—and, in similar notation, X_; = Hjﬂ X;
for the space thereof.

The reward of each player i € N in a given action profile will be determined by an
associated payoff function u;: X — R, assumed here to be individually concave in the sense
that w;(x;;x—;) is concave in x; for all x_; € X_;. We will further assume that each u; is
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(B-Lipschitz smooth, and we will write respectively
vi(x) = Vyui(zi;z—;) and v(z) = (vi(z),...,on(2)) (1)
for the individual gradient field of each player and the ensemble thereof.!
The tuple G = G(N, X, u) will be referred to as a concave game [63]. Mainstay examples
of such games include (mixed extensions of) finite games, resource allocation problems, Kelly

auctions, Cournot competitions, etc.; for completeness, we detail some of these applications
in Appendix A.

2.2. Nash equilibrium. The leading solution concept in game theory is that of a Nash
equilibrium, defined here as an action profile * € X which discourages unilateral deviations,
ie.,

wi(x*) > ui(xs;27;) forall z; € X and all i € M. (NE)
A concave game always admits a Nash equilibrium if X is compact, and it admits a unique
equilibrium if the game is strongly monotone in the sense of Definition 1 below:

Definition 1. A game G = G(N, X, u) is called u-monotone if there exists some p > 0 such
that

(w(a') —v(x), 2’ —2) < —pllz’ —z||* for all z,2’ € X. (Mon)
If (Mon) holds for some p > 0, the game will be called strongly monotone; otherwise, if
(Mon) only holds for u = 0, G will be called merely monotone (or simply monotone when
the distinction is not important). Finally, if (Mon) binds for = 0 and all z, 2’ € X—that
is, (v(z’) —v(x)),2’ —x) =0 for all z,2’ € X—the game will be called null-monotone. 4

Remark 1. Merely monotone games could be viewed as a “hybrid” between null and strictly
monotone games: generically, at any given action profile of a merely monotone game, there
would be directions of motion where the (symmetrized) Jacobian of the players’ gradient
field has a zero eigenvalue, and directions with positive eigenvalues; either set (but not
both) could be empty, the former corresponding to the “null-monotone” directions, the latter
corresponding to the “strongly monotone” ones. +

Remark 2. A weighted variant of (Mon) is sometimes called diagonal (strict / strong) concav-
ity, in reference to the work of Rosen [63]; for a pointed version of these conditions known as
variational stability [27, 51, 55] or coherence [54, 74]. These variants will not be important
for our purposes. +

2.3. Regularized learning. In the rest of our paper, we will consider a family of online learning
schemes adhering to the following model of “regularized learning”: players aggregate gradient
feedback on their payoff functions over time and, at each instance of play, they choose the
action which is most closely aligned to this aggregate. We provide a detailed description
of this model in Sections 3 and 4—in continuous and discrete time respectively—and only
describe here the core idea.

At a high level, the common denominator of these schemes is the way that players choose
their actions based on the accumulation of payoff gradients over time. Formally, we will
treat payoff gradients as dual vectors and we will write }; :=V; for the dual space of V; and
Y =11, Yi = V* for the ensemble thereof. Then, given an aggregate of gradient steps y; € V;,
we will assume that the i-th player chooses an action via a “generalized projection”—or
mirror—map Q;: V; — X; of the general form

Qi(yi) = argmax, {(yi, z;) — hi(z;)} for all y; € Y. (2)

We are tacitly assuming here that the players’ payoff functions are defined in an open neighborhood of
X in V; this assumption is done only for convenience, and it does not affect any of our results.
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In the above h;: X; — R is a continuous u;-strongly convex function, that is,
hi(Aai + (1= N)af) < Mhi(zi) + (1= Mhi(]) = 31 = )|z} — 2] 3)

for all x;,2; € X; and all A € [0,1]. This function is known as the regularizer of the
method and it acts as a penalty term that smooths out the “hard” arg max correspondence
y; — arg max,(y;, ;). This regularization scheme has a very long and rich history in game
theory and optimization, where @ is often referred to as a “quantal” or “regularized” best
response operator, cf. [39, 43, 51, 65, 68] and references therein. For concreteness, we
describe below the two leading examples of this regularization setup (suppressing in both
cases the player index i € A/ for notational clarity):

Example 2.1 (Euclidean regularization). Let h(z) = §|z||3. Then (B.12) boils down to the
FEuclidean projection map

Qy) = x(y) = argmax,c v[ly — 2|2 (4)
Thus, in particular, if X =V, we readily recover the identity map Q(y) = y. +

Example 2.2 (Entropic regularization). Let X = {z € R% : 22:1 xzr = 1} be the unit
simplex of R, and let h(z) = 22:1 2k log zj, denote the (negative) entropy on X. Then
(B.12) yields the logit map

_ _ (exp(y1),---,exp(ya))
Qy) = Aly) = (o) b explon) (5)

This map forms the basis of the seminal HEDGE and ExXP3 algorithms in online learning, cf.
[1, 2, 14, 39, 41, 65] and references therein. +

To ease notation in the sequel, we will write h(x):=)", hi(x;) for the players’ aggregate
regularizer, y:=min; p1; for the strong convexity modulus of h, and Q =[], Q;: Y — & for
the resulting ensemble mirror map. In the next sections, we describe in detail how this
regularization setup is used in a learning context.

3. LEARNING UNDER UNCERTAINTY IN CONTINUOUS TIME

To set the stage for the sequel, we begin with two simple games that will serve as “minimal
working examples” for the more general model and results presented in the sections to
come. We focus for the moment on continuous-time interactions; the discrete-time setting is
presented in Section 4.

3.1. A gentle start. Consider the following 2-player, convex-concave min-max games:
(a) Bilinear saddle: up (21, T2) = —us (21, T2) = —x129 for z1,20 € R.  (6a)
(b) Quadratic saddle: (1, 22) = —ua(z1,22) = 5/2 — x3/2  for x1,20 € R, (6b)

Both games are monotone and they admit a unique Nash equilibrium at the origin. Their
gradient fields are v(z1,22) = (—22,21) and v(x1,z2) = —(x1, 22) respectively, so the first
game is null-monotone and the second one is 1-strongly monotone. Accordingly, if each player
follows their individual payoff gradient to increase their rewards, we obtain the gradient
descent / ascent dynamics

(a) &(t) = (=xa(t),21()) and () &(t) = —(21(t), 22(t)) (GDA)

for the bilinear and quadratic games (6a) and (6b) respectively. It is then trivial to see
that, in the bilinear case, (GDA) cycles periodically at a constant distance from the game’s
equilibrium, whereas, in the quadratic case, the dynamics converge to the game’s equilibrium
at a geometric rate.
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To model uncertainty in this setting, we will consider the stochastic gradient dynamics
dX(t) = v(X(t)) dt + o dW(t) (S-GDA)

where W(t) = (Wi (t), Wa(t)) is a Brownian motion in R? and o > 0 is the magnitude of the
noise entering the process. Intuitively, this stochastic differential equation (SDE) should be
viewed as a rigorous formulation of the informal model #(t) = v(x(t)) 4+ “noise”, with the
Brownian term W(t) capturing all sources of randomness and uncertainty in the players’
environment.? Consequently, to understand the impact of uncertainty in each case of (GDA),
we will examine the following quantities:

(1) The distance || X (¢)||2 of X(t) from the game’s equilibrium (that is, the origin of R?).

(2) The time 7, = inf{t > 0 : [|X(¢)||2 < r} at which X(¢) gets within r of the game’s
equilibrium.

(3) The density P(x,t) of X (t)—and, if it exists, its long-run limit Py (z) :=1lim;_, o P(x,t).

When it exists, Py is known as the stationary—or invariant—distribution of x, and it is
closely related to the occupation measure p; of the process, defined here as

t
e (B) = %/ 1{X(s) € B} ds for every Borel B C X. (7)
0
Under mild ergodicity conditions [31, Cor. 25.9], we have lim;_, o p1:(B) = f B B, so, concretely,
P, measures the fraction of time that X (¢) spends in a given subset of X’ in the long run.
Taken together, these metrics provide a fairly complete picture of the statistics of X(¢) so,
in the rest of this section, we analyze them in the context of (S-GDA) applied to the games
(6a) and (6D).

Case 1: Bilinear saddles. In this case, by a direct application of It6’s formula—the chain
rule of stochastic calculus [59, Chap. 4]—we readily obtain

A(IX(1)]2) = 2X (1) - dX(t) + dX(t) - dX(t) = 20% dt + o X(t) - dW(t). (8)

This suggests that, on average, || X(t)|2 increases as ©(c*t). Building on this observation,
we show in Appendix D that the dynamics (S-GDA) for the bilinear game (6a) enjoy the
following properties:

Proposition 1. Suppose that (S-GDA) is run on the game (6a) with initial condition To € R2.
Then:

(1) limy—yo0 Eqy [|| X (8)]13] = 00, i.e., X () escapes to infinity in mean square.

(2) By [10] = 00 if r < ||mo|, i-e., X(t) takes infinite time on average to get closer to
equilibrium.

(8) The limit Py () = limy_,oo P(x,t) does not exist, i.e., x does not admit an invariant
distribution.

Proposition 1 shows that, in the presence of uncertainty, the periodicity of the determin-
istic dynamics (GDA) is completely destroyed. In fact, despite random fluctuations that
occasionally bring X (¢) closer to equilibrium, (S-GDA) exhibits a consistent drift away from
equilibrium, escaping any compact set in finite time and requiring infinite time to return on
average. As a result, X (¢) becomes infinitely spread out in the long run, exhibiting no mea-
surable concentration in any region of R?. For a partial illustration of this behavior—which
we view as antithetical to convergence—cf. Fig. 1. +

2For a primer on SDEs, see [37, 59]; for completeness, we also present some basic definitions in Appendix C.
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Case 2: Quadratic saddles. We now proceed to examine the behavior of (S-GDA) in the
quadratic min-max problem (6b), where (S-GDA) gives

AX(t) = —X(t) dt + o dW(t). (9)

As is well known [37, Chap. 7.4], this SDE describes the 2-dimensional Ornstein—Uhlenbeck
(OU) process

X(t) =X (0)e ™" + o f5e ) dW(s). (OU)

Hence, by unfolding the stochastic integral in (OU), we can draw the following conclusions:

Proposition 2. Suppose that (S-GDA) is run on the game (6b) with initial condition x¢ € R?.
Then:

(1) limy_yo0 By [IX(8)|13] = 02, i.e., the dynamics fluctuate at mean distance o from
equilibrium.

(2) The mean time required to get within distance r of the game’s equilibrium is bounded
as

1 ||zl —r°

]Efﬁo [TT] < 2

-2 r2-g¢
3) The density of X(t) is P(x,t) = [ro?(1 — e~ 2] Lexp —HI:S:#OHE . In particular,
(I1—e—2t)o

X(t) converges in distribution to a Gaussian random variable centered at 0, viz.

Po(z) = limy_yoo Pla,t) = 1/(10?) - e~ I=13/77 (11)

for all o < r < ||xoll2. (10)

Proposition 2 shows that the geometric convergence properties of the deterministic
dynamics (GDA) are again destroyed in the presence of uncertainty. However, in stark
contrast to Proposition 1 for the bilinear case, X (t) now exhibits a consistent drift toward
equilibrium, and it ends up being sharply concentrated at a distance of O(c?) from equilibrium.
This interplay between recurrence and concentration will play a crucial role in the sequel,
and our aim in the rest of this section will be to quantify the extent to which it holds in a
more general setting.

3.2. Learning in continuous time. We now proceed to describe our general model for multi-
agent learning under uncertainty, hinging on the stochastic “follow-the-regularized-leader”
template

dY;(t) = v;(X(t)) dt + dM;(t) Xi(t) = Qi(Yi(t)). (S-FTRL)
In the above, (i) Yi(t) € ); is a “score” variable that tracks the aggregation of individual
payoff gradients in Y;; (#) M;(t) € V; is a continuous square-integrable martingale acting
as a catch-all, “colored noise” disturbance term; and (éii) @Q;: V; — X; is the regularized
mirror map of player ¢ € A/, as per (B.12). In this regard, (S-FTRL) represents a noisy
“stimulus-response” mechanism, where each player i € A/ tracks the aggregation of payoff
gradients under uncertainty—the “stimulus”—and “responds” to this aggregate via their
individual regularized mirror map @;.

Remark 3. The terminology “follow-the-regularized-leader” is due to [65, 66], who first studied
this scheme in the context of online convex optimization in discrete time. This family of
algorithms and dynamics has been widely studied in the literature; we provide more details
on this in Appendix B. +

For concreteness, we will assume that the noise term M(t) = (M;(¢));en in (S-FTRL) is
of the form

dM(t) = o(X(t)) - dW(t) or, more explicitly dM;(t) = o;(X(t)) - dW(t) (12)
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where W(t) = (Wi(t),...,Wp(t)) is a standard Brownian motion in R™, and o(z) =
(0i(7))ien is an ensemble of state-dependent diffusion matrices o;: X; — RE*™ € N3
Importantly, the model (12) allows for correlated uncertainty between different components of
the process—e.g., accounting for random disturbances on shared road segments in a congestion
game—so it will be the base model for our analysis. Our only standing assumption will be
that o: X — RY*™ is bounded and Lipschitz continuous, which ensures that (S-FTRL) is
well-posed, i.e., it admits a unique strong solution that exists for all time and for every initial
condition Y(0) -y € Y (cf. Appendix C).

Remark 4. To connect the above with Section 3.1, note that (S-GDA) is recovered from
(S-FTRL) by taking X; = R, M;(t) = o W;(t), and h;(z;) = 22/2 for i = 1,2 (so Q;(y;) = v
by Example 2.1). +

3.3. Analysis and results. We now proceed to describe our main results for the stochastic
dynamics (S-FTRL)—which, as we show shortly, reflect the dichotomy between bilinear
and quadratic saddle-point problems that we noted in Section 3.1. To state them, it will
be convenient to introduce a “primal-dual’generalization of the Euclidean distance that is
more closely aligned with the regularization setup underlying the players’ response scheme.
Deferring the details to Appendix B, we define here the Fenchel coupling induced by the
regularizer h; of player i € N as

F(pi,yi,=)hi(p:) + hi(y;) — (yi, ;) foralli e N, and all p; € X;, y; € Vs (13)

where h!(y;) = max,,cx,{(yi, ;) — hi(x;)} denotes the convex conjugate of h;. For example,
in the unconstrained Euclidean case (Example 2.1), we recover the Euclidean distance
squared, viz. F(p;,yi, :)%HQZ(yl) — pil|?; by comparison, under entropic regularization on
the simplex (Example 2.2), we get a “dualized” version of the Kullback—Leibler divergence,
cf. Appendix B. In all cases, F; is positive-semidefinite in the sense that F), ,.(>,0) for
all y; € Vs, with equality if and ony if Q;(y;) = p;- In view of this, the total coupling
F(z,y,=) >, F(pi,v:) is a valid measure of “divergence” between p € X and y € ), and we
will use it freely in the sequel as such.

The last ingredient that we will need is two measures of the amount of randomness in
(S-FTRL), viz.

2

o2 =mingex Amin(X(z)) and 02, = max,ex Amax(Z()) (14)

where ¥ = oo " denotes the quadratic covariation matrix of the martingale M(t), and Apyin
(resp. Amax) denotes the minimum (resp. maximum) eigenvalue thereof.

With all this in hand, we will focus on two broad classes of games, null-monotone
and strongly monotone, of which the bilinear and quadratic examples of Section 3.1 are
archetypal examples. To state our results, we will assume that (S-FTRL) is initialized at
xo < Q(yo) € riX for some yo € Y, and we will write F} = F(z*,Y(¢)) where 2* is an
equilibrium of the game. We then have:

Theorem 1 (Null-monotone games). Suppose that (S-FTRL) is run with a smooth mirror map
Q in a null-monotone game G. Suppose further that the game admits an interior equilibrium
x*, and consider the hitting times 77 ==inf{t > 0: F} < Fy —¢e} and 77 :=inf{t > 0: F;, >
Fo+e}. If o2, > 0 and £ > 0 is small enough, then

Euo[ri] =00 and Eu.[rf] <2e/(ko2m) (15)

min
for some constant k = ke > 0; in addition, X (t) does not admit a limit density in this case.
3The representation (12) of M(t) via a Brownian integrator is not an assumption per se, but a consequence

of the martingale representation theorem, which allows us to express any homogeneous square-integrable
martingale in this form [59, Thm. 4.3.4]. Under this light, the loss in generality is negligible in our case.
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Theorem 2 (Strongly monotone games). Suppose that (S-FTRL) is run in an u-strongly
monotone game G, and consider the hitting time

T =inf{t > 0: X(t) € B, (")} (16)

where B, (z*) = {z : ||z — z*|| < r} is a ball of radius r centered on the (necessarily unique)
equilibrium x* of G. Then:

Eyo[m] < (Fo/,u)/(r2 — r?j) for allr > r,, (17)

where T4 = Omax /2. If, in addition, omm > 0 and x* is interior, X(t) admits an
invariant distribution concentrated in a ball of radius O(omax) around x*, and we have

limg oo e (B (z%)) > 1 =12 /r%  for allr > r,. (18)

Remark 5. The bounds depend implicitly on the regularizer through its strong convexity
modulus K and they indicate a trade-off between the degree of concentration of the process
around the radius beyond which the noise dominates the drift, and the time required to hit
this region. +

Remark 6. The result of Theorem 2 holds for radius of concentration not sharper than O(o).
This coincides with the special case of Proposition 2, indicating that our bound is tight in
this regard. +

Conceptually, Theorems 1 and 2 reflect the dichotomy between the bilinear and quadratic
examples studied in detail in Section 3.1. Indeed, we see that:

(1) In null-monotone games, the stochastic dynamics (S-FTRL) exhibit a consistent drift
away from equilibrium, moving to greater distances in finite time, and requiring infinite
time to return. As a result, if the game has an interior equilibrium, X (¢) becomes
infinitely spread out in the long run, exhibiting no concentration in any region of X’
other than, possibly, its boundary (if X is constrained).

(2) In strongly monotone games, the dynamics drift toward equilibrium, and they end
up being concentrated around the game’s (necessarily unique) equilibrium. However,
the players’ learning trajectories continue to fluctuate at a distance which scales as
O(omax) and, with probability 1, they return arbitrarily close to where they started,
infinitely often.

These properties paint a sharp separation between null- and strongly monotone games, with
uncertainty carrying drastically different consequences in each case; for an illustration, see
Fig. 1.

The proof of Theorems 1 and 2 is detailed in Appendix D. From a technical standpoint,
our analysis hinges on the use of the Fenchel coupling (13) as a “mean” energy function
for the dynamics. In the null-monotone case, the hitting time estimates (15) rely on an
application of Dynkin’s formula [59, Chap. 7.4|, coupled with an eigenvalue estimation for
the growth of F'. Then, by descending to a specific quotient of ) that compactifies the
sublevel sets of F, we are able to leverage the fact that E, [7.] = oo for r < Fy to show
that the dynamics are not positively recurrent—and hence, they do not admit an invariant
distribution. The analysis for the strongly monotone case has the same starting point, but it
then branches out almost immediately: the hitting time estimate (17) is again obtained via
Dynkin’s stopping time formula, but positive recurrence can no longer be established in X,
because the infinitesimal generator of X () is not uniformly elliptic (that is, its eigenvalues
are not bounded away from zero). Instead, we work directly with the infinetisimal generator
of the score process Y(t) whose generator is uniformly elliptic after taking a specific quotient
in ). This allows us to deduce positive recurrence in ), which we then push forward to X
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via @, and leverage the convergence of the occupation measures to the invariant distribution
of the process to derive the concentration bound (18). We detail these steps in a series of
technical lemmas in Appendix D.

Remark 7. If the game is neither null- nor strongly monotone, our analysis suggests that
(S-FTRL) would tend to “wander around” the null-monotone directions, and be carried along
the strongly monotone directions toward the game’s set of equilibria. However, obtaining a
precise version of such a result is quite involved, so we defer it to future work. +

4. LEARNING UNDER UNCERTAINTY IN DISCRETE TIME

We now turn to the discrete-time setting, which is of more direct algorithmic relevance.
Compared to Section 3, the analysis here is considerably more involved due to the lack of
closed-form solutions and the limited applicability of diffusion-based methods. Nevertheless,
as we shall see later in this section, the structural insights gained from the continuous-time
analysis remain highly valuable as they form the foundation of the tools and techniques
developed here.

4.1. Learning in discrete time. In discrete time, the most widely used implementation of the
“follow-the-regularized-leader” (FTRL) template unfolds for ¢ = 0,1,... as

Yit+1 = Yit + V0t Tit+1 = Qi(Yit+1) - (FTRL)
In addition to the notions already introduced and discussed in Section 3.2, (¢) ¥;, denotes
here a stochastic estimate of the player’s payoff gradient vector at z;;; and (é) v > 0 is
a step-size parameter, interchangeably referred to as the learning rate of the process. We
discuss these two new elements below.

The feedback process. In terms of feedback, we assume that, at every round ¢t = 0,1, ...,
each player ¢ € A receives stochastic gradient feedback of the form

Ut = Vi(z;we)  or, aggregating over all players 0y = V(x5 wy) (19)

where Oy = (0;¢)ien and V(z;w) = (Vi(z;w))ien is a stochastic first-order oracle for v(z),
viz.

V(z;w) = v(z) + U(z;w) . (SFO)
In the above, w;, t = 0,1,..., is an i.i.d. sequence of random seeds drawn from some
complete probability space 2, and U(z;w) is a random Y-valued vector satisfying the
standard assumptions

E,U(z;w)] =0 and  Ey[|U(z;w)]3] < 0 (20)

for some o > 0. In this way, letting F;, t =0, 1,..., denote the history of the process up to
time ¢, and writing Uy := U(x4; w;) for the noise in the players’ gradient feedback at time ¢,
we get

o =v(xy) + Uy with  E[U; | F;] = 0and E[||U4]|2| Fi] < o2 (21)
Following standard practice in the field—see e.g., [69, 72| and references therein—we further
assume that the probability distribution v, of U(z) decomposes as v, = v$ + v where:
(a) v;- is singular relative to the Lebesgue measure Ay on Y; (b) v¢ is absolutely continuous
relative to Ay; and (c¢) the density p,(y) of v/¢ is jointly continuous in x and y, and it satisfies
inf,ex pz(y) > 0 for every compact set K C X and all y € V. This last assumption is
relatively mild and ensures that the noise retains a non-degenerate, smooth component across
X, much like the assumption oy, > 0 for the diffusion matrix of (S-FTRL) in Section 3.*

4This condition is trivially satisfied by most continuous error distributions in practice, and it can always
be enforced by injecting a small uniform Gaussian noise component into the process, a technique which is
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The algorithm’s learning rate. The second feature which sets the discrete-time framework
apart is the method’s learning rate y. Here and throughout, we consider a constant learning
rate schedule; this should be contrasted to the stochastic approximation literature [7, 10, 38,
51, 55|, where (FTRL) is run with a vanishing step-size 7, — 0, typically satisfying some
form of the Robbins-Monro summability conditions Y, v, = oo, Y., 7? < c0.

In many cases, the use of a vanishing step-size enables convergence of the algorithm
because it dampens the impact of the noise over time [51]; at the same time however, in
many applied settings, algorithms are implemented with a constant—or, at the very least,
non-vanishing—step-size. This choice is largely driven by practical considerations: constant
step-size schedules are easier to calibrate and maintain, particularly in large-scale systems
where adaptivity and simplicity are critical. Moreover, vanishing step-size schedules often
exhibit prolonged transient phases and converge slowly toward equilibrium neighborhoods; by
contrast, constant step-size methods tend to reach near-stationary regions much faster, even
within 0.1% accuracy or lower [17]. This behavior underlies their widespread use in modern
machine learning pipelines, where learning rates are kept effectively constant throughout
training, even for models trained over billions of samples and/or hundreds of billions of
tokens [16].

4.2. Analysis and results. We now have the necessary machinery in place to present our
results for (FTRL). Before doing so, we should only stress that the discrete-time analysis
is, by necessity, more qualitative than the more explicit, continuous-time results presented
in Section 3. This gap is difficult to avoid: in continuous time, the rules of stochastic
calculus comprise a very sharp set of tools with which to obtain closed-form estimates for
the processes involved; on the other hand, in discrete time, even the most basic tools of
stochastic analysis—like Dynkin’s formula—are dulled down because of measurability and
subsampling issues.
As before, we split our focus between null- and strongly monotone games.

The null-monotone regime. A key take-away from the analysis of Section 3 is that, in
null-monotone games, uncertainty causes the dynamics of regularized learning to spread
out, diverging to infinity on average, without concentrating at any region of X other than
its boundary. Our first result below shows that a version of this tenet continues to hold in
discrete time:

Theorem 3 (Null-monotone games). Suppose that (FTRL) is run in a null-monotone game
G, and let * be an equilibrium of G. Suppose further that h* is strongly convex, and let
Fy = F(z*,yt), where F is the induced Fenchel coupling (B.22). Then lim;_, o E[F}] = co.

This result shows that (FTRL) drifts away to infinity on average—though, of course, as
in the continuous-time case, this does not mean that this occurs with probability 1. What
is missing from Theorem 3 relative to Theorem 1 is a bound on the mean time required
for F; to increase or decrease by . In the absence of a consistent drift component, our
continuous-time estimates were only made possible through the use of stochastic calculus.
In discrete time however, z; evolves in discrete, driftless jumps, introducing overshoots
and upcrossings that render this question significantly harder. We conjecture that similar
bounds do hold in discrete time, but we leave this open as a conjecture. [We only note
here for completeness that a similar result holds for any decaying step-size sequence ~y; with

>t Vi = ool

widely used in both optimization and reinforcement learning to promote sufficient exploration and avoid
degeneracy issues and saddle-points |7, 23, 40, 71]. In such cases, the density of the absolutely continuous
component is strictly positive everywhere and independent of z € X'| so the uniform lower bound condition
holds trivially.
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Figure 1. Trajectories and statistics of play under (FTRL) with entropic regularization
in two min-max games over X = [0, 1]2, a bilinear and a quadratic one (top vs. bottom
half respectively). Deterministic orbits are plotted in red and stochastic trajectories in
shades of blue, with darker hues indicating later points in time; the density plots depict
the resulting visitation frequency in X. In tune with Theorems 3 and 4, we see that
learning in null-monotone games drifts toward the extremes of X’; by contrast, in strongly
monotone games, learning orbits drift toward equilibrium, but continue to fluctuate
around it. More details are provided in Appendix F.

The strongly monotone regime. We now turn to the long-run behavior of (FTRL) in strongly
monotone games. Based in no small part on the continuous-time analysis of the previous
section, our goal will be to understand the distributional properties of the dynamics, with a
particular focus on (a) the existence and uniqueness of an invariant measure; and (b) the
extent to which this measure is concentrated around the game’s equilibrium—which, in turn,
quantifies the long-run proximity of the iterates of (FTRL) to equilibrium. With all this in
mind, our results can be stated as follows:

Theorem 4 (Strongly monotone games). Suppose that (FTRL) is run in an u-strongly
monotone game G, and consider the hitting time

Tr=inf{t > 0: X(t) € B, (z")} (22)
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where B.(z*) = {z : ||l — z*|| < r} is a ball of radius r centered on the (necessarily unique)
equilibrium x* of G. Then, for allr > r, = \/7(02 + 82)/(up), we have

1 {Fo if vo ¢ B, (2*),

E[r] < (23)

_— X

py(r2 —=r2) | Fo+pyr®  if wo € B(z¥),
where Fy = F(x*,yo). If, in addition, x* is interior, x; admits a unique invariant distribution
to which it converges in total variation, and we have

lim 1Eli 1{x € IB%T(x*)}] >1—r2/r? (24)
s=0

t—oo t

for all r > r, such that B,.(z*) C i X.

Remark. Unlike the continuous-time setting of Section 3, we must treat the cases xg € B,.(z*)
and z ¢ B, (z*) separately. This distinction arises only in discrete time, because the iterates
may exhibit large jumps—so, returning to B,.(z*) is not guaranteed, even if the process is
initialized within. +

We prove Theorem 4 in Appendix E following the strategy outlined below. First, shadowing
the continuous-time analysis of Section 3, we reduce the dynamics to a suitable quotient space
of ), eliminating redundant directions and ensuring that the process evolves in a minimal,
non-degenerate domain. Building on this, we then show that the induced dynamics are
Lebesgue-irreducible, i.e., every measurable set with positive Lebesgue measure is reachable
with positive probability under the transition kernel of the process. Moreover, invoking (23),
we further deduce that P(7,. < oo) = 1 for any initial condition, implying that B, (z*) is
visited infinitely often. Finally, we also show that B, (z*) satisfies a minorization condition,
meaning that the transition kernel from any point in the ball dominates a fixed reference
measure. In turn, this implies that, upon returning to B, (z*), the process has a nonzero
chance of “forgetting” its past, allowing us to construct a regeneration structure via a coupling
argument. Then, leveraging the continuity of F(z*,y), we obtain a uniform bound on the
expected return times E[r,] over any initialization in B, (z*), which allows us to conclude
that the process y; is positive Harris recurrent. As a result, it can be shown that the iterates
of (FTRL) converge to a unique invariant measure, and we obtain quantitative control over
their long-run concentration by means of our previous estimates.

5. CONCLUDING REMARKS

Our aim in this paper was to quantify the impact of noise and uncertainty on the dynamics
of multi-agent regularized learning. Our findings reveal a sharp separation between games
that are null-monotone (like bilinear min-max games), and strongly monotone games (like
Kelly auctions or Cournot competitions). In the former case, the quasi-periodic profile
of the deterministic dynamics is destroyed, and learning under uncertainty drifts away on
average toward extreme points (or escapes to infinity); in the latter, the sharp convergence
guarantees of the deterministic dynamics are diluted by noise, and the resulting dynamics
end up concentrated in a region around the game’s equilibrium (which we estimate). This
paves the way for further explorations of the long-run statistics of regularized learning in
games—especially pertaining to the invariant measure of the process—a topic which we find
particularly promising for advancing our understanding of the field.

APPENDIX A. EXAMPLES

In this appendix, we present several examples of games satisfying the standing assumptions
we outlined in Section 2. Overall, these assumptions are quite standard in the study of online
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learning and games with continuous action spaces, and most of the positive results in the
literature hinge on precisely these assumptions or close variants thereof.

To provide some context, the monotonicity assumption (cf. Definition 1) provides an
amenable “convex structure”, which is essential for establishing the existence and characteri-
zation of equilibria via first-order variational condtions. Without a structural characteriztion
of this type, even defining a meaningful solution concept becomes unclear, and global con-
vergence cannot be expected—at least in general. In a sense, these assumptions parallel
the convex/non-convex separation in optimization—but with the added challenge that, in
non-convex games, equilibria may fail to exist altogether, unlike minimizers (either local or
global) in non-convex minimization problems.

Our regularity assumptions—closed action sets, Lipschitz smoothness, etc.—are largely
technical, standard in practice and, as such, nearly universal in the literature. They could
be relaxed, for instance, by assuming local or relative smoothness, Hélder continuity, or
something of the sort—though the resulting analysis would be considerably more involved.
Relaxing monotonicity, however, is considerably trickier: some of our results would go
through as long as the game’s equilibrium admits a global variational characterization, e.g.,
in the spirit of variational stability or a Minty-type condition, cf. [51, 54, 74] and references
therein. If, however, the game admits distinct components of equilibria, all bets are off:
in that case, FTRL could transit in perpetuity between the game’s different equilibrium
components, and characterizing the mean sojourn and transition times of the process would
only be possible in very special cases.

All in all, the set of assumptions that we consider represents a certain “sweet spot”
between theoretical tractability and practical relevance, which explains their prevalence in
the literature. The examples below illustrate the range of settings where these assumptions
arise naturally.

Example A.1 (Zero-sum bimatrix games). A bimatrix game consists of two players, each
with a finite set of actions A;, ¢ = 1,2, and a min-max objective function L: A4; x A; — R,
typically encoded in a matrix M € RA1*A2 with Mag = Lo, B) for all a € Ay, B € As.
The first player is cast in the role of the minimizer and the second player in that of the
maximizer, so their corresponding payoff functions are defined as w1 = —L = —us.

In the mixed extension of the game, each player can mix their actions by selecting a
probability distribution—a mized strategy—over A;, that is, an element x; of the probability
simplex X; = A(A;) = {z; € R ¢ ||a]|; = 1}. Accordingly, in matrix notation, the players’
corresponding mixed payoffs are given by

w1 (21, 20) = —] My = —ug(x1,x2) (A1)
so their individual gradient fields can be expressed as
vy (21, 22) = —Muo and va(x1,T2) = Mz, (A.2)

for all z1 € X} and all zo € As.
By definition, a mixed-strategy Nash equilibrium of a bimatrix zero-sum game satisfies

L(x},x2) < L(z7,25) < L(x1,23) for all 2y € Xy, x4 € As. (A.3)

If, in addition, z7, x5 both have full support—that is, 27 € ri&} and x5 € ri Xo—we also
have the “equalizing payoffs” condition

L(x},x9) = L(x1,23) for all x; € Xy, xo € Xy (A.4)
which means that (A.3) binds identically. In this case, we readily get

(vi(z1,22), 21 — x7) + (v2(z1, 22), 2 — x5)
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= uy (21, 22) — ur(a], x2) + ua (21, x2) — uz(x1,25) =0 (A.5)

for all x1 € X, x9 € Xs, i.e., the game is null-monotone in the sense of Definition 1. +

Example A.2 (Cournot competition). In the standard Cournot competition model, there
is a finite set of firms, indexed by i € N' = {1,..., N}, each providing the market with
a quantity x; € [0, B;] of some good (or service) up to the firm’s production budget B;.
Following the law of supply and demand, this good is priced following the simple linear model
P(z) =a—b),x;, ie., as a linearly decreasing function of the total supply. Accordingly, in
this model, the utility of firm ¢ is given by

ui(x) = 2, P(x) — ¢y = [a - sze/\f xj— ci] x4, (A.6)

where ¢; represents the marginal production cost of firm 1.
By a straightforward derivation, the players’ individual payoff gradients are given by

vi(x) = gz: = [a - ijeN T — ci] —bx; (A7)

and hence, the Hessian matrix of the game will be

1 0%u; 1 0%u,
Hi' == : - J = 7b7b5i' A8
(%) 2 (%cj@xi 2 630%890] J ( )
where d;; is the standard Kronecker delta. Since H is circulant, standard linear algebra
considerations show that its eigenvalues are —b and —(N + 1)b (with multiplicity N — 1
and 1 respectively), so it follows by a well-known second-order criterion that the Cournot
competition game is b-strongly monotone [51, 63]. +

Example A.3 (Signal covariance optimization). Consider a vector Gaussian channel of the
form

y= Z Hix;,+z (A.9)

ieEN

where x; € C™ is the (complex-valued) signal transmitted by the i-th user of the channel,
H € C™*™i is the transfer matrix of the channel, z € C™ is the noise in the channel (assumed
zero-mean Gaussian and, without loss of generality, with unit covariance), and y € C" is
the aggregate signal output of the channel [73]. In this context, each user i € A/ controls
the covariance matrix X; = E[xixﬂ subject to the power constraint tr(X;) = E[||x;||?] < P,
where P; denotes the user’s maximum transmit power. In this case, by the celebrated
Shannon—Telatar formula [67], and assuming a single-user decoding scheme at the receiver,
the achievable rate of the i-th user is

(X3 X ;) = log det (T + > H,X;H] ) — log det (T + > HXH).  (A10)

Putting everything together, this defines a continuous game with players i € N' = {1,..., N},
spectrahedral action sets of the form

Q, = {Xz € Cmixmi X; =0and trX; < Pz} (All)

for all i € N/, and payoff functions given by (A.10). By a calculation of Belmega et al. [6], it
is known that this game is concave and monotone—and, in fact, strongly monotone if the
linear mapping (Xi,...,Xyx) — >, HZXZHI is not rank-deficient. +

Examples that are closer to signal processing and data science include distributed metric
learning, multimedia classification, etc. For a range of applications along these lines, we refer
the reader to [52, 64] and references therein.
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APPENDIX B. MIRROR MAPS AND REGULARIZATION

In this appendix, we collect some background material, properties and examples regarding
the regularization machinery underlying (FTRL) and (S-FTRL). To lighten notation—
especially with respect to the player index i € N—we base everything in this appendix on
an abstract closed convex subset of some d-dimensional vector space, which could either be
X; or X, depending on the context.

The results presented below (or a version thereof) are known in the literature; nevertheless,
we provide detailed proofs for completeness and to resolve any conflicts or ambiguities with
different conventions in the literature.

B.1. Preliminaries. Let V be a d-dimensional normed space, let ) :=V* denote the (algebraic)
dual of V, and let (y, z) denote the canonical bilinear pairing between € V and y € V*. If
[I]] is @ norm on V will also write

[yll« = max{{y, z) : [l«] <1} (B.1)

for the induced dual norm on Y, so [(y,z)| < ||z||||y|l« for all z € V and all y € Y by
construction.
Given a closed convex subset C of V, we also define:

(1) The tangent cone to C at p € C as
TC(p) =cl{z € V:p+tz €C for some ¢t > 0} (B.2)

i.e., as the closure of the set of rays emanating from p and meeting C in at least one
other point.

(2) The dual cone to C at p € C as
TC*(p) ={weY:(w,z) >0forall z € TC(p)} (B.3)

(3) The polar cone to C at p € C as
PC(p)={we Y : (w,z) <0forall z€ TC(p)} (B.4)

Following standard conventions in the field [61], convex functions will be allowed to take
values in the extended real line RU {oo}, and we will denote the effective domain of a convex
function f: V — RU {oco} as

dom f={z eV: f(z) < o0} (B.5)

When there is no danger of confusion, we will identify a convex function f: )}V — R with its
restriction on dom f; in other words, we will treat f interchangeably as a function on dom f
with values in R, or as a function on V with values in R U {co} (and finite on dom f).

Throughout the sequel, we will assume that all functions under study are proper, that
is, dom f # @. Then, given a proper function f: V — RU {oo}, the subdifferential of f at
x € dom f is defined as

of (@) ={y €Y : f(«') = f(x) + (y,2’ — ) for all 2" € V} (B.6)
and we denote the domain of subdifferentiability of f as
domof ={z e€V:0f(zx) # 2}. (B.7)

With all this in hand, a regularizer on a closed convex subset C of V is a continuous
function h: C — R which is strongly convez, i.e., there exists some p > 0 such that

h(Az + (1 — \)a') < th(z) + (1 — Nh(z') — gm )|z’ — 2 (B.8)
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for all z,2’ € C and for all A € [0,1]. By standard arguments [8, 62|, this immediately implies
that

h(z') > h(x) + Oh(z; 2’ — x) + g”:v’ —z|* forall 2,2’ € X, (B.9)
where
Oh(z;2' —x) = lim [h(z +0(z' —x)) — h(z)]/0 (B.10)
0—0+

denotes the one-sided directional derivative of h at x along the direction of 2’ — z. In addition,
we also define the following objects associated to h:

(1) The proz-domain of h:

Cp, :==dom 0h (B.11)
(2) The mirror map @Q: Y — X induced by h:
Q(y) :=argmax{(y,z) — h(x)} for all y € ). (B.12)
TeX

(3) The convex conjugate h*: Y — R of h:
h(y) = mél)}(({(y, x) — h(z)} for all y € ). (B.13)
The proposition below provides some basic properties linking all the above:

Proposition B.1. Let h be a p-strongly convex regularizer on C. Then:
(a) Q is single-valued on Y.
(b) For all x € Cp, and all y € Y, we have

r=Q(y) ifand only if y € Oh(x). (B.14)
(¢) The image im Q of @ is equal to the prox-domain of h, and we have
riCCim@Q =C, CC. (B.15)
(d) The convex conjugate h*: Y — R of h is differentiable and satisfies
Q(y) =Vh*(y) forallye). (B.16)
(e) Q is (1/p)-Lipschitz continuous, that is,
1QW) — Q) < (1/m)lly’ —yll. for all y,yf €Y. (B.17)
(f) Fiz somey €Y and let x = Q(y). Then, for all ' € X we have:
oh(x;z’ —x) > (y, 2’ — ). (B.18)

(9) Fiz somey €)Y, and let x = Q(y). Then Q(y +w) =z for all w € PC(x).

Proof. For the most part, these properties are well known in the literature (except possibly
the last one), so we only provide a pointer or a short sketch for most of them.

(a) This readily follows from the fact that h is strongly convex, so the arg max in (B.12)
is attained and is unique for all y € Y.

(b) By Fermat’s rule [61, Chap. 26|, we readily see that z solves (B.12) if and only if
y — Oh(z) 2 0, that is, if and only if y € Oh(z). Since this implies that dh, our claim
follows.

(¢) By (B.14), we readily get im Q = C,. As for the second part of our claim, it follows
from basic properties of the subdifferential, cf. Rockafellar [61, Chap. 26].

(d) This is simply Danskin’s theorem, see e.g., Bertsekas [8, Proposition 5.4.8, Appendix
BJ.
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(e) This is a consequence of the fact that h* is (1/u)-Lipschitz smooth, cf. Rockafellar
& Wets [62, Theorem 12.60(b)].

(f) Since y € Oh(z) by (B.14), we readily get that
h(z+6(z’ —z)) > h(z) +0{y,2’ —z) forall § €[0,1]. (B.19)
Hence, by rearranging and taking the limit § — 0%, we conclude that

Oz —z) = lim "I =) = W)

> I B.20
Jim, ; > (y,a' — ) (B.20)

. =
as claimed.”

(9) By (B.14) it suffices to show that y +w € Oh(x) for all w € PC(x). However, if
w € PC(z), we also have (w,z’ —z) <0 for all ' € X, and hence, with y € Oh(z),
we readily get

h(z') = h(z) + (y, 2’ — x)
> h(z)+ (y+w,a’ —z) forall 2’ € X. (B.21)
This shows that y + w € Oh(x) and completes our proof. ]

Following [46, 51], we also define the Fenchel coupling associated to h as
F(p,y) = h(p) + h*(y) — (y,p) forallpe X, yel. (B.22)

The next proposition shows that the Fenchel coupling can be seen as a “primal-dual” measure
of divergence between p € C and y € V:
Proposition B.2. Let h be a p-strongly convex reqularizer on C. Then, for all p € X and all
y € ), we have:
(a) F(p,y) >0 with equality if and only if p = Q(y). (B.23a)
(b) F(p,y) > 5111Qy) —pl*. (B.23b)

Proof. These properties are known in the literature, but we provide a quick proof for
completeness.

(a) By the Fenchel-Young inequality, we have h(p) + h*(y) > (y,p) forallp e X, y € ),
with equality if and only if y € dh(p). Our claim then follows from (B.14).

(b) Let x = Q(y) so y € Oh(x) by (B.14). Then, by the definition of F, we have
F(p,y) = h(p) +h*(y) = (y,p)

= h(p) + (y, ) — h(z) — (y,p) > since y € Oh(z)
> h(p) - h(m) - C{)h(m;p — x) > by Proposition B.1
> gullz —pl? > by (B.8)
so our proof is complete. n

Our last result at this point is a useful differentiation formula for the Fenchel coupling:

Lemma B.1. For allp € X and all y € Y, we have:

VyF(p,y) =Qy) —p. (B.24)
Proof. The proof follows immediately from Danskin’s theorem, cf. Eq. (B.16) of Proposi-

tion B.1. [ |

5The existence of the limit is guaranteed by elementary convex analysis arguments, cf. Bertsekas [8,
App. BJ.
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B.2. Update lemmas. Moving forward, we note that the basic update step of (FTRL) can
be written as
yT=y+w and 2 =Q(y") (B.25)
for some y,w € Y. With this in mind, we state below a series of identities and estimates for
the Fenchel coupling before and after an update of the form (B.25).
The first is a primal-dual version of the so-called “three-point identity” for Bregman
functions [15]:

Lemma B.2. Fiz somep e X,y €Y, and let x = Q(y). Then, for all y* € Y, we have:

F(p.y")=F(p.y) + Fz,y") + {y" —y.z —p). (B.26)
Proof. By definition, we have:

F(p,y*) = hip) + * (") — (4, p) (B.27a)
F(p,y) = h(p) + h*(y) — (¥, p) (B.27b)
Fla,y*) = h(z) + h*(y+) — (y* 2) (B.27¢)

Thus, subtracting (B.27b) and (B.27c) from (B.27a), and rearranging, we get
F(p,y") = F(p,y) + Fz,y") — h(z) = h*(y) + (y",2) — (" —y,p). (B.28)
Our assertion then follows by recalling that z = Q(y), so h(z) + h*(y) = (y, x). ]

The next result we present concerns the Fenchel coupling before and after a direct update
step; similar results exist in the literature, but we again provide a proof for completeness.

Lemma B.3. Fiz some p € X and y,w € Y. Then, letting v = Q(y), yt =y +w, and
2T = Q(y™) as per (B.25), we have:

F(p,y*) = F(p,y) + (w,a™ —p) — F(z",y) (B.29a)
< F(p.a) + (w0 =) + 5wl (B.29b)

Proof. By the three-point identity (B.26), we have
F(z,y)=F(z,y") + F="2)+ (y -y 2" —p) (B.30)

so our first claim is immediate. For our second claim, rearranging terms and employing the
Fenchel-Young inequality gives

F(p,y)—|—<w,x+ _p> —F($+,y)
=F(p,y) + (w,x —p) + (w, 2" —x) = F(p,y)

1 H
< F(p,y) + (w,z —p) + @leli +5llz = pl* = F(p,y) (B.31)
so our claim follows from Proposition B.2. [ |

APPENDIX C. A SHORT PRIMER ON STOCHASTIC ANALYSIS

In this appendix, we collect some standard results from stochastic analysis in order to
provide a degree of self-completeness to the main text. For an introduction to stochastic
analysis and the theory of SDEs, we refer the reader to the masterful accounts of (ksendal
[59] and Kuo [37].

The main focus of the theory is the study of ordinary differential equations (ODEs)
perturbed by noise, modeled informally after the Langevin equation

92— b(z) + ) (LE)
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where Z(t) is a stochastic process in R, b: R — R is the drift of the process, and n(t) is
the “noise” perturbing the deterministic ODE Z = b(z). Unfortunately, albeit natural, the
problem with (LE) is that any reasonable continuous-time model of noise would lead to
trajectories that are almost nowhere differentiable, so the meaning of “dZ/dt” in (LE) is
rather precarious.®

In lieu of this, to give formal meaning to (LE), we consider instead the stochastic differential
equation

dZ(t) =b(Z(t)) dt +o(Z(t)) dW(t) (SDE)

which is shorthand for the integral equation

2() = /O b(Z(s)) ds + /0 o(Z(s)) AWV (s) . (1)

for some state-dependent diffusion coefficient c: R — R. The key element in the above
formulation is the so-called Ité integral that appears in the right-hand side of (SDE),
and which is defined relative to what is known as a standard Brownian motion on R.
Intuitively, what this means is that the integral fot o(Z(s)) dW(s) is obtained in the limit
0t = tgy1 — tr — 0 of the discrete-time approximation
t [t/dt]
| oz awis) ~ Y o6 Wita) - Wit (©2)
k=1
where W (t) is some stochastic process that satisfies what one would expect from a “white noise”
process (zero-mean, with independent increments), but is still “regular enough” to possess a
reasonable behavior in the limit ¢ — 0. These considerations lead to the formal definition
of a Brownian motion—or, more precisely, the Wiener process—which is characterized by
the following properties:

(1) The increments of W are independent, that is, for all ¢,7 > 0, the future increments
W(t + 1) — W(t) of W are independent of its past values W(s), s < ¢.

(2) The increments of W are Gaussian, that is, for all ¢,7 > 0, the future increments
W(t + 1) — W(t) of W are normally distributed with mean 0 and variance 7, i.e.,
W(t+ 1) — W(t) ~ N(0, 7).

(3) The sample paths of W are continuous (a.s.), i.e., W(t) is a continuous function of ¢
for almost every realization of W.

The existence of a process with the above properties is by no means a trivial affair, but
it can constructed e.g., as the scaling limit of a random walk, or some other discrete-time
stochastic processes with stationary independent increments.

Providing a more detailed account of the definition of W(t) and the associated stochastic
integral which appears in (SDE) is well beyond the scope of our paper; for an accessible
introduction, we refer the reader to @Oksendal [59, Chap. 2]. What is more important for our
purposes is that, albeit non-differentiable, the solution Z(t) still satisfies a certain version of
the chain rule, known as Ité’s formula [30]. Specifically, for any C? function f: R — R, we
have

df(Z(t)) = ['(Z(£)b(Z(1)) dt + 5" (Z()o* (1) dt + f'(Z(1)) o(Z(t)) AW (1) (C.3)

or, more compactly:
df(Z(t)) = f'(2(t)) dZ(t) + 5./"(Z(1)) dZ(t) - dZ(1) (C4)
6In particular, consider a noise process n(t) which is a) zero-mean: E[n(t] = 0; b) uncorrelated:

E[n(t1)n(t2)] = 0 if t2 # t1; and ¢) stationary, in the sense that n(t + s) and n(t) are identically dis-
tributed for all s > 0. Then, any such process does not have continuous paths [59, p. 21]|.
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where the product dZ - dZ is computed according to the rules of stochastic calculus [59]:
dt -dt =0 dt-dW(t)=0 and dW(t)-dW(t)=dt. (C.5)

Thanks to Itd’s formula, we can still do calculus with stochastic processes satisfying (SDE);
the resulting set of differentiation rules is known as Ito—or stochastic—-calculus.

For our purposes, we will consider multi-dimensional analogues of (SDE) where, mu-
tatis mutandis, (¢) Z(t) evolves in R™; (i) the drift of the process is given by a vector
field b: R™ — R™; (4ii) W(t) is an m-dimensional Brownian motion evolving in R™; and
(iv) o: R™ — R"™™ is the diffusion matriz of the SDE. In this case, It6’s formula for a C?
function f: R™ — R becomes

df(Z(t)) =D bi(Z(t ())gf dt + = Z Zazk )aji(Z( ))az_a];
i=1 o 4,j=1k=1 ! (CG)
+;kz=:10'zk ai dWi(t)

In our analysis, we will also require a weaker version of [t6’s formula for convex functions
f: R™ — R that are not C? but are only L-Lipschitz smooth, i.e., C'-smooth with L-Lipschitz
continuous derivatives. We borrow the precise statement from [48, Proposition C.2] which,
in our notation, gives

1(20) < $20) + Y [ 0. r2) dzi) + 5 [ lo(z@) o) as €

or, more explicitly,

£(20) < £20) + Y [ 26D 2. f2e) ds+ 5 [ ulo(z(s)olz() ] ds

| otz o,z awigs). ()

The deterministic part of (the strong version of) Ito’s formula for C?-smooth functions is
captured by the so-called infinitesimal generator of (SDE), defined here as the differential
operator £ whose action on f is given by

:ibz(z)a ZZU Yo 52f forall z€R".  (CJ)
: i 8 ik ]k a . .
i=1 Zj 1 k=1
Accordingly, It0’s formula can be written more compactly as
df (Z(t)) = LF(Z(t)) dt + V. £(Z(t)) " o(Z(t)) dW(1) . (C.10)

Thus, letting P,(-) denote the law of Z initialized at Z(0) + z € R™, and writing E,[-] for
the corresponding expectation, we readily get

E.[f(Z(t)] = f(z) + E. UO Lf(Z(s)) ds} for all t > 0. (C.11)

This shows that the infinitesimal generator of Z captures precisely the mean part of the
evolution of f(Z(t)) under (SDE). In fact, this simple expression admits a far-reaching
generalization known as Dynkin’s formula [59, Chap. 7.4]:
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Proposition C.1 (Dynkin’s formula). Suppose that Z(t) is initialized at Z(0) < z € R™.
Then, for every bounded stopping time T and every C?-smooth function f: R™ — R, we have

B2 = 1)+ 5. [ sz . (©12)
Moving forward, the matrix
A(z) =o(2)o(2)" (C.13)
or, in components,
Aij(2) = ow(2)ojn(z) i,j=1,...,n, (C.14)
k=1

is known as the principal symbol of L, and we say that L is uniformly elliptic if there exists
some ¢ > 0 such that u" A(2)u > ¢||ul|? for all z,u € R™ (that is, if the eigenvalues of A(z)
are positive and uniformly bounded away from 0). If this is the case, the noise in (SDE) is
“uniformly exciting” in the sense that it does not vanish along any direction at any point of
the state space of the process. Concretely, by standard results—see e.g., [57, Sec. 3.3.6.1]
and references therein—this implies that every region of R™ is visited by Z(t) with positive
probability, viz.

P.(Z(t) = 2’ for some t > 0) >0 for all 2,2’ € R". (C.15)

If (SDE) is uniformly elliptic—i.e., if the infinitesimal generator thereof is uniformly
elliptic—the behavior of Z(t) can be further classified as transient or recurrent. Formally,
these two fundamental notions are defined as follows:

Definition 2. Suppose that (SDE) is initialized at some z € R™. Then:

(1) Z(t) is transient from z € R™ if it escapes every compact subset K of R™ in finite
time, i.e., there exists some (possibly random) Ti < oo such that

P.(Z(t)¢ Kforallt >Tx)=1. (C.16)
(2) Z(t) is recurrent relative to a compact subset IC of R™ if the hitting time
T = inf{t > 0: Z(t) € K} (C.17)

is finite (a.s.). If, in addition, E[7x] < oo, we will say that Z(t) is positive recurrent;
otherwise, Z(t) will be called null recurrent.

If (SDE) is uniformly elliptic, we have the following fundamental dichotomy:

Theorem C.1 (Transience / recurrence dichotomy). Suppose that (SDE) is uniformly elliptic.
Then:

(1) If (SDE) is positive recurrent (resp. null recurrent) for some initial condition z € R™
and some compact subset IC of R™, then it is positive recurrent (resp. null recurrent)
for every initial condition and every compact subset of R™.

(2) If (SDE) is transient from some initial condition z € R™, it is transient from every
initial condition.

For a more detailed version of Theorem C.1, we refer the reader to Bhattacharya [9,
Proposition 3.1] who, to the best of our knowledge, was the first to state and prove this
criterion. In words, Theorem C.1 simply states that, as long as (SDE) is uniformly elliptic,
then it is either transient or recurrent; and if it is recurrent, it is either positive or null
recurrent; no other outcome is possible. The choice of initialization or compact set in
Definition 2 does not matter (so, in particular, Z cannot be transient from some region of
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R™ and recurrent from another). This crisp separation of regimes will play a major role in
our analysis, and we will refer to it as the transience /recurrence dichotomy.

An important consequence of positive recurrence is that, under uniform ellipticity, Z(t)
admits a unique invariant measure, that is, a probability measure v on R™ such that Z(t) ~ v
for all ¢ > 0 whenever Z(0) ~ v. Importantly, the proviso that v is a probability measure
implies that v(R™) < oo; if the process is null-recurrent, the semigroup of flows of (SDE)
still admits an invariant meassure in the sense of Khasminskii [33], but this measure is no
longer finite, i.e., ¥(R™) = co. Finally, if the process is transient, (SDE) does not admit such
a measure.

APPENDIX D. ANALYSIS AND RESULTS IN CONTINUOUS TIME

We now proceed to prove the continuous-time results for (S-FTRL) that we presented in
Section 3.

D.1. Proofs omitted from Section 3.1. We begin with the “gentle start” results of Section 3.1,
which we restate below for convenience.

Proposition 1. Suppose that (S-GDA) is run on the game (6a) with initial condition xo € R?.
Then:
(1) limy—yo0 By [|| X (8)]13] = 00, i.e., X(t) escapes to infinity in mean square.

(2) By [10] = o0 if r < ||l@o|, i.e., X(t) takes infinite time on average to get closer to
equilibrium.
(8) The limit Py (x) = limy_, o, P(x,t) does not exist, i.e., x does not admit an invariant

distribution.

Proposition 2. Suppose that (S-GDA) is run on the game (6b) with initial condition xo € R?.
Then:

(1) limy_s oo By [| X ()||2] = 02, i.e., the dynamics fluctuate at mean distance o from
equilibrium.

(2) The mean time required to get within distance r of the game’s equilibrium is bounded
as

1[lzoll3 — r?
Buoln] <372 52

3) The density of X(t) is P(x,t) = [ro?(1 — e )] Lexp —“”:B_;Zfo”ﬁ . In particular,
(1—e—2t)o

X(t) converges in distribution to a Gaussian random variable centered at 0, viz.

for all o <1 < ||zol|2. (10)

Po(z) = limy_yo0 Pla,t) = 1/(10?) - e~ I=13/7" (11)

Proof of Proposition 1. For our first claim, note that It6’s formula (C.6) applied to the
function f(z) = ||z||3 under the dynamics (S-GDA) for the game (6a) readily yields the
expression

d(| X)) = 2X(t) - dX(t) + dX(t) - dX(t) = 20% dt + o X (t) - dW(t). (D.1)

Hence, by (C.11), we get
B, [ X(0)[3] = 20°, (D.2)

which proves our claim.
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For our second claim, consider the hitting time 7 = inf{¢t > 0 : || X(¢)||2 < r} with
r < ||zoll2, and assume that E[7] < oo. Then, by Dynkin’s formula (Proposition C.1) applied
to f(z) = ||z||3 and 7, we readily get

B [f(X(7)] = f(w0) + Euy UOT 20° dS} = f(0) +20” Eq,[7] = [lzoll3.  (D.3)

However, since f(X(7)) = r? by construction, we readily get 2 > ||zo]|3, a contradiction.
This shows that E,,[7] = oo, as asserted.

Finally, for our third claim, it is easy to check that (S-GDA) is uniformly elliptic under
the stated assumptions. Thus, by Theorem C.1 and the fact that E, [7] = oo, it follows that
X(t) cannot be positive recurrent. By the discussion following Theorem C.1, this implies that
X(t) does not admit an inveriant measure, so the density P(x,t) of X(¢) does not converge
to a limit either. ]

Proof of Proposition 2. Under the dynamics (S-GDA) for the game (6b), each coordinate of
X (t) evolves as an Ornstein—Uhlenbeck process, viz.
dX;(t) = =X;(t) dt + o dW;(t) fori=1,2. (D.4)

Since the processes are decoupled, we conclude by standard stochastic analysis arguments
[37, Example 7.4.5] that

t
X;(t)=X;(0) et 40 / e =) dW(s) . (D.5)

0
In turn, by [37, Theorem 7.4.7|, this implies that the transition probability kernel of X, (¢) is

given by
1 s — —t . 2
Py(z;,t) = ———exp <(x6x’0)> fori=1,2, (D.6)

oy/m(1— e2b) (1—e 202

that is, X;(t) follows a Gaussian distribution with mean E,, ,[X;(t)] = x;0e~" and variance

02
E[XZ%(t)] = ?(1 —e ). (D.7)

Our first and third claims then follow immediately.
For our second claim, note that the infinitesimal generator of X (¢) is now given by

LF(2) = ~(Vf(2),2) + 50°Af(2) (D)

where Af = tr V2 denotes the Laplacian of f. Then, Dynkin’s formula (Proposition C.1)
applied to f(x) = ||z||3 at the truncated hitting time 7. At = min{7,,t}, t > 0, readily yields

EmwmAw%wm&mmM”ﬁﬁwW®@ﬂ

Tr At
<lloll + | [ 200 = ) 5]

= |lzol3 + 2(0® — r?) By [ A L]. (D.9)
Since || X (7 A7)||3 > r? by construction (recall that |zg|l2 > 7), we get
o3 —
]E:vo [TT A t] S m for all ¢ > 0. (DlO)

Since E,, [7 A t] is uniformly bounded, our claim follows by taking the limit ¢ — oo (so
7. At — 7, pointwise), and invoking the dominated convergence theorem. |
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D.2. General properties of the dynamics (S-FTRL). We now proceed to establish the
properties of the stochastic dynamics (S-FTRL) in the general case, for null- and strongly
monotone games respectively. Before doing so, we begin with a result of a book-keeping
nature (which is, however, necessary to ensure that the ensuing questions are meaningful).

Proposition D.1. Suppose that o is Lipschitz continuous. Then, for every initial condition
X(0) «+ z¢g = Q(yo) € X, the dynamics (S-FTRL) admit a unique strong solution that exists
for all time.

Proof. Note that the dynamics (S-FTRL) can be recast in fully autonomous form as
aY(t) = v(Q(Y())) dit + o(QY(1))) - dW(1). (D.11)

Note further that v, o and @ are all Lipschitz, by our standing assumptions for the game,
our assumptions here, and Proposition B.1 respectively. In turn, this implies that the
compositions ¥ = vo ) and ¢ = o o () are likewise Lipschitz continuous, so our claim
follows from the existence and uniqueness theorem for SDEs with Lipschitz data, see e.g.,
[59, Theorem 5.2.1]. [ ]

Our next result is an ancillary calculation responsible for much of the heavy lifting in the
upcoming analysis.

Proposition D.2. Fiz a base point p € X and consider the energy function
E(y):=F(p.y) =hp) + 1" (y) = (y,p) forye). (D.12)

Then, for every stopping time T > 0, we have
2

B(Y(r)) — E(Y(0)) < /OTW(X(S))’ X(s) —p) da+ S

N /0 " (X(5) = p)To(X(5)) dW(s) (D.13)

If, in particular, Q is smooth, we have

+3 [ S sacQus] ds
+ /OT(X(S) —p) "o (X(s)) dW(s). (D.14)

Proof. Assume first that @ is C'-smooth; In this case, by Lemma B.1, we have VF(p,y) =
Q(y) — p, and hence,
V2E(y) = V?h*(y) = JacQ(y) - (D.15)
Thus, by Ito’s formula (C.6), we readily get
dE(Y(t)) = (X(t) —p) - dY(t) + %tr[UT(X(t)) V2E(Y(t) o (X (t))] dt
= (u(X(t)), X(t) —p) dt
1
+ 5 t[E(X (@) Jac Q(Y(t))] dt
+

(X(t) —p) "o (X(t) aW (1) (D.16)
o (D.14) follows.

Now, if @ is not smooth, Proposition B.1 shows that it is still (1/u)-Lipschitz continuous,
which, equivalently, means that h* is (1/u)-Lipschitz smooth. Thus, (D.13) follows by
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the weak Itd formula for Lipschitz smooth functions (C.7) applied to h*, and noting that
trfo(z)o(x) "] < do? ]

max"*

D.3. The null-monotone case. We begin our analysis proper with our result for null-monotone
games, which we restate below for convenience.

Theorem 1 (Null-monotone games). Suppose that (S-FTRL) is run with a smooth mirror map
Q in a null-monotone game G. Suppose further that the game admits an interior equilibrium
x*, and consider the hitting times 77 ==inf{t > 0: F} < Fy — e} and 77 :=inf{t > 0: F;, >
Fo+e}. If o2,, >0 and £ > 0 is small enough, then

Euo[ri] =00 and Eu.[rf] <2e/(ko2m) (15)

min
for some constant k = ke > 0; in addition, X (t) does not admit a limit density in this case.

Proof. We start with the study of E, [r], where we argue by contradiction. Specifically,
let z* be an equilibrium of G, and assume that E,,[7. ] < co. Then, by applying Dynkin’s
formula to the energy function E(y) at 7. for p < z* (cf. Propositions C.1 and D.2), we
readily get

Eoo[E(Y(72))] = E(yo) + Eq, /OTE ((v(X(s)), X(5) = 2") + 5 tr[S(X(s)) JacQ(Y(s))]) ds

1 Te
=Fp+ 5 E., / tr[E(X (s)) Jac Q(Y(s))] ds > by null monotonicity
0

>R (D.17)

where the last line follows from the fact that ¥ and Jac @ are both positive-semidefinite.
However, since E,,[E(Y(7.))] = Fo — ¢ by the definition of 77, we get Fy —e¢ > Fp, a
contradiction which establishes our claim.

Since opin > 0, we further conclude that Y(t) is uniformly elliptic. Thus, for any compact
set K C{yeY: F(z*,y) < Fy — ¢}, the hitting time 7 = inf{t > 0: Y(¢) € K} will be
infinite on average (because E,,[7x] > Ey,[7. ] = 00), so, by Theorem C.1, Y(¢) cannot be
positive recurrent. In turn, this implies that Y(¢) does not admit an invariant probability
measure on ), which proves our claim.

Finally, for the second part of (15), applying Dynkin’s formula to the energy function
E(y) for p < z* at the truncated hitting times 7.7 A ¢, t > 0, we get:

Eqy [E(Y(7]) A1)] = E(yo) + Ea /OTE ((0(X(5)), X(5) — ") + 5 tr[2(X(s)) Jac Q(Y(s))]) ds

— Fy+ %Ezo l /0 "X (5)) Jac Q(Y(s))] ds

> by null monotonicity

0_2 ) ‘r;r/\t
> Fy+ % E., [/0 tr[Jac Q(Y(s))] ds} (D.18)

where the last line follows from the estimate
tr[X Jac Q] = tr[(Jac Q)Y/2%(Jac Q)]
=(1,...,1) (JacQ)Y?S(Jac@Q)/? - (1,...,1)T
>02,.(1,...,1) - (Jac Q)2 - (JacQ)Y2 - (1,...,1)T

= o2, tr[JacqQ)]. (D.19)
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By the assumptions of the theorem (smooth @ and interior initialization), it follows that
the (necessarily compact) set D, :={z = Q(y) : F(z*,y) < Fy + ¢} is contained in the
relative interior ri X of X'. In turn, this implies that k = k. :=min{tr[Jac Q(y)] : F(z*,y) <
Fy+¢e} >0, s0 (D.18) becomes

1

F0+€ZF0+2

ma?nin E,, [7 A t] (D.20)

and hence

E. [ At] < for all £ > 0. (D.21)

2

min
This shows that E,, [727 A t] is uniformly bounded, so the upper bound in (15) follows
by letting ¢ — oo (which implies 7% At — 77 pointwise), and invoking the dominated
convergence theorem. n

D.4. The strongly monotone case. We now turn to our main result for strongly monotone
games. Our proof strategy draws on methods related to the analysis of (S-FTRL) in the
context of convex minimization, as explored by [48], and incorporating ideas that can be
traced back to [29].

For convenience, we begin by restating Theorem 2.

Theorem 2 (Strongly monotone games). Suppose that (S-FTRL) is run in an p-strongly
monotone game G, and consider the hitting time

Tr=inf{t > 0: X(t) € B.(z")} (16)
where B, (z*) = {z : ||l — z*|| < r} is a ball of radius r centered on the (necessarily unique)
equilibrium =* of G. Then:

Eyo[m] < (F()/,u)/(r2 —r2) forallr >y, (17)
where T4 = omax /2. If, in addition, omin > 0 and x* is interior, X(t) admits an
invariant distribution concentrated in a ball of radius O(omax) around x*, and we have

limy oo (B (2%)) > 1 =12 /1% for allr > r,. (18)
Proof. Our proof proceeds along the following basic steps:

Step 1. Deriving an estimate for the mean hitting time E, [7,].

Step 2. Descending to a restricted process Y(t) where any redundant degrees of freedom
in Y{(t) have been “modded out”.

Step 3. Showing that the restricted process is positive recurrent.
Step 4. Estimating the resulting invariant distribution and pushing the result forward to
X(¢).
In what follows, we go through the steps outlined above, one at a time.
Step 1: Estimating the hitting time. We begin with the hitting time estimate (17). To that
end, setting p < z* in Proposition D.2, we get

E(Y(r)) — E(yo) = / " (0(X()), X(s) — 2*) ds + . / " S(X ()] ds

+ [ (x(s) ) T (x(s)) awis)
0

2

T o
< _M/ | X (s) — x*||? d8+2L;XT+M(T). (D.22)
0
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where we set

M) = / {(X(8) — ) To (X (s)) dW(s) (D.23)
Thus, by a quick rearrangement, Woe obtain
p [0~ 17 ds < Blw) — EO) + ST i) (D2
and hence, with £ 02 0:
/OTX(S) —2*||*ds < % + UQ%Z‘: M/(;) ) (D.25)

Thus, applying the above to the truncated hitting time 7 + 7. At = min{r, ¢}, t > 0, we get

Tr At
7?2 By [ A 1] < By, [/ X (s) — %% ds bb/c || X(s)—a*|| >rfor s <1 At
0

F, 1
<24 2R, [re At 4 — Egy [M(7, A )] (D.26)
1 p

Since 7 At < ¢ is uniformly bounded, we will have E, [M (7. A t)] = E[M(0)] = 0 by the
optional sampling theorem for continuous-time martingales [32, Theorem 3.22]. Thus, a
simple rearrangement gives

Fo/p

2 _ 2
r Ts

Eu[m At < for all ¢t > 0. (D.27)
This shows that E,, [7- At] is uniformly bounded, so the bound (17) follows by letting ¢ — oo
(which implies 7. A t — 7. pointwise), and invoking the dominated convergence theorem.

Step 2: Descending to the restricted process. We now proceed to examine the recurrence
properties of X (t). To that end, note first that the assumption o, > 0 directly implies
that (S-FTRL) is uniformly elliptic in the sense discussed in Appendix C. As such, consider
the set

D, =Q '(B,(¢") ={y € ¥V : |Qy) —«*[| <7} (D.28)
and note that

7 =inf{t > 0: X(t) € B,(z*)} = inf{t > 0: Y(t) € D,.} (D.29)

so Y(t) is positive recurrent relative to D,.. Thus, if D, is compact, Theorem C.1 immediately
shows that Y{(t) is positive recurrent, and hence admits an invariant measure v on ). In
general however, D, need not be compact, so we cannot conclude that Y(t) is recurrent from
the fact that it hits D, in finite time on average.

To circumvent this difficulty, we will consider a “restricted” process which is positive
recurrent, while retaining all information present in Y(¢). The main idea here will be to
“collapse” the fibers of (), that is, those directions in ) which map to the same point in X’
under @: since the dynamics (S-FTRL) factor through X (¢) = Q(Y{(t)), these directions
carry no relevant information, so they can be effectively discarded.

To carry all this out, let V denote the “tangent hull” of X in V, viz.

Vi=aff(X —X)={z€V:x+tz e X for all sufficiently small ¢ >0 and all z € ri X'} .
(D.30)
In words, V is the smallest subspace of V which contains X when the latter is translated to
the origin so, by construction, X" is full-dimensional when viewed as a subset of V.7 In this
sense, V contains all the “essential” directions of motion of the problem.

7Speciﬁcally7 unless X is a singleton, it has nonempty topological interior when viewed as a subset of V.
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Dually to the above, we also consider the corresponding dual space Y = V* of V; this is
not a subspace of , but there exists a canonical surjection II: J — ) defined by restricting
the action of y € ) to V, that is,

(T(y), 2) = (y,2) forall z € V. (D.31)
The kernel of II is precisely the annihilator Ann(f/) of V, i.e.,
kerII = Ann(V) = {w € Y : (w, z) = 0 for all z € V} (D.32)

s0, by the first isomorphism theorem, we get a canonical identification (V/V)* 2 ker II.

The main reason for descending from ) to Y is the following: in the original space ),
we have Q(y + w) = Q(y) whenever w annihilates V, cf. Proposition B.1. As a result, the
inverse image of any compact subset of X under @ will always contain a copy of Ann(f)), SO
it can never be compact itself. By contrast, by “modding out” Ann(f/) and descending to
the restricted space ), this is no longer the case.

To move forward, consider the restricted mirror map Q: Y — X given by

Q(g}) = Q(y) whenever II(y) = g. (D.33)

By the last item of Proposition B.1 we have Q(y) = Q(y + w) whenever w € Ann(V); this
means that the choice of representative in (D.33) does not matter, so @ is well-defined.
Accordingly, letting

Y(t) = TI(Y(t)) (D.34)
and applying II to (S-FTRL) yields the “restricted” dynamics
dY(t) = d(I1- Y(t)) = I1- v(X(t)) dt + I1- o(X(t)) - dW(2) (D.35)

where X (t) = Q(Y(t)) = Q(Y(t)) and, in a slight abuse of notation, we are overloading the
symbol II to denote both the linear map II: ) — Y and its representation as a matrix.
These dynamics represent a time-homogeneous SDE in terms of Y, and they will be our
main object of study in the rest of our proof.

Step 3: Positive recurrence of the restricted process. With all this in hand, positive
recurrence for the restricted process ?(t) boils down to the following: a) verifying that the
infinitesimal generator of Y is uniformly elliptic; and b) showing that the mean time required
for Y(t) to reach some compact set of Y is finite.

We begin by establishing uniform ellipticity. In view of (D.35), the principal symbol
(C.13) of the infinitesimal generator of Y{(t) is

A={T-0) - (IT-0)" =Tloo'I" =TIZIT" . (D.36)
Since ¥ 3= 02, I, we readily get
A s Urzninl_ﬂ'_l—r s Jr2nin7r12nin‘[ (D37)

with omin > 0 (by assumption) and 7Ty = Amin (IIIIT) > 0 (because II is surjective, so it has
full rank). This shows that the principal symbol IIXITT of the generator of Y is uniformly
positive-definite, so Y is itself uniformly elliptic.

For the second component of our proof of positive recurrence, recall that z* € ri X, so
there exists some sufficiently small » > 0 such that the (compact convex) set

Kr=B,NX={zeX:|z—z"||<r} (D.38)
lies in its entirety within ri . We then claim that the inverse image

Dy=Q H(K,) = {7 € V: IQ@) —a*| < r} (D-39)
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of K, under the restricted mirror map Q is compact. To see this, note first that D, = Oh(KC,)
by Proposition B.1.% Thus, given that K, is a convex body in V that is entirely contained in
the (relative) interior of the prox-domain A}, of h (because ri X C dom Oh = X},), it follows
that Oh(K,) is itself compact by the upper hemicontinuity of dh [25, Remark 6.2.3].
To conclude, note that
inf{t > 0:Y(t) € D,} =inf{t > 0: [|Q(Y(t)) —z*| < r}
—inf{t > 0: |QV(E) — 2 < 1}

inf{t >0: X(t) € B.(z")}
=T (D.40)

so it follows from (17) that Y(t) hits D, in finite time on average. Since Y(t) is uniformly
elliptic, Theorem C.1 shows that it is positive recurrent, as claimed.

Step 4: Estimating the long-run occupation measure. Since the restricted process f”’(t) isa
positive recurrent It6 diffusion, standard results show that it admits an invariant distribution
v on Y which satisfies the law of large numbers

Jim /f ds—/fdz/ (D.41)

for every p-integrable test function f on Y. Thus, letting v = Q.7 = 7o Q! denote the
corresponding push-forward measure on X, we get

1/t
lim p;(B-) = lim = [ 1{X(s) € B} ds
t—o0 0

t—oo t

t—o0

= lim % 1{Q(Y(s)) € B,.} ds
0

L[t -
= lim - [ 1{Y(s) € D,} ds
0

t—oo t
=Aﬂweﬁ&@@>
=u(D,). (D.42)
In a similar manner, we also get
t
1—(D,) = thm E {/ 1{X(s) ¢ B,.} ds} >b/c lims— oo p¢ is deterministic
— 00
X(s) —a*|)? .
< lim — E|:/ ” 2| } Db/CMZloutsideBr
t—oo t "
< i J?na" by (D.25
ti{gor2 7+2MM [>y(' )
2
T‘U
Our claim then follows by combining Eqgs. (D.42) and (D.43). ]

APPENDIX E. ANALYSIS AND RESULTS IN DISCRETE TIME

In this appendix, we proceed to prove the discrete-time results presented in Section 4.

8Strictly speaking, we are viewing here dh as taking values in ) instead of ); this is a simple matter of
identifying h: V — R with its canonical restriction to V C V.
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E.1. The null-monotone case. We begin with our analysis for for null-monotone games. For
convenience, we restate Theorem 3 below:

Theorem 3 (Null-monotone games). Suppose that (FTRL) is run in a null-monotone game
G, and let =* be an equilibrium of G. Suppose further that h* is strongly convex, and let
Fy = F(z*,y;), where F is the induced Fenchel coupling (B.22). Then lim;_, o E[F}] = co.

Proof. By a second-order Taylor expansion with Lagrange remainder, there exists w; €
[y#, Y++1] such that:
2

Ft+1 = Ft + ’7<’lA)t,.I't — .’L'*> + %@tVQh*(wt)’lA)t . (El)
Since G is null-monotone, we have (v(z;),x; —2*) = 0 by assumption, and thus
2
Frin = Fy+ (U, a0 —2*) + S0V (we)oy (E.2)
m .
> F+ Uz —a™) + 572||Ut||3 (E.3)

where m denotes here the strong convexity modulus of h*. Moving forward, note that
(i) E[(Uy, 2y —x*)] = E[(E[U; | Fo], 3 —2*)] = 0; and (i) infy E[[|0¢]|2] > inf E[||V(z;w)||?] > 0,
so there exists some V > 0 such that E[||0;|?] > V2 for all t. We thus get
m N
E[Fi41] > E[F] + 572 E[]|0:]7]
> E[F] +my?V?/2
> Fo+my?V?t/2 (E.4)
Our result then follows by taking the limit ¢ — oc. [ ]

E.2. The strongly monotone case. We now turn to our main result for strongly monotone
games, which we restate below for convenience.

Theorem 4 (Strongly monotone games). Suppose that (FTRL) is run in an p-strongly
monotone game G, and consider the hitting time

mo=inf{t > 0: X(t) € B,(z*)} (22)

where B.(z*) = {z : ||z — a*|| < r} is a ball of radius r centered on the (necessarily unique)
equilibrium x* of G. Then, for all v > 15 :=\/v(c2 + £2)/(up), we have

1 {Fo if o & B,(z*),

E[r] <

NG )

Fo + pyr? if zo € B, (2*),
where Fy = F(x*,yo). If, in addition, x* is interior, x; admits a unique invariant distribution
to which it converges in total variation, and we have

lim LB [Z 1{z; € IBB,.(Q:*)}] >1—r2/r? (24)
s=0

t—oo t

for all v > r, such that B,(z*) CriX.

Proof. The main theme of our proof shadows the continuous-time analysis, but it requires
distinct tools and techniques to address the specific challenges that arise in the discrete-time
Markov chain setting (where, among others, the main tools of stochastic calculus cannot
be applied). In a nutshell, this proceeds along the following sequence of steps. First, we
derive an upper bound on the expected hitting time of the process to a neighborhood of
the equilibrium. Subsequently, we reduce the dynamics to a "reduced space" (formally an
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affine quotient of the dual space), removing redundant directions and ensuring the process
evolves within a minimal and non-degenerate domain. Within this reduced space, we show
that the induced Markov process satisfies several crucial probabilistic properties. Specifically,
we prove:

e Irreducibility: any open set in the state space can be reached with positive probability.

e Minorization: after entering certain regions of the space, the process mixes sufficiently
to allow for probabilistic regeneration.

e Uniform control of return times: the expected time to revisit a neighborhood of
equilibrium remains bounded regardless of the starting point within that neighborhood.

These properties collectively enable the construction of a regeneration structure, a prob-
abilistic framework that ensures the process repeatedly returns to a well-behaved region
of the state space with sufficient mixing. In turn, this enables us to establish positive
Harris recurrence of the learning dynamics, a key property which ensures the existence and
uniqueness of a stationary invariant distribution.

To streamline our presentation, we follow a step-by-step approach, as outlined below.

Step 1: Deriving a hitting estimate. Due to measurability issues, we cannot apply Dynkin’s
lemma directly in the discrete-time setting, which makes the proof more involved. Moreover,
unlike in the continuous-time regime, we need to distinguish between different initializations.
Specifically, we consider two cases depending on whether the initial state z( lies within the
ball B, (z*) or not.

o Case 1: zo ¢ B,.(z*).
Letting F; = F(x*,y;) and unfolding (B.29b), we readily obtain:

t—1 2 t—1
FtSFO+'YZ<@Sams_ +7Z|| 5”2 (ES)
s=0

and, setting t < 7. A t, we get:

(TrAE)—1 TrAL)
. ’Y 2
FTT/\t S F0+’7 Sz:; <U87x3 - 27 ZO || éH* (EG)

Thus, taking expectation conditional on the initial state yo = y, we have

(rrAt)—1 9 | (GAt)—1

ElFrnl SFo+7E| Y (b —a") |+ -E| > llosl?
s=0 H s=0
t—1 2
< Fy+ ;E[(W@S,xs —a*) + ;MH@SHi) (7 > s+ 1)} (E.7)

For notational convenience, we denote each summand above per

2
Dy ::E[(y(ﬁs,xs —z*) + ;’UH@SHi) 1(r > s+ 1)}

and noting that the random variable 1(7, > s + 1) is Fs-measurable, we get

2
D, = E[E{(’y(ﬁs,xs — ") + ;ﬂ”ﬁgi) I(r, >s+1) ‘.7-"5”

/]

[N

= E[n(n > s+ 1)E[v<@s,x3 —z*) + ;7‘
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A2
= E|:]l(7'r >s+1) <’y<v(ms), xs —x*) + % IE[||17§||3 | fs]ﬂ

~ B[ 2 5+ 1) (-l — 2 + L E[0.12 | 7)) (E3)

where we used that E[U(x,,w,) | Fs] = 0. At this point, we note that E[[|,]| | F,] <

2E[[lv(z) 12+ 1U (25, w) 2] Fs] < 2(82 + 0?), and since 12 = v(8% + 02)/ (up), we
get

D, < E[(—wllms —a*|* 4 pyr) Lre 2 s +1)]
<E[(—ypr® + pyr?) L(r, > s+ 1)] (E.9)

where in the last step we used that ||z; — 2*|| > r? on {7 > s+ 1}. Thus, plugging the
above bound into (E.7), we obtain
t—1 t—1

E[Frni] € Fo+ ) Dy < Fo+ y E[(—yur® + pyry) 1(r > s+ 1)]
s=0 s=0
(TrAt)—1

=F—my(r® —2)El > 1
s=0

= Fy — uy(r* = r2)E[(, A t)] (E.10)
As F is nonnegative, we readily obtain that
py(r? = r2) E[(7 At)] < Fy (E.11)
and, since r, < r, we get:
1
Finally, taking ¢t — oo, and invoking the monotone convergence theorem [20], we get
1

S — )N
py(r? —r3)
e Case 2: xg € B.(z*). In this case, we have:
E[r] = E[1(Q(y1) € B, (2")) + L(Q(y1) ¢ B («7))7r]
=P(Q(y1) € By (27)) + E[L(Q(11) ¢ Br(27))(1 + Ey, [7])]
=P(Q(y1) € Br(27)) + P(Q(y1) ¢ Br(27)) + E[L(Q(y1) ¢ By (27)) Ey, [72]]
= 1+ EL(Q(y) & By (7)) By, [77]]

<1+E[1(Qn) ¢ B (2") (11 —r2) ' Fa,y)|

E[(r, At)] < 555 (E.12)

E[r.] <

(E.13)

_ (E.14)
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Thus, collectively, we get:

E[r,] < (E.15)

1 F[) if i) ¢ Br(l‘*)7
—_ X

wy(r2 —r2) Fy + pryr? if zp € B,.(z*),
Step 2: Descending to the restricted process. As in the continuous-time case, establishing
positive recurrence requires analyzing a “restricted” version of the process. To that end,
we follow the same construction as in Step 2 of Theorem 2, and we define the canonical
surjection IT: ) — ) by restricting the action of y € ) to V, that is,

(TI(y), 2) = (y,2) forall z € V. (E.16)
whose kernel of TI is precisely the annihilator Ann(V) of V, i.e.,
kerIT = Ann(V) = {y € ¥ : (y,z) = 0 for all z € V} (E.17)
In addition, we consider the restricted mirror map Q: Y — X given by
Q(7) = Q(y) whenever TI(y) = §. (E.18)
Accordingly, letting )
Vi = T(y,) (E.19)

and applying IT to (FTRL) yields the “restricted” process

Yipr =T yegr = - ye + (- 0(ze) + 11 Uy) = Vi 4 y(0(x) + Us) (E.20)
where z; = Q(y;) = Q(Y;) and, in a slight abuse of notation, we are overloading the symbol
IT to denote both the linear map II: ) — ) and its representation as a matrix. Finally,
writing Y as

Yier = Yo +99(Q(%) ) +7U(Q(F0), ) (E.21)

we conclude that it is a time-homogeneous Markov process, and we denote its kernel by ¢,
where for any 7 € Y and Borel set A C ), we have (7, A) = IP’(YQH eA ’ Y, = gj)

Step 3: Recurrence of the restricted process. To establish the recurrence of the restricted
process, we first need to understand the effect of I on the distribution of U(z). As stated in the
assumptions in Section 4, the probability distribution v, of U(z) decomposes as v, = v¢+v;-.
Noting the push-forward measure is linear, we readily obtain that IL,v, = I1,v¢+I1,v;, where
II,v, denotes the push-forward measure A ~ (v, o II71)(A). For notational convenience, we
denote Y = Ann(V) and p(z,y) = p(y). Then, each y € Y can be decomposed as y = § + §,
and since II has full column-rank, the measure II,v$ has density with respect to the Lebesgue
measure Ay; on ), given by

Bz, 5) = /y Pz, 5, 9)dAs(5) (E.22)

where )\37 is the Lebesgue measure on . Importantly, the density p satisfies the following
properties, which will be crucial for establishing the recurrence of the process. We formalize
these in the proposition below, whose proof is deferred until after the theorem.

Proposition E.1. Let the function p as defined in (E.22). Then:

(i) For any compact set K C X and every § € Y, it holds inf,cxc p(z,§) > 0.

(i) The function p is (jointly) lower semi-continuous.
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Lebesgue irreducibility. We now show that the restricted process Y, is Lebesgue irreducible;
that is, starting from any point in its domain, the process has a positive probability of
reaching any open set with nonzero Lebesgue measure. This property is crucial for establishing
recurrence, as it ensures that the process does not avoid regions of the space indefinitely.

For this, let a Borel measurable set A C ) with Ap(A) > 0. We will show that ¢(g,.A) > 0
for all § € ), which implies that A can be reached from any state § in one step with positive
probability.

(5, A) = ]P’<~t+1 €A ‘ Y, = y)
= B(7+75(Q) +10(@Q[).w) € A)
= P<U(Q(y),w) S {7 TA— 71— f}(@(y))})
=P(0(Q(7).w) € 4;)
> /A PQ) s (2 (E.23)

where Ay =771 A — 7715 — 8(Q()) with Ay(Ay) = 7~ *A5(A) > 0. Finally, since 5(Q(7), ")
strictly positive, we conclude that §(g,.4) > 0, which shows that Y, induced by (E.20) is
Lebesgue-irreducible.

Harris recurrence. Our next step is to show that Y; is Harris recurrent. This means
that the process returns to every set of positive Lebesgue measure infinitely often with
probability one. Establishing Harris recurrence is a key step toward proving ergodicity, as
it ensures that the process does not drift away or get trapped. For this, we will show that
D, ={j€Y:]|Q() — x*|| <r} is a recurrent set from which we can go “everywhere” with
positive probability. Importantly, the set D, is compact as shown in Step 3 of Theorem 2.

The first part to prove Harris recurrence is immediate from Step 1 of our proof; namely,
since B[] < oo for any initial condition § € Y, we readily get that Py(r, < oo) = 1.

For the second part, we will prove the so-called minorization property; that is, there exists
a nontrivial measure y and a constant o > 0 such that

q(g,A) > au(A) for all § € D, and Borel sets A C V. (E.24)

This condition implies that, from any point in D, the process has a uniformly lower-
bounded probability of reaching any set A in one step according to the reference measure
-

To establish the minorization condition (E.24), we define for notational convenience the
function f: Y x Y — X, x Y as

1,2) = (@@, (= = §) - 9(Q))) (E.25)

which is continuous as a composition of continuous functions. With this definition in hand,
we perform the change of variables in (E.23), and we have:

3G A) =7 / B(f(7, 2))dAg (2)

A

> 5 /A nf (/7. 2)ds() (E-26)
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To finally construct the measure p, we need to ensure that
0< / inf 5§ 2))dAy(2) < oo (B.27)
Y §€Dr
To this end, we state the following proposition, whose proof is deferred until after the theorem
to maintain the flow.

Proposition E.2. The density p satisfies:
0< / inf 5§, 2))dAy(2) < o0 (E.28)
Y §€Dr
With Proposition E.1 in hand, we define the measure pu as
(A = Jainfsep BUf(F,2))dAy(2)
Therefore, (E.26) becomes:

15, 4) 207 [t GGy =2 [ inf BN ) (B30)
A GED, Y §€Dr
Thus, setting o = v7¢ [ infy 5 p(f(F,2))dAy(2)
(E.24).

Therefore, the set D, is recurrent and pu(D,) > 0 (since )\5,(21) > 0), and thus by [18,
Proposition 11.2.1] the Markov process Y, admits an invariant measure. In addition, based
on the equivalence (D.40) the expected return time E[r,] to D, is uniformly bounded for
all initial conditions 4 on D,, due to the continuity of the Fenchel coupling F'. Therefore,
invoking [56, Theorem 13.0.1], we conclude that the process Y; admits a unique invariant
probability measure 7, and the law of Y; converges to 7 in total variation for every initial
condition § € .

for all Borel A C ). (E.29)

, we conclude the minorization condition

Step 4: Estimating the long-run occupation measure. Finally, for the last part, letting
F,:=F(z*,y:) and unfolding (B.29b), we obtain:

t—1 2 t—1
RS R r X (o, —a) + 30 (E31)
s=0

Taking expectations in both sides, we readily get

t—1 2 t—1
0<E[F]<E Fo—i—A/Z(f)S,xs— +ZU5”2‘|
s=0
t—1
< Fy—mE [le — P+ tpyr (E.32)
s=0

Therefore, by rearranging terms and dividing both sides by ¢, we have:

t—1 1
[ang - x*||2] < M—Fg +72 (E.33)

s=0
Moreover, we have:

11@{&1{% ¢ By(o" ] [sz —a ||2] S B

) O
s=0 nytr
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Now, note that {z, ¢ B,(2*)} = {Y; ¢ D,.} by construction, and thus

S i ¢ Bru*)}] - Elin{ﬁ ¢ ﬁr}] (8.35)

s=0 s=0

1
-E
t

~+ | =

Taking t — oo, and invoking Birkhoft’s individual ergodic theorem [24, Theorem 2.3.4],
we readily get that the mean occupation measure A > ¢t~} E[Zi;g ]l{f/t € .A}} converges
strongly to the invariant measure ©, and therefore

S tla 5001 < i 12| Sati e 0| 1000 e

1
lim - E
t—oo t

and, using (E.34), we have:
y(D,)>1—- -2 (E.37)
and our proof is complete. [ |

To keep the presentation self-contained, we restate and prove Proposition E.1 and Propo-
sition E.2 below.

Proposition E.1. Let the function p as defined in (E.22). Then:

(i) For any compact set K C X and every § € Y, it holds inf.exc p(x,§) > 0.
(i) The function p is (jointly) lower semi-continuous.

Proof. (i) For the first part, let j € J. Then

e R o .
Inf p(z,§) = inf yp(ﬂc, ,9)dA5 () = /)?;g,fcp(x,y,y)dky(y)>0 (E.38)

(ii) For the second part, let (z,7) € X x Y, and let a sequence {(z,7)}ten with
lim o0 (24, 9:) = (x, 7). Since p is jointly continuous, applying Fatou’s lemma [20],

we get
i) = [ oo 5 0)irs0) = [ timint ol 5, 5)iA50)
<timinf | p(r i, D)5 ()
= lim inf p(z, 5) (E.39)
i.e.,
p(z,g) < litrginfﬁ(xt, Ut) (E.40)
and the result follows. [
Proposition E.2. The density p satisfies:
0< / inf p(f(7,2))d\y(2) < oo (E.28)
Y §€D,
Proof. The upper bound is trivial since p is a probability density and
[ int 3G 2NBs() < [ 57GNAE) <1 (E.41)
Y y€Dy Yy
For the lower bound, we will show that
inf p(f(,2)) >0 forallze ). (E.42)

YyED,
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Figure 2. Visualization of the long-run occupancy measure for the min-max game with
loss-gain function f(z1,z2). Each plot shows the empirical density of the final iterates
of 10° runs of (FTRL) for 102 steps, starting from uniformly random initial conditions.
The surface plot encodes density via both height and color. Each row corresponds to a
different step-size v € {0.1,0.5}, while the columns vary the noise level o € {0.5,1}.

Suppose not, i.e., there exists zy € Y such that infge?T p(f(7,20)) =0. Since D, is compact
and po f is lower semi-continuous, the infimum over D, is realized, meaning that there exists
Jo € D, such that p(f(go,20)) = 0, or, equivalently,

5(Q0). 7" (20 — o) — 2(Q(in))) =0 (E.43)
This contradicts Proposition E.1 for I < K,.. Finally, since we integrating over a set with
positive measure, our result follows. [ ]

APPENDIX F. FURTHER NUMERICAL RESULTS AND DETAILS

In this section, we present some additional numerical simulations to illustrate and validate
our theoretical findings. To this end, we consider two simple yet representative examples:
(i) a strongly monotone two-player min-max game on the unit square; and (ii) a finite
zero-sum game (as an example of a null-monotone game).
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Figure 3. Average final distance from equilibrium for different values of the step-size
~ and the noise level o. Each point represents the mean over 100 independent runs of
length 10,000, with shaded regions indicating one standard deviation.

Strongly monotone games. We consider the strongly monotone two-player min-max game
defined by f :[0,1] x [0,1] = R with

f(x1,22) = —(21 — 0.5)% + 0.52175 + 2(29 — 0.5)? (F.1)

and entropic regularization. To be more precise, the payoff functions of the two players are
given by uj(z1,22) = f(21,22) = —uz(x1,22), and z* = (20/33,14/33) is the unique Nash
equilibrium point.

Fig. 2 demonstrates the behavior of (FTRL) under varying step sizes and noise levels
for the min-max game defined by the function f(z1,x2). Specifically, we consider step-sizes
v € {0.1, 0.5}, and stochastic feedback of the form ¢, = v(x:) + ow;, where w ~ N (0, I3) for
o € {0.5, 1}. For each (v, o) configuration, we perform 10° independent trials, each running
for 102 steps. The initial state yo for each trial was drawn uniformly at random from [0, 1]%.
Each surface represents the empirical density of the final (FTRL) iterates, while the color
overlay visualizes their distribution across the 10° independent trials. Warmer (red) regions
indicate higher concentration of final iterates, whereas cooler (blue) regions correspond to
lower probability of ending in those regions, as indicated by the colorbar on the side. We
observe that smaller step sizes and lower noise levels lead to a tighter concentration of the
final iterates around the Nash equilibrium. In contrast, increasing either the step size or
the noise variance results in a more dispersed distribution. This behavior aligns with both
intuition and our theoretical findings: higher noise introduces greater stochastic variability,
while larger step sizes amplify this effect by inducing more aggressive updates that are prone
to overshooting, ultimately increasing the spread of the iterates.

To further explore the behavior of (FTRL) under different noise levels and step sizes,
we conduct an additional set of experiments summarized in Figs. 3 and 4. These figures
illustrate the distance from z* of the final iterate and the hitting time in a neighborhood of x*
with varying radii. Specifically, we consider step sizes v € {0.01,0.02,0.05,0.1,0.2,0.5} and
stochastic feedback of the form ¢, = v(x¢) + ow; for noise levels o € {0.01, 0.05, 0.1, 0.5, 1}.
For each (v, 0) configuration, we perform 100 independent runs, each consisting of 10,000
iterations. The initial state yo in each run is drawn uniformly at random from [0, 1]2. The
first plot reports the average final distance of the iterates from the equilibrium, averaged
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across the 100 runs, while the subsequent plots show the hitting time required for the iterates
to enter a neighborhood of the equilibrium of radius r € {0.005, 0.01, 0.05, 0.1}.

103 4

103 4

,_.
£

102 4

Iterations
Iterations

10! 4
10! 4

1072 107 1072 107t
Step size Step size

(a) r = 0.005 (b) 7 =0.01

102 4

,_.
L

10! 4

Iterations
Iterations

10° 4

1072 10-t 102 10t
Step size Step size

(c) r = 0.05 (d)r=0.1

Figure 4. Average hitting time (in iterations) to a neighborhood of the equilibrium z*
with radius r € {0.005, 0.01, 0.05, 0.1}, computed over 100 runs for each (v, o) pair.

Null-monotone games. Fig. 5 shows the empirical distribution of the final iterates under the
(FTRL) dynamics in the classic matching pennies game with entropic regularization, played
over the probability simplex with payoff matrix

[(+1,-1) (—1,+1)
T(=1,+1)  (+1,-1)

The unique Nash equilibrium of the game is the mixed strategy (0.5,0.5) for both players.
As before, we consider stochastic feedback of the form o = v(x:) + owy, where w ~ N (0, I3)
for v € {0.1, 0.2} and o € {1, 2}. For each (v, o) configuration, we perform 10° independent
trials, each running for 102 steps. Each surface plot corresponds to a different combination
of step-size and noise variance, with the empirical density of the final iterates represented
through both height and color over the simplex domain. We see that across all configurations,
the iterates tend to concentrate near the corners of the simplex, reflecting the instability of
the interior equilibrium in the presence of noise. This consistent shift toward extreme points

P
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0.0

(b)y=0.1,0=2
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Figure 5. Visualization of the long-run occupancy measure for the bilinear game with
entropic regularization. Each plot shows the empirical density of the final iterates of
105 runs of (FTRL) for 102 steps, starting from uniformly random initial conditions.
The surface plot encodes density via both height and color. Each row corresponds to a
different step-size v € {0.1,0.2}, while the columns vary the noise level o € {1, 2}.

highlights the system’s inherent tendency to escape the central equilibrium under stochastic
perturbations.
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