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Abstract. In this paper, we examine the time it takes for stochastic gradient descent
(SGD) to reach the global minimum of a general, non-convex loss function. We approach
this question through the lens of randomly perturbed dynamical systems and large
deviations theory, and we provide a tight characterization of the global convergence time
of SGD via matching upper and lower bounds. These bounds are dominated by the
most “costly” set of obstacles that the algorithm may need to overcome to reach a global
minimizer from a given initialization, coupling in this way the global geometry of the
underlying loss landscape with the statistics of the noise entering the process. Finally,
motivated by applications to the training of deep neural networks, we also provide a series
of refinements and extensions of our analysis for loss functions with shallow local minima.

1. Introduction

Much of the success of modern machine learning architectures hinges on being able to
solve non-convex problems of the form

minx∈Rd f(x) (Opt)

where f : Rd → R is a smooth function on Rd. When d is so large as to make gradient
calculations computationally prohibitive, the go-to method for solving (Opt) is the stochastic
gradient descent (SGD) algorithm

xn+1 = xn − ηĝn (SGD)

where η > 0 is the method’s step-size – or learning rate – and ĝn, n = 0, 1, . . ., is a
computationally affordable stochastic approximation of the gradient of f at xn ∈ Rd.

The study of (SGD) goes back to the seminal work of Robbins & Monro [62] and Kiefer
& Wolfowitz [31], who introduced the method in the context of solving systems of nonlinear
equations in the 1950’s. Originally, the analysis of (SGD) involved a vanishing step-size ηn
satisfying the “L2 − L1” summability conditions

∑
n ηn

2 <∞ =
∑

n ηn, and went hand-in-
hand with the development of the ODE method of stochastic approximation. In this context,
the first convergence results for (SGD) were obtained by Ljung [43, 44], Benaïm [7], and
Bertsekas & Tsitsiklis [9], who established the almost sure convergence of the method in
non-convex problems (with different regularity conditions for f). In conjunction with the
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above, a parallel thread in the literature launched by Pemantle [59] and Brandière & Duflo
[11] – see also [8, 47] and references therein – showed that (SGD) avoids saddle points with
probability 1, so, barring degeneracies, it only converges to local minimizers of f .

On the other hand, when (SGD) is run with a constant step-size – the standard imple-
mentation of the method in its applications to data science and machine learning – the
situation is drastically different. The trajectories of the method do not converge, but they
instead wander around the problem’s state space, spending most time near the critical points
of f . This is quantified by “regret-like” bounds of the form E[

∑n
k=0∥∇f(xk)∥2] = O(

√
n):

these bounds can be viewed as criticality guarantees for (SGD), as they certify the output
of a point with small gradient norm, in expectation or with high probability, cf. [35] and
references therein. As in the vanishing step-size regime, these results are supplemented by a
range of saddle-point avoidance results [22, 66] which, under certain conditions, imply that
the output of (SGD) is approximately second-order optimal (and hence, in most cases, a
near-minimizer).

Nevertheless, all these results for (SGD) are, at best, guarantees of local minimality, not
global. When it comes to approximating the global minimum of f , we must tackle the
following fundamental question:

How much time does it take (SGD) to reach
the vicinity of a global minimum of f?

Of course, attaining the global minimum of a non-convex function is a lofty goal, so, before
examining the time required to achieve it, one must first assess the likelihood of getting there
in the first place. In this regard, a recent paper by Azizian et al. [4] showed that, in the
long run, xn is exponentially concentrated near the local minimizers of f , with the degree
of concentration depending on the landscape of f and the statistics of the noise entering
the process.1 In practice, this means that (SGD) will ultimately reach any neighborhood of
argmin f , no matter how small, but before getting there, it may have spent an exponential
amount of time away from argmin f . In view of this, any answer to the question of global
convergence of (SGD) must a fortiori incorporate global information about the geometry of
f , as well as the noise profile of the stochastic gradients ĝn.

Our contributions. Our aim in this paper is to provide quantifiable predictions for the global
convergence time of (SGD). Building on the approach of Azizian et al. [4], we examine
this question through the lens of the Freidlin–Wentzell (FW) theory of large deviations
for randomly perturbed dynamical systems in continuous time [21], and we employ the
subsampling theory of Kifer [32, 34] as a starting point to derive a similar theory for the
discrete-time setting of (SGD). In so doing, we obtain a tight characterization for the global
convergence time of (SGD) which can be expressed informally as

Ex[τ ] ≈ eE(x)/η (1)

where (i) τ denotes the number of iterations required to reach argmin f within a given, fixed
accuracy; (ii) x is the initialization of (SGD); and (iii) E(x) is an “energy function” that
encodes the geometry of f and the statistical profile of the noise in (SGD) via the so-called
“transition graph” of f .

The precise form of the hitting time estimate (1) is described via matching upper and
lower bounds in Section 4 (cf. Theorem 1). Subsequently, in Section 5, we take an in-depth
look at the impact of the loss landscape of f on these bounds, and we link the energy E(x) to
the depth of the function’s spurious, non-global minima. The resulting expression provides
a crisp characterization of the global convergence time of (SGD) in terms of the geometry

1Formally, Azizian et al. [4] showed that, in the limit n → ∞, xn follows an approximate Boltzmann–Gibbs
distribution with temperature equal to η, and energy levels determined by f and the statistics of ĝn.
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of f – and, more precisely, the maximum relative depth of any spurious minimizers that
the process encounters on its way to argmin f . The details of this construction rely on an
intricate array of tools and techniques from the theory of large deviations and randomly
perturbed dynamical systems, so they are difficult to describe here; for this reason, we begin
by presenting a simplified version of the apparatus required to state our results in Section 2.

Related work. Owing to its importance, SGD and its variants have given rise to a vast
corpus of literature which is impossible to adequately survey here. As we mentioned above,
in the non-convex case, most of this literature concerns the criticality and saddle-point
avoidance guarantees of the method, under different structural and regularity assumptions.
For our purposes, the most relevant threads in the literature revolve around (i) treating xn

as a discrete-time Markov chain and examining its tails [24, 25, 58]; (ii) considering it as a
discrete-time approximation of a stochastic differential equation (SDE) and employing tools
like dynamic mean-field theory (DMFT) to study the resulting “diffusion approximation”
limit [48, 49, 64]; and/or (iii) focusing on the time it takes (SGD) to escape a spurious local
minimum [6, 23, 26, 29, 50, 73]. Our analysis shares the same high-level goal as these general
threads – that is, understanding the global convergence properties of (SGD) in non-convex
landscapes – but we are not otherwise aware of any comparable results. To streamline our
presentation, we provide a more detailed account of this literature in Appendix A.

The only thing we would like to highlight at this point is a range of features and phenomena
that arise in the context of neural network training, where several works have shown that
overparameterization and Gaussian initialization schemes can lead to global convergence
[1, 17, 77]. Results of this kind typically require some specific structure on the underlying
neural network: a width scaling quadratically with the data [54, 57] – or linearly for infinite-
depth networks [46] – and/or initialization schemes that are attuned to the network’s structure
[42, 54]. By contrast, our work takes a more holistic viewpoint and aims to obtain results
for general non-convex landscapes, without making any structural assumptions about the
problem’s objective or the algorithm’s initialization. To provide the necessary context, we
survey the relevant literature on overparameterized neural networks in Appendix A.

2. A gentle start

Stating our results in their most general form requires some fairly involved technical
apparatus, so we begin with a warm-up section intended to introduce some basic concepts
and develop intuition for the sequel. Specifically, our aim in this section is to give a high-level
overview of our main results for a simple two-dimensional example which is easy to plot and
visualize. We stress that the material in this section is presented at an informal level; the
rigorous treatment is deferred to Section 4.

With these caveats in place, the instance of (Opt) that we will work with is a modified
version of the well-known “three-hump camel” test function, as detailed in Fig. 1. This
is a multimodal function with five critical points, indexed p1 through p5: two are saddles
(p2 and p4), three are minimizers (p1, p3, and p5), and the global minimum is attained
at p1≈ (−2.573, 1.029). To keep things simple, we will further assume that (SGD) is run
with stochastic gradients of the form ĝn = ∇f(xn) + Zn, where Zn is an i.i.d. sequence of
Gaussian random vectors with covariance σ2I. Then, fixing an initialization x0 ← x ∈ R2,
we will seek to estimate the global convergence time

τ = inf{n = 0, 1, . . . : ∥xn − p1∥ ≤ δ} (2)

for some fixed error margin δ > 0 (in Fig. 1 we tok δ = 10−2).
The main intuition behind our analysis for τ can be summarized as follows:
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(1) With exponentially high probability, (SGD) spends most of its time near the critical
points of f (and, in particular, its minimizers).

(2) The time that (SGD) takes to get to a neighborhood of argmin f is determined, to
leading order, by the chain of critical points visited by xn, and by the average time
required to transition from one to the next.

The technical scaffolding required to make this intuition precise is provided by a weighted
directed graph which quantifies the difficulty of (SGD) making a direct transition between
two critical points of f . In the context of our example, this graph is constructed as follows:

• The graph’s nodes are the critical points pi, i = 1, . . . , 5, of f .

• Two nodes are joined by an edge if there exists a solution orbit of the gradient flow
ẋ(t) = −∇f(x(t)) whose closure connects said points.2 Importantly, if pi ; pj , we also
have pj ; pi by default.

• The weight of an edge pi ; pj is given by the expression

Bij = 2[f(pj)− f(pi)]+/σ
2 . (3)

An intuitive way of interpreting this expression is as follows: if f(pj) ≤ f(pi), the
transition of (SGD) from pi to pj is “for free”; otherwise, if f(pj) > f(pi), the noise
in (SGD) can still lead to an ascent from pi to pj , but the cost of such a transition is
proportional to the potential difference f(pj)− f(pi), and inversely proportional to the
variance of the noise in (SGD).

In our example, this construction yields the path graph below (where, for visual clarity,
the height of each node corresponds its objective value):

p1

p2

p3

p4

p5

The topology of this graph is due to the fact that the entire space is partitioned into the
basins of attraction of p1, p3 and p5, as shown in Fig. 1: since p1 and p5 are separated by
neighborhoods, there can be no gradient flow orbits joining “non-successive” critical points –
e.g., p1 to p3 – leading to the path graph structure depicted above.

To proceed, we fix an initial condition x for (SGD), say, in the basin of attraction of p3.
In this case, the most likely event is that (SGD) will first be attracted to p3 on its way to
the global minimum p1, so, for simplicity, we just estimate the time it takes (SGD) to reach
p1 from p3. However, this time cannot be determined only by the local geometry of f along
the “direct” transition path p3 ; p2 ; p1: with positive probability, (SGD) could jump over
p4 and be trapped in p5. In that case, the process will first have to escape from p5, and
then follow the “indirect” transition path p5 ; p4 ; p3 ; p2 ; p1. As a result, the mean
global convergence time of (SGD) is not affected solely by the obstacles that lie on the most
“direct” path from the initialization to the global minimum of f , but also by the traps that
the process can fall into along every other “indirect” path as well.

2Formally, two distinct critical points pi, pj of f are joined by an edge if there exists a solution orbit x(t)

of the gradient flow of f such that {pi, pj} = {limt→±∞ x(t)}.
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Figure 1: Visualization of the three-hump camel benchmark f(x1, x2) = 2x6
1/13 +

x5
1/8 − 91x4

1/64 − 24x3
1/48 + 42x2

1/16 + 5x2
2/4 + x1x2. The figure to the left

depicts the loss landscape of f with several (deterministic) gradient flow orbits
superimposed for visual convenience. The figure in the middle highlights the 5
critical points of f (light blue for local minimizers, light red for saddle points):
the red curves depict the stable manifolds of the saddle points p2 and p4, and
they partition the space into three basins of attraction, one per minimizer; the
blue curves are gradient flow orbits that realize the edges of the transition graph
of f . Finally, the figure to the right illustrates a trajectory of (SGD) starting
near p3, and stopped when it gets within 10−2 of p1, the global minimum of f ;
color represents time, with darker hues indicating later iterations of (SGD). The
plotted trajectory gets to p1 after first being trapped by p5; the sojourn time from
p5 to p1 is the leading contribution to the global convergence time of (SGD).

With all this in mind, when instantiated to the example at hand, the general analysis of
Section 4 shows that the mean convergence time of (SGD) is

Ex[τ ] ≈ exp

(
2(f(p2)− f(p5))

ησ2

)
. (4)

This expression shows that the global convergence time of (SGD) scales exponentially with
the inverse of the step-size and the variance of the noise, and it is dominated by the objective
value gap that xn must clear if it is trapped by p5. We verify experimentally the accuracy
of this derivation in Fig. 2, where we measure the global convergence time of (SGD) over
several runs for different values of η.

To provide some more context for all this, the precise expression for the coefficient of 1/η
in (4) – which we denote as E(p1|p3) in Section 4 – is obtained by aggregating the graph
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Figure 2: Statistical analysis of the number of iterations τ required for (SGD) to
reach the global minimum of the three-hump camel function of Fig. 1. For each
value of η, we performed 500 runs of (SGD) initialized near p3 with Gaussian noise
(σ = 50), and we recorded the number of iterations required to reach the vicinity
of p1 (within δ = 10−2). The resulting boxplots are displayed in log-inverse scale,
with a distribution chart overlay to illustrate the full empirical distribution of τ
for the given value of η. As per (4), we see that E[τ ] scales exponentially with 1/η.
To measure the goodness-of-fit, the solid “Data” line represents a linear regression
fit for our data, while the dashed “Theory” line is a linear fit with slope given
by (4). The two fits have R2 values of 0.99 and 0.97 respectively, indicating a
strong agreement between theory and experiment. The two modes of the empirical
distribution roughly correspond to the “direct” and “indirect” transition paths to p1
described in the text (p3 ; p2 ; p1 and p5 ; p4 ; p3 ; p2 ; p1 respectively).

weights Bij according to the formula

E(p1|p3) = B32 +B54 −min{B34, B54}

=
2max{f(p2)− f(p3), f(p2)− f(p5)}

σ2
. (5)

In other words, the exponent of (4) scales with the largest function value gap that xn

may have to clear in order to reach argmin f . In the specific example of Fig. 1, we have
f(p3) > f(p5), so f(p2)− f(p5) > f(p2)− f(p3), and hence

E(p1|p3) = 2[f(p2)− f(p5)]/σ
2 (6)

which is precisely the obstacle that (SGD) must clear if it gets trapped by p5 (cf. Fig. 1).
All this is perhaps contrary to what one might expect: (4) shows that the global convergence

time of (SGD) is not driven by the “shortest”, least costly chain of transitions leading to
argmin f , but by the “longest”, most costly one. In this sense, E(p1 | p3) directly encodes all
non-local information of f that ends up affecting the global convergence time of (SGD), so
it can be seen as an explicit measure of the “hardness” of the non-convex landscape under
study. We find this characterization quite appealing because it allows us to identify – both
qualitatively and quantitatively – the features of (Opt) that make it harder or easier as a
global problem. We will revisit this question several times in the sequel.
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3. Problem setup and blanket assumptions

In this section, we begin our formal treatment of the global convergence time of (SGD) by
presenting our standing assumptions for (Opt) and (SFO). We stress that these assumptions
have been chosen to streamline the presentation; for a more general treatment with a relaxed
set of assumptions, we refer the reader to Section 5 and Appendix B.

Assumptions on the objective. To begin, we assume throughout that Rd is equipped with
the Euclidean inner product and norm, denoted by ⟨·, ·⟩ and ∥·∥ respectively. With this in
mind, we make the following standing assumptions for f :

Assumption 1. The objective function f : Rd → R of (Opt) is C2-smooth and satisfies the
conditions below:

(a) Coercivity: lim∥x∥→∞ f(x) =∞.
(b) Gradient norm coercivity: lim∥x∥→∞∥∇f(x)∥ =∞.
(c) Lipschitz smoothness: the gradient of f is β-Lipschitz continuous, i.e.,

∥∇f(x′)−∇f(x)∥ ≤ β∥x′ − x∥ for all x, x′ ∈ Rd .

(d) Critical set regularity: The critical set

crit f := {x ∈ Rd : ∇f(x) = 0}

of f consists of a finite number of closed, disjoint, smoothly connected components
Ci, i = 1, . . . , Ncrit.

Remark. By “smoothly connected”, we mean here that any two points in such a component
can be joined by a smooth path contained therein. In the sequel, we will refer to these
components simply as the critical components of f , and we will say that Ci is a (locally)
minimizing component if Ci = argminx∈U f(x) for some neighborhood U of Ci. §

The requirements of Assumption 1 are fairly mild and quite standard in the literature.
In more detail, Assumption 1(a) simply ensures that argmin f is nonempty – otherwise,
the question of global convergence may be meaningless. Similarly, Assumption 1(b) is a
stabilization condition aiming to exclude functions with a specious, near-critical behavior
at infinity – such as f(x) = log(1 + x2). Finally, in terms of regularity, Assumption 1(c)
is the go-to hypothesis for the analysis of gradient methods, while Assumption 1(d) rules
out problems with pathological critical sets (such as Warsaw sine curves, Cantor staircase
functions, etc.).3

Assumptions on the gradient input. Our second set of assumptions concerns the stochastic
gradients ĝn that enter (SGD). Here we will assume that the optimizer has access to a
stochastic first-order oracle (SFO), that is, a black-box mechanism which returns a stochastic
approximation of the gradient ∇f(x) of f at the queried point x ∈ Rd. Formally, an SFO is
a random vector of the form

G(x;ω) = ∇f(x) + Z(x;ω) (SFO)

where:
(a) The random seed ω is drawn from a compact subset Ω of Rm based on some probability

measure P.
(b) The error term Z(x;ω) captures all sources of randomness and uncertainty in (SFO).

3This last requirement can be replaced by positing for example that f is semi-algebraic, cf. [4, 13, 63].
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With all this in place, we will assume that (SGD) is run with stochastic gradients

ĝn = G(xn;ωn) (SG)

where G is an SFO for f and ωn ∈ Ω, n = 0, 1, . . ., is a sequence of i.i.d. random seeds as
above. This well-established model accounts for all standard implementations of (SGD),
from minibatch sampling to noisy gradient descent and Langevin-type methods. The only
extra assumptions that we will make are as follows:

Assumption 2. The error term Z : Rd × Ω→ Rd of (SFO) has the following properties:
(a) Properness: E[Z(x;ω)] = 0 and cov(Z(x;ω)) ≻ 0 for all x ∈ Rd.
(b) Smooth growth: Z(x;ω) is C2-smooth and satisfies the growth bound

sup
x,ω

∥Z(x;ω)∥
1 + ∥x∥

<∞ . (7)

(c) Sub-Gaussian tails: The tails of Z are bounded as

logE
[
e⟨p,Z(x;ω)⟩

]
≤ 1

2
σ2∥p∥2 (8)

for some σ > 0 and for all p ∈ Rd. §

Assumption 2(a) is standard in the field, and ensures that the oracle G(x;ω) provides
unbiased gradient estimates; as for the ancillary covariance requirement, it serves to dif-
ferentiate (SGD) from deterministic versions of gradient descent that are run with perfect
gradients. Assumption 2(b) is a regularity requirement imposing a mild limit on the growth
of the noise as ∥x∥ → ∞, while Assumption 2(c) is a widely used bound on the tails of
the noise. Importantly, even though Assumption 2(c) is less general than finite variance
assumptions which allow for fat-tailed error distributions, it provides much finer control on
the process and leads to a much cleaner presentation. Note though that it can be relaxed
by allowing the variance parameter σ2 to diverge to infinity as ∥x∥ → ∞; this case is of
particular interest for certain deep learning models, and we treat it in detail in Appendix B.

An illustrative use case. We close this section with an example intended to illustrate the
range of validity of our assumptions for (SGD). In particular, we will focus on the regularized
empirical risk minimization (ERM) problem

f(x) =
1

N

N∑
i=1

ℓ(x; ξi) +
λ

2
∥x∥2 (ERMλ)

where ℓ(x; ξ) is the loss of model x against input ξ (e.g., a logistic or Savage loss), the data
points ξi, i = 1, . . . , N , comprise the problem’s training set, and λ > 0 is a regularization
parameter. For example, this setup could correspond to a linear model with non-convex
losses [19, 45], a neural network with smooth activations and normalization layers [39],
etc. Accordingly, if we estimate the gradient of f by sampling a random minibatch ω ⊆
{ξ1, . . . , ξN} of training data (typically a small, fixed number thereof), the corresponding
gradient oracle becomes

G(x;ω) =
1

|ω|
∑
ξ∈ω

∇ℓ(x; ξ) + λx . (9)

Under standard assumptions for ℓ – e.g., twice continuously differentiable, Lipschitz continu-
ous and smooth, cf. [47] and references therein – Parts (a)–(c) of Assumption 1 are satisfied
automatically. The resulting error term Z(x;ω) is easily seen to be uniformly bounded, so
Parts (a)–(c) of Assumption 2 are likewise verified [67, Exercise 2.4].
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4. Analysis and results

We are now in a position to state our main results for the global convergence time of (SGD)
under the blanket assumptions presented in the previous section. Our strategy to achieve
this mirrors the general scheme outlined in Section 2: First, at a high level, once (SGD) has
reached a neighborhood of a critical component of f (and, especially, a locally minimizing
component), it will be trapped for some time in its vicinity. To escape this near-critical
region, (SGD) may have to climb the loss surface of f , and this can only happen if (SGD)
takes a sufficient number of steps “against” the gradient flow ẋ = −∇f(x) of f . Thus, to
understand the global convergence time of (SGD), we need to quantify these “rare events”,
namely to characterize (i) how much time (SGD) spends near a given critical component;
(ii) how likely it is to transition from one such component to another; and (iii) what are the
possible chains of transitions leading to the global minimum of f .

To do this, we employ an approach inspired by the large deviations theory of Freidlin
& Wentzell [21] and Kifer [32, 34] for randomly perturbed dynamical systems on compact
manifolds in continuous time. In the rest of this section, we only detail the elements of our
approach that are needed to state our results in a self-contained manner, and we defer the
reader to the paper’s appendix for the proofs.

Generalities. To fix notation, we will assume in the sequel that (SGD) is initialized at some
fixed x0 ← x ∈ Rd, and we will write Px and Ex (or sometimes Px0

and Ex0
) for the law

of the process starting at x0 = x and the induced expectation respectively. Then, given a
target tolerance δ > 0, our primary objective will be to estimate the time required for (SGD)
to get within δ of argmin f , that is, the hitting time

τ = inf{n ∈ N : dist(xn,Q) ≤ δ} (10)

where, for notational brevity, we write

Q = argmin f (11)

for the minimum set of f (which could itself consist of several connected components).
Throughout what follows, we will refer to τ as the global convergence time of (SGD), and our
aim will be to characterize Ex[τ ] as a function of the algorithm’s initial state x0 ← x ∈ Rd.

For future use, we also define here the attracting strength of Q as the maximal value of
the product µR2, where µ and R are such that

⟨∇f(x), x− x∗⟩ ≥ µ∥x− x∗∥2 whenever dist(x,Q) ≤ R, (12)

with x∗ ∈ Q denoting a projection of x onto Q. In this way, (12) can be seen as a “setwise”
second-order optimality condition for the global minimum of f .

Elements of large deviations theory. Moving forward, the first ingredient required to state
our results is the Hamiltonian of G, defined here as

HG(x, p) := logEω[exp(−⟨p,G(x;ω)⟩)] (13)

for all x ∈ Rd, p ∈ Rd. Up to a minus sign in the exponent, HG(x, p) is simply the cumulant-
generating function of the gradient oracle G at x, so it encodes all the statistics of (SGD) at
x. Dually, the Lagrangian of G is given by the convex conjugate of HG(x, p) with respect to
p, that is,

LG(x, v) := H∗
G(x, v) = max

p∈Rd
{⟨v, p⟩ − HG(x, p)} . (14)
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The importance of the Lagrangian (14) lies in that it provides a “pointwise” large deviation
principle (LDP) of the form

P

(
1

n

n∑
k=0

G(x;ωn) ∈ B

)
∼ exp

(
−n inf

v∈B
LG(x, v)

)
(15)

for every Borel B ⊆ Rd. In view of this LDP, the long-run aggregate statistics of the sum
Sn =

∑n−1
k=0 G(x;ωk) are fully determined by LG [14]; however, even though the iterates

xn = x0−η
∑n−1

k=0 G(xk;ωk) of (SGD) are likewise defined as a sum of SFO queries, obtaining
a “trajectory-wise” LDP for xn is far more involved.

To address this challenge, the seminal idea of Freidlin & Wentzell [21] was to treat the
entire trajectory xn, n = 0, 1, . . ., of (SGD) as a point in some infinite-dimensional space
of curves, and to derive a large deviation principle for (SGD) directly in that space. To
that end, drawing inspiration from the Lagrangian formulation of classical mechanics, the
(normalized) action of LG along a continuous curve γ : [0, T ]→ Rd is defined as

ST [γ] =
∫ T

0

LG(γ(t), γ̇(t)) dt (16)

with the convention ST [γ] =∞ if γ is not absolutely continuous. In a certain sense – which
we make precise in Appendix B.3 – the quantity ST [γ] is a “measure of likelihood” for the
curve γ, with lower values indicating higher likelihoods. This is the so-called “least action
principle” of large deviations [21, 34], which we leverage below to characterize the most –
and also the least – likely transitions of (SGD).

The transition graph of (SGD). To achieve this quantification of the transitions of (SGD),
we proceed below to associate a certain transition cost to each pair of critical components Ci,
Cj of f . We will then use these costs to quantify how likely it is to observe a given chain of
transitions terminating at the global minimum of f .

To begin, following Freidlin & Wentzell [21], the quasi-potential between two points
x, x′ ∈ Rd is defined as

B(x, x′) := inf{ST [γ] : γ ∈ CT (x, x′;Q), T ∈ N} (17)

where CT (x, x′;Q) denotes the set of all continuous curves γ : [0, T ] → Rd with γ(0) = x,
γ(T ) = x′, and γ(n) /∈ Q for all n = 1, . . . , T − 1. By construction, B(x, x′) is simply the
cost of the “least action” path joining x to x′ in time T and not hitting Q before that time.
As such, the induced setwise cost is given by

B(K,K′) := inf{B(x, x′) : x ∈ K, x′ ∈ K′}. (18)

i.e., as the action of the “least costly” transition from some point in K to some point in
K′ which does not go through Q in the meantime. In this way, focusing on the critical
components of f , we obtain the matrix of transition costs

Bij := B(Ci, Cj) for all i, j = 1, . . . , Ncrit (19)

which compactly characterizes the “ease” with which xn may jump from Ci to Cj .
We are now in a position to construct the transition graph of (SGD), generalizing the

introductory example of Section 2. Formally, this is a weighted directed graph G ≡ G(V, E , B)
with the following primitives:

(1) A set of vertices V indexed by i = 1, . . . , Ncrit, that is, one vertex per critical component
of f . To ease notation in what follows, we will not distinguish between the index i
and the component Ci that it labels.
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(2) A set of directed edges E = {(i, j) : i, j = 1, . . . , Ncrit, i ≠ j, Bij < ∞}. In words,
i ; j if and only if the (direct) transition cost from Ci to Cj is finite.

(3) Finally, to each edge (i, j) ∈ E we associate the weight Bij .
To further streamline our presentation and ensure that the minimum set of f can be

reached from any initialization of (SGD), we will make the following assumption for G:

Assumption 3. Bij <∞ for all i, j = 1, . . . , Ncrit.

This assumption is purely technical and holds automatically if there is “sufficient noise” in
the process; for a detailed discussion, we refer the reader to Appendix C.4.

Transition forests, energy levels, and prunings. We now have in our arsenal most of the
elements required to quantify the difficulty of reaching Q = argmin f from an initial state
x ∈ Rd. As in the warmup setting of Section 2, we begin by describing the relevant walks of
(SGD) on the associated transition graph G.

To begin, given that we are interested in chains of transitions terminating at the target set
Q, we will refer to all nodes in Q as target nodes, and all other nodes in V \ Q as non-target
nodes.4 We then define a transition forest for Q to be a directed acyclic subgraph T of G
such that (i) target nodes have no outgoing edges; and (ii) every non-target node of T has
precisely one outgoing edge.5 In particular, this means that there exists a unique path from
every non-target node i ∈ V \Q to some target node j ∈ Q. The energy of Q is then defined
as the minimal cost over such forests, viz.

E(Q) := min
T ∈G(Q)

∑
(i,j)∈T

Bij (20)

where G(Q) denotes the set of all transition forests toward Q on G. 6 In this way, the energy
of Q represents the minimum aggregate cost of getting to Q, so it can be seen as an overall
measure of how “easy” it is to reach Q.

To account for the initialization of (SGD), we will need to perform a “pruning” construction,
whereby we will systematically delete different edges of G and record the impact of this
deletion on the energy of Q. Formally, given a starting node p ∈ V \Q, we let r = |V|−|Q|−1
denote the number of “residual nodes” j ∈ V that are neither starting (j ≠ p) nor targets
(j /∈ Q). A pruning of p from Q is then defined to be a directed acyclic subgraph S of G
such that

(1) S has r edges, at most one per non-target node j ∈ V \ Q.

(2) Target nodes have no outgoing edges.

(3) There is no path from p to Q.7

The energy required to prune p from Q is then defined as the minimal such cost, viz.

E(p ̸; Q) := min
S∈G(p̸;Q)

∑
(i,j)∈S

Bij (21)

4In our case, the target nodes are simply the globally minimizing components of f . To streamline notation,
Q will be viewed interchangeably as a set of points in Rd or as a set of nodes in V.

5Equivalently, a transition forest for Q can be seen as a spanning union of disjoint in-trees, each converging
to a target node.

6When Q is a singleton (i.e., argmin f is connected), a transition forest for Q is a spanning in-tree, so
our definition generalizes and extends that of Azizian et al. [4].

7Equivalently, a pruning of p from Q can be seen as a spanning union of disjoint rooted in-trees, each
rooted at some target node, except the one containing the starting node p, which is rooted at a non-target
node.
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where G(p ̸; Q) denotes the set of all prunings of p from Q in G. Then, to complete the
picture, we define the energy of Q relative to p ∈ V \ Q as

E(Q | p) := E(Q)− E(p ̸; Q)

= min
T ∈G(Q)

∑
(i,j)∈T

Bij − min
S∈G(p̸;Q)

∑
(i,j)∈S

Bij . (22)

Finally, for a given initialization x ∈ Rd, we set

E(Q |x) := max
p∈V\Q

[E(Q | p)−B(x, p)]+ (23)

i.e., as the highest energy of Q relative to starting nodes p ∈ V \ Q that can be reached
from x, adjusted by the cost of the initial transition from x to p. This quantity measures
the difficulty of reaching Q from x, and it plays a central role in our estimates of the global
convergence time of (SGD).

The global convergence time of (SGD). We are finally in a position to state our main
estimate for the global convergence time of (SGD), in the form of matching upper and lower
bounds for Ex[τ ]. Without further ado, we have:

Theorem 1. Suppose that Assumptions 1–3 hold. Then, given a tolerance level ε > 0, an
initialization x ∈ Rd of (SGD), and small enough δ, η > 0, we have

exp

(
E(Q |x)− ε

η

)
≤ Ex[τ ] ≤ exp

(
E(Q |x) + ε

η

)
(24)

provided that the attracting strength of Q is large enough for the left inequality (lower bound).

This theorem provides matching upper and lower bounds for the global convergence time of
(SGD) starting at x ∈ Rd, and it is proved in Appendix D.3 as a special case of Theorems D.2
and D.3. These bounds scale exponentially with the inverse of the step-size η and show that
the global convergence time of (SGD) is characterized by the pruned energy E(Q |x). In
this sense, E(Q |x) characterizes the hardness of the non-convex optimization landscape for
(SGD). In particular, it captures the fact that the hardness of global convergence stems from
the presence of spurious local minima (that is, locally minimizing components that are not
globally minimizing): as we show in Appendix D.6, the energy E(Q |x) of Q relative to x
vanishes for all x if and only if there are no spurious minima, in which case the convergence
becomes subexponential.

Moreover, when the initialization x ∈ Rd belongs to the basin of a specific minimizing
component p,8 Theorem 1 can be restated in a sharper manner that involves directly the
energy of Q relative to E(Q | p), instead of x.

involving, instead of E(Q |x), the energy E(Q | p) relative to p (cf. (22)).

Theorem 2. Suppose that Assumptions 1–3 hold. Then, given a tolerance ε > 0 and an
initialization x ∈ Rd that belongs to the basin of attraction of the (minimizing) component
p ∈ V, there exist ∆ > 0 and an event H with Px(H) ≥ 1 − e−∆/η such that, for small
enough δ, η > 0, we have

exp

(
E(Q | p)− ε

η

)
≤ Ex[τ |H] ≤ exp

(
E(Q | p) + ε

η

)
(25)

provided that the attracting strength of Q is large enough for the left inequality (lower bound).

8To dispel any ambiguity, we mean here a basin of attraction for the gradient flow of f .
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This theorem is proved in Appendix D.4 as a special case of Theorems D.5 and D.6, and
it shows that, conditioned on a high probability event, the global convergence time of (SGD)
starting at x ∈ Rd is determined by the energy E(Q | p) of Q relative to the minimizing
component p ∈ V that attracts x under the gradient flow of f .9 In the next section, we
quantify further the exact way that E(Q | p) depends on the geometry of the problem’s loss
landscape.

5. Influence of the loss landscape

In this section, we explain how the energy E(Q | p) of (22), which controls the global
convergence time, depends on the noise, the depths of the spurious minima and their relative
positions with respect to each other. We sketch the key elements and we refer to Appendix E
for the full details.

The first step is to derive upper and lower bounds on the transition costs Bij . From
Assumption 2(c), we have a lower-bound on Bij for any i, j : we have Bij ≥ Bij where

Bij := inf
T,γ

{
sup
s<t

2
(
f(γ(t))−f(γ(s))

)
σ2 : γ(0) ∈ Ci, γ(T ) ∈ Cj

}
. (26)

This means that the transition cost is at least equal to the maximal upward jump in
the objective function that cannot be avoided when going from Ci to Cj . To obtain the
upper-bound, we need an extra assumption on the noise.
Extra noise assumption. While we only assumed a bound on the magnitude of the gradient
noise (Assumption 2(c)), we now require in addition a bound on the “minimal level of noise”,
through the following assumption.

Assumption 4. The Lagrangian of G is bounded as

LG(x, v) ≤
∥v +∇f(x)∥2

2σ2
∀v s.t. ∥v∥ ≤ 2∥∇f(x)∥

for all x in some large enough compact set.

This assumption is satisfied by general types of noise (including finite-sum models) given
a lower-bound on the variance of Z(x;ω) and a condition on the support; see Appendix E.1.
In particular, if Z(x;ω) follows a (truncated) Gaussian distribution with a variance σ2, then
Assumption 4 is satisfied with σ2 = (1 − ε)σ2, where ε depends on the truncation level.
In that case, the constant σ2 of Assumption 2(c) can be taken as σ2 = (1 + ε)σ2 (see
Appendix E.1). Note then that the ratio σ2/σ2 is close to 1, which will matter in the next
theorem.
Transition between basins. With Assumption 4, we obtain quantitative upper-bounds on
the transition costs between two neighboring components. More precisely, if Ci and Cj are
such that their basins of attraction intersect, then the cost of transitioning from Ci to Cj is
bounded by

Bij ≤
2(fi,j − fi)

σ2
(27)

where fi,j is the minimum of f over that intersection and fi is the value of f on Ci.
With the lower and the upper bounds, we recover the example of Section 2. When the

closure of the basin of Ci intersects Cj itself, fi,j is simply the value of f on Cj and (27)
simplifies to the same expression as in (3). The equality in (3) is thus obtained by combining
(26) and (27) in the Gaussian case.

9Importantly, this situation is generic: under standard assumptions, the set of points that do not belong
to such a basin has measure zero.
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Graph structure. From the bounds of Bij , we can get bounds on E(Q | p) as follows. We
restrict the transition graph of Section 4 to neighboring components: we consider G′ with
vertices V and edges j ; k if the closures of the basins of Cj and Ck intersect. Given a path
Pj = j ; j1 ; · · ·; jm in G′ that ends in Q, we define its cost as

cost(Pj) := max
n=0,...,m−1

max
{
fjn,jn+1

− fjn , fjn,jn+1
− fj

}
.

This cost involves the values of the objective function along the path from j to Q and
captures the maximum depth of a minima encountered on the path: indeed, fjn,jn+1 − fjn
represents the jump in the loss function when going from Cjn to Cjn+1 while fjn,jn+1 − fj
represents the total jump when going from Cj to Cjn+1

.
Result and discussion. With the above quantities, we can establish that the energy E(Q | p),
that governs the global convergence time of Theorem 2, is bounded as follows.

Theorem 3. Under Assumptions 1–4, for p ∈ V \ Q,

E(Q | p) ≤ max
j:Bpj≤r

min
Pj

2 cost(Pj)

σ2
+O

(
1− σ2

σ2

)
(28)

for some r > 0 that depends on the graph structure G′.

This means that E(Q | p) is bounded by the maximum depth of the minimizers that SGD
must go through in order to reach Q. This involves all the paths in G′ that start at a
component close to p, as measured by Bij .

Consider, for instance, the example of Section 2: the bound of Theorem 3 is attained for
p5 ; p3 ; p1 and we recover the formula of (5).

Consider finally the case of neural networks. Our results provide a way to translate
quantitative considerations on the loss landscape of neural networks into quantitative bounds
on the convergence time of SGD. Indeed, the loss landscapes of neural networks have some
specific geometric properties that can be combined with our results. First, there are no
spurious local minima under some conditions [51, 53]. In that case, Theorem 1 ensures that
the global convergence time is sub-exponential, since E(Q |x) is zero. Second, when spurious
local minima do exist, their depths can be bounded [55]. In that case, Theorems 2 and 3
translate these bounds into bounds on the global convergence time of SGD.

6. Concluding remarks

Our aim in this paper was to characterize the global convergence time of (SGD) in non-
convex landscapes. Our characterization involves a pair of matching lower and upper bounds
with an exponential dependence on an energy-like quantity which captures the delicate
interplay between (a) the geometry of the loss landscape of the problem’s objective function;
(b) the statistical profile of the stochastic first-order oracle that provides gradient input
to (SGD); and (c) the hardest set of obstacles that separate the algorithm’s initialization
from the function’s global minimum. In this sense, the characteristic exponent of our global
convergence time estimate can be seen as a measure of the hardness of the non-convex
minimization problem at hand – and, importantly, it vanishes (resp. nearly vanishes) if the
function admits no spurious local minima (resp. sufficiently shallow local minima), indicating
a transition to subexponential convergence times.

Our framework accommodates a broad range of scenarios, including loss functions with
shallow local minima – or no spurious minima whatsoever – making it particularly relevant
for applications to deep learning. Beyond the theoretical insights gained along the way, our
results also provide a principled way of quantifying the difficulty of non-convex stochastic
optimization problems, thus offering a new perspective on the role of the noise in shaping
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the long-term behavior of the algorithm. On this matter, an important direction that
emerges is the incorporation of interpolation phenomena and the study of the way that
interpolation influences the global convergence envelope and performance of (SGD) in
non-convex landscapes. We defer these investigations to the future.

Appendix A. Related work

A.1. SGD as Markov chain. Dieuleveut et al. [15] and Lu et al. [45] proposed to study
(SGD) as a discrete-time Markov chain. This allowed Dieuleveut et al. [15], Lu et al. [45] to
derive conditions under which (SGD) is (geometrically) ergodic and, in this way, to quantify
the distance to the minimizer under global growth conditions. Building further on this
perspective, Gurbuzbalaban et al. [24], Hodgkinson & Mahoney [25] and Pavasovic et al.
[58] showed that, under general conditions, the asymptotic distribution of the iterates of
(SGD) is heavy-tailed; As such, these results concern the probability of observing the iterates
of SGD at very large distances from the origin. This is in contrast with our work, which
focuses on the time it takes SGD to reach a global minimizer. These two types of results are
orthogonal and complementary.

A.2. Consequences of the diffusion approximation. The SDE approximation of SGD, intro-
duced by Li et al. [37, 38], has been a fruitful approach to understand of the dynamics of SGD.
Applications of this SDE approximation include the study of the dynamics of SGD close to
manifold of minimizers [10, 40] or Yang et al. [74] which quantifies the global convergence of
the diffusion approximation of SGD when the function has no spurious local minima. Where
the objective function is scale-invariant [39], we can obtain further results: Wang & Wang
[69] describes the convergence of the SDE approximation to its asymptotic regime, while Li
et al. [40, 41] also quantifies the convergence SGD initialized close to minimizers.

Another line of work leverages DMFT to study the behavior of the diffusion approximation
of SGD [48, 49, 64]. The DMFT, or “path-integral” approach, comes from statistical physics
and bears a close resemblance to the Freidlin-Wentzell theory of large deviations for SDEs.
All these results are either local or concern the asymptotic behaviour of the continuous-time
approximation of SGD. They do not provide information of the global convergence time
of the actual discrete-time SGD, since the approximation guarantees fail to hold on large
enough time intervals.

A.3. Exit times for SGD. In our work, we study how long it takes for SGD to reach a global
minimizer. There is vast literature that instead seeks to understand how long it takes for
SGD to exit a local minimum. For this, these works study either the diffusion approximation
[6, 23, 26, 29, 50, 73] or on heavy-tail versions of this diffusion [56, 68]. Interestingly, some
of these works use elements of the continuous-time Freidlin–Wentzell theory [20], which is
also the point of departure of our paper.

A.4. Overparameterized neural networks. The pioneering work of [1, 17, 77] show con-
vergence for neural networks: overparameterization and Gaussian initialization enable
convergence to a global minimum. Among the many subsequent works, let us mention
[3, 71, 75, 76, 78]. In particular, with N denoting the number of training datapoints,
this type of results require either a O(N2)-width with Gaussian initialization [54, 57] or a
O(N)-width under additional structure: infinite depth [46] or specific initialization [42, 54].
Our work addresses a different question as it provides a convergence analysis on general
non-convex functions, regardless of the structure of the objective or the initialization.

A fruitful line of works studies the geometric properties of the loss landscapes of neural
networks, and in particular whether they contain spurious local minima [30]. Nguyen & Hein
[51], Nguyen et al. [53] show that there are no spurious local minima, or “bad valley”, if the
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architecture possesses an hidden layer with width a least N . There are many refinements:
e.g. leveraging the structure of the data [65], considering regularization [70], convolutional
neural networks [52] or other variations of the architecture [2, 60, 61, 70]. Moreover, Li
et al. [36] shows that this requirement is tight for one-hidden layer neural networks, in some
settings. When the sizes of the hidden layers are smaller than N , the loss landscape does
generally have spurious local minima [12]. Interestingly, in this case, the depth of these
spurious can be explicitly bounded [55] and made arbitrarily small with hidden layers of size
only

√
N .

Another fundamental property of overparameterized neural networks is that they can
perfectly fit the training data and therefore, the noise of SGD vanishes at the global minimum.
In this setting, under sufficient noise assumption everywhere else, Wojtowytsch [72], shows
that SGD reaches a neighborhood of a global minimizer almost surely, gets trapped in this
neighborhood and then converges to the global minimizer with a provided asymptotic rate.
Our work can be seen as a precise estimation of the time to reach the neighborhood of the
global minimizer.

Also motivated by the interpolation phenomenon, Islamov et al. [28] introduces the so-
called α− β condition and shows a global convergence of SGD under this condition. Though
this condition is much weaker than convexity, it only ensures that the function value of the
iterates becomes less than the max of the values over all critical points. In contrast, our work
characterizes the time to convergence to global minimizer for any non-convex landscape.

A.5. LDP for stochastic algorithms. Our mathematical development use large deviation
results for stochastic processes; see e.g., the monographs of Dupuis & Ellis [18], Freidlin &
Wentzell [20]. More precisely, we rely on the large deviation result [4, Cor. C.2], which is an
application of the theory of Freidlin & Wentzell [20]. Let us also mention two recent works
on large deviations in optimization settings: [5] that studies SGD with vanishing step-size on
strongly convex functions and Hult et al. [27] that considers general stochastic approximation
algorithms.

Appendix B. Large deviation analysis of SGD

Before we begin our proof, we introduce here notations and we revisit and discuss our
standing assumptions. In particular, to extend the range of our results, we provide in the
rest of this appendix a weaker version of the blanket assumptions of Section 3 which will be
in force throughout the appendix.

B.1. Setup and assumptions. We equip Rd with the canonical inner product ⟨·, ·⟩ and the
associated Euclidean norm ∥·∥. We denote by B(x, r) (resp. B(x, r)) the open (resp. closed)
ball of radius r centered at x.

We also also define, for any A ⊂ Rd,

Uδ(A) := {x ∈ Rd : d(x,A) < δ} . (B.1)

For any T > 0, we denote by C([0, T ]) = C([0, T ],Rd) the set of continuous functions from
[0, T ] to Rd.

We begin with our assumptions for the objective function f , which are a weaker version
of Assumption 1.

Assumption 5. The objective function f : Rd → R satisfies the following conditions:
(a) Coercivity: f(x)→∞ as ∥x∥ → ∞.
(b) Smoothness: f is C2-differentiable and its gradient is β-Lipschitz continuous, namely

∥∇f(x′)−∇f(x)∥ ≤ β∥x′ − x∥ for all x, x′ ∈ Rd. (B.2)
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Assumption 6 (Critical set regularity). The critical set

crit(f) :=
{
x ∈ Rd : ∇f(x) = 0

}
(B.3)

of f consists of a finite number of (compact) connected components. Moreover, each of
these components K is connected by piecewise absolutely continuous paths, i.e., for any
x, x′ ∈ K, there exists γ ∈ C([0, 1],K) such that γ0 = x, γ1 = x′ and such that it is
piecewise absolutely continuous, i.e., γ is differentiable almost everywhere and there exists
0 = t0 < t1 < · · · < tN = 1 such that γ̇ is integrable on every closed interval of (tn, tn+1) for
n = 0, . . . , N − 1

Note that, since connected components of a closed set are closed, Assumption 5 automati-
cally ensure that the connected components of crit(f) are compact.

Unlike in Assumption 1, we do not require the connected components of crit f to be
smoothly connected but only piecewise absolutely continuous.

Remark B.1. The path-connectedness requirement of Assumption 6 is satisfied whenever
the connected components of crit(f) are isolated critical points, smooth manifolds, or finite
unions of closed manifolds. More generally, Assumption 6 is satisfied whenever f is definable
– in which case crit f is also definable, so each component can be connected by piecewise
smooth paths [13, 63]. The relaxation provided by Assumption 6 represents the “minimal”
set of hypotheses that are required for our analysis to go through. §

Moving forward, to align our notation with standard conventions in large deviations
theory, it will be more convenient to work with −Z(x;ω) instead of Z(x;ω) in our proofs.
To make this clear, we restate below Assumption 2 in terms of the noise process

u(x, ω) = −Z(x;ω) . (B.4)

We also take the chance to relax the definition of the variance proxy of u, which requires the
new assumption Assumption 8.

Assumption 7. The error term u : Rd × Ω→ Rd satisfies the following properties:
(a) Properness: E[u(x, ω)] = 0 and cov(u(x, ω)) ≻ 0 for all x ∈ Rd.
(b) Smooth growth: u(x, ω) is C2-differentiable and satisfies the growth condition

sup
x,ω

∥u(x, ω)∥
1 + ∥x∥

< +∞ . (B.5)

(c) Sub-Gaussian tails: There is σ2
∞ : R→ (0,+∞) continuous, with infRd σ2

∞ > 0, such
that u(x, ω) satisfies

logE
[
e⟨p,u(x,ω)⟩

]
≤ σ2

∞(f(x))

2
∥p∥2 for all p ∈ Rd . (B.6)

Assumption 8. The signal-to-noise ratio of G is bounded as

lim inf
∥x∥→∞

∥∇f(x)∥2

σ2
∞ ◦ f(x)

> 16 log 6 · d . (B.7)

Furthermore, σ2
∞(t) = o(t2) as t→ +∞ and, σ2

∞◦f(x)
∥x∥s is bounded above and below at infinity

for s ∈ [0, 2], i.e.,

0 < lim inf
∥x∥→+∞

σ2
∞ ◦ f(x)
∥x∥s

and lim sup
∥x∥→+∞

σ2
∞ ◦ f(x)
∥x∥s

< +∞ . (B.8)
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Remark B.2. The key distinction between Assumption 2 and Assumptions 7–8 stems from
their differing requirements for the variance proxy σ2

∞ of the noise in (SGD). Since f
is coercive, allowing σ2

∞ to depend on f(x) enables us to consider noise processes whose
variance may grow unbounded as ∥x∥ → ∞; we specifically choose to express this dependence
through f(x) rather than directly through x as it substantially simplifies both our proofs
and calculations. §

We now introduce the notation for the target set Q. In the main text, we choose Q to be
the set of global minima of f but this needs not be the case in general. In the rest of the
appendix, Q will a union of connected components of crit(f).

Definition 1 (Choice of the components of interest). Denote by Q1, . . . ,QNtarg the connected
components of crit(f) that form the target set.

Denote by K1, . . . ,KK the remaining connected components of crit(f) and denote by

(C1, . . . , CNcrit) := (K1, . . . ,KK ,Q1, . . . ,QNtarg) (B.9)

their union with Ncrit = K +Ntarg.

Since the connected components of crit(f) are pairwise disjoint by definition, their
compactness implies that there exists δ > 0 such that Uδ(Ci), for i = 1, . . . , Ncrit, are pairwise
disjoint.

In this framework, the iterates of (SGD), started at x ∈ Rd, are defined by the following
recursion: {

x0 ∈ Rd

xn+1 = xn − η∇f(xn) + ηun , where un = u(xn, ωn)
(B.10)

where (ωn)n≥0 is a sequence of random variables in Rm. We will denote by Px the law of the
sequence (ωn)n≥0 when the initial point is x and by Ex the expectation with respect to Px.

Assumptions 5 and 7 imply the following growth condition, that we assume holds with the
same constant for the sake of simplicity. There is M > 0 such that, for all x ∈ Rd, ω ∈ Ω,

∥∇f(x)∥ ≤M(1 + ∥x∥) and ∥u(x, ω)∥ ≤M(1 + ∥x∥) . (B.11)

B.2. Hamiltonian and Lagrangian. Following the notation of [4], we introduce the cumulant
generating functions of the noise u(x, ω) and of the drift −∇f(x) + u(x, ω), that we denote
by H̄, H to avoid confusion. We also define their convex conjugates, L̄, L.

Definition 2 (Hamiltonian and Lagrangian). Define, for x ∈ Rd, v ∈ Rd,

H̄(x, v) = logE[exp(⟨v, u(x, ω)⟩)] (B.12a)

H(x, v) = −⟨∇f(x), v⟩+ H̄(x, v) (B.12b)

L̄(x, v) = H̄(x, ·)∗(v) (B.12c)

L(x, v) = H(x, ·)∗(v) = L̄(x, v +∇f(x)) . (B.12d)

L̄ and L are thus respectively equal to the Lagrangians LZ(·, ·) and LG(·, ·).
We restate [4, Lem. B.1] that provides basic properties of the Hamiltonian and Lagrangian

functions.

Lemma B.1 (Properties of H and L, [4, Lem. B.1]).
(1) H is C2 and H(x, ·) is convex for any x ∈ Rd.
(2) L(x, ·) is convex for any x ∈ Rd, L is lower semi-continuous (l.s.c.) on Rd × Rd.
(3) For any x ∈ Rd, v ∈ Rd, H(x, v) ≤ 2M(1 + ∥x∥)∥v∥2 and domL(x, ·) ⊂ B(0, 2M(1 +
∥x∥)).
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(4) For any x ∈ Rd, v ∈ Rd, L(x, v) ≥ 0 and L(x, v) = 0 ⇐⇒ v = ∇f(x).

The following lemma provides a lower bound on the Lagrangian and is an immediate
consequence of the sub-Gaussian tails assumption ((c)).

Lemma B.2 ([4, Lem. D.5]). For any x ∈ Rd, v ∈ Rd,

L(x, v) ≥ ∥v +∇f(x)∥
2

2σ2
∞ ◦ f(x)

. (B.13)

B.3. A large deviation principle for SGD. In this section, we present and restate the large
deviation principles established in [4]for SGD. Note that their proof is itself an application
of the general theory of Freidlin & Wentzell [20]. From the sequences (xn)n≥0 and (ωn)n≥0,
we define another discrete sequence: a subsampled or, accelerated, sequence

xη
n := xn⌊1/η⌋ . (B.14)

From the Lagrangian defined in (B.12d), we define, on C([0, T ],Rd), the normalized action
functional S0,T by

S0,T (γ) =

{∫ T

0
L(γt, γ̇t) dt if γ absolutely continuous

+∞ otherwise
(B.15)

following Freidlin & Wentzell [20, Chap. 3.2], as a manner to quantify how “probable” a
trajectory is.

For some N > 0, we will first equip (Rd)N with the distance

distN (ξ, ζ) = max
0≤n≤N−1

∥ξn − ζn∥ . (B.16)

Now, for N ≥ 0, ξ = (ξ0, . . . , ξN−1) ∈ RdN , let us define the normalized discrete action
functional

AN (ξ) :=

N−2∑
n=0

ρ(ξn, ξn+1) (B.17)

where the cost of moving from one iteration to the next is defined for any x, x′ ∈ Rd from
the previous continuous normalized action functional (cf. (B.15)) with horizon 1 as

ρ(x, x′) := inf{S0,1(γ) : γ ∈ C([0, 1],Rd), γ0 = x, γ1 = x′} . (B.18)

We now present the large deviation principle on the discrete accelerated sequence
(xη

n)0≤n≤N−1 = (xn⌊η−1⌋)0≤n. In the following result, the functional η−1AN is thus the
action functional in RdN of the process (xη

n)0≤n≤N−1 uniformly with respect to the starting
point x0 in any compact set K ⊂ Rd, as η → 0.

Proposition B.1. Fix N ≥ 0.
• For any s > 0, the set

ΓK
N (s) := {ξ ∈ RdN : ξ0 ∈ K,AN (ξ) ≤ s} (B.19)

is compact and AN is l.s.c. on RdN .
• For any s, δ, ε > 0, K ⊂ Rd compact, there exists η0 > 0 such that, for any η ∈ (0, η0],

for any x0 ∈ K, n ≤ N , ξ ∈ Γ
{x0}
n (s), we have that

Px0(distn(x
η, ξ) < δ) ≥ exp

(
−An(ξ) + ε

η

)
(B.20a)

Px0

(
distn(x

η,Γ{x0}
n (s)) > δ

)
≤ exp

(
−s− ε

η

)
. (B.20b)
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B.4. Return to critical points. In this section, we restate a key result from [4]: the lemma
below provides a control on the return time to a neighborhood of the set of critical points.
In particular, it shows that the distribution of this return time is roughly sub-exponential.

Lemma B.3 ([4, Lem. D.21]). Consider crit(f) ⊂ U ⊂ X ⊂ Rd with U an open set and X a
compact set. Then, there is some η0, α0, a, b > 0 such that,

∀η ≤ η0, α ≤ α0, x ∈ X , Ex

[
e

ατ
η
U

η

]
≤ e

aα
η +b . (B.21)

Definition 3 (Stopping times for the accelerated process). For any set A ⊂ Rd, we define the
hitting and exit times of A:

τηA := inf{n ≥ 0 : xη
n ∈ A} , (B.22a)

ση
A := inf{n ≥ 0 : xη

n /∈ A} . (B.22b)

B.5. Attractors. We again build on the work of [4] which took inspiration from the framework
of Kifer [33].We first need to define the gradient flow of f .

Definition 4. Define, for x ∈ Rd, the flow Θ of −∇f started at x, i.e.,

Θ0(x) = x (B.23)

Θ̇t(x) = −∇f(Θt(x)) . (B.24)

and let F (x) be the value of this flow at time 1, i.e.,

F (x) = Θ1(x) . (B.25)

We first list some basic properties.

Lemma B.4 (Properties of the flow [4, Lem. D.1]). Θ is well-defined and continuous in both
time and space, and, for any T ≥ 0, γ ∈ C([0, T ],Rd) such that γ0 = x,

S0,T (γ) = 0 ⇐⇒ γt = Θt(x) for all t ∈ [0, T ] . (B.26)

The following lemma translates this for F .

Lemma B.5 (Properties of F ,[4, Lem. D.2]). F is well-defined and continous and, for any
x, x′ ∈ Rd,

ρ(x, x′) = 0 ⇐⇒ x′ = F (x) . (B.27)

Definition 5 (Kifer [33, §1.5]). Define, for x, x′ ∈ Rd,

B(x, x′) = inf{S0,T (γ) : γ ∈ C([0, T ]), γ0 = x, γT = x′, T ∈ N, T ≥ 1}
= inf{AN (ξ) : ξ ∈ Dr(N) , ξ0 = x , ξN−1 = x′, N ≥ 1} . (B.28)

The fact that these two expressions coincide directly come from the definition of ρ.
The next two lemmas are key regularity results on the connected components of the

critical set.

Lemma B.6 ([4, Lem. D.8]). For any C ⊂ crit(f) connected component of the critical set,
there is r0 > 0 such that, for any 0 < r ≤ r0,

Wr(C) := {x ∈ Rd : ρ(x, C) < r, ρ(C, x) < r} (B.29)

is open and contains C.

Lemma B.7 ([4, Lem. D.9]). Let C ⊂ crit(f) be a connected component of the critical set.
Then, for any ε > 0, there is some N ≥ 1 such that, for any x, z ∈ C, there is ξ ∈ Dr(N)
such that ξ0 = x, ξN−1 = z, AN (ξ) < ε and max0≤n<N d(ξn, C) < ε.
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B.6. Convergence and stability.

Lemma B.8 ([4, Lem. D.28]). For any x ∈ Xr, there exists i ∈ {1, . . . , Ncrit} such that

lim
t→+∞

d(Θt(x), Ci) = 0 . (B.30)

Definition 6. A connected component of the critical points C ⊂ crit(f) is said to be
asymptotically stable if there exists U a neighborhood of C such that, for any x ∈ U , Θt(x)
converges to C, i.e.,

lim
t→+∞

d(Θt(x), C) = 0 . (B.31)

The notions of minimizing component and asymptotic stability are equivalent in our
context.

Definition 7. C connected component of crit(f) is minimizing if there exists U a neighborhood
of C such that

argmin
x∈U

f(x) = C (B.32)

Note that since crit(f) is closed, C is closed as well as a connected component of a closed
set.

Lemma B.9 ([4, Lem. D.29]). For any C ⊂ crit(f) connected component of the set of critical
points, C is minimizing if and only if it is asymptotically stable.

Appendix C. Transitions

In this section, we study the transitions of the accelerated sequence of SGD iterates
between the different sets of critical points. As in [4], we build on the work of Kifer [33]
and Freidlin & Wentzell [20]. More precisely, Appendices C.1–C.5 consists in refining the
framework of [4] to be able to obtain precise time estimates on the transitions between the
different sets of critical points. Such results are provided in Appendix C.6.

C.1. Setup. We adapt to our context Kifer [33, Lem. 5.4] and simplify it using ideas from
Freidlin & Wentzell [20, Chap. 6].

Definition 8 (Freidlin & Wentzell [20, Chap. 6,§2]). For i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit},
δ > 0,

Bi,j := inf

AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 ∈ Ci, ξN−1 ∈ Cj , ξn /∈
⋃
l ̸=i,j

Cl for all n = 1, . . . , N − 2


Bδ

i,j := inf

AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 ∈ Uδ(Ci), ξN−1 ∈ Uδ(Cj), ξn /∈
⋃
l ̸=i,j

Cl for all n = 1, . . . , N − 2


(C.1)

While Bi,j is the usual definition from Freidlin & Wentzell [20, Chap. 6,§2], B̃δ
i,j is a

variant that will prove helpful.
Let us now first list a few immediate properties.

Lemma C.1. For i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, B̃δ
i,j is non-decreasing in δ and, for any

δ > 0, Bδ
i,j ≤ Bi,j.

Note that the fact that Bδ
i,j is non-decreasing in δ implies that the limit limδ→0 B

δ
i,j exists.

We now exploit the regularity around the Ki, to obtain an alternate expression for Bi,j as
the limit of Bδ

i,j as δ → 0.
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Lemma C.2. For i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, the following equality holds:

Bi,j = lim
δ→0

Bδ
i,j . (C.2)

Proof. By Lemma C.1, we have
Bδ

i,j ≤ Bδ
i,j , (C.3)

and therefore
lim
δ→0

Bδ
i,j ≤ Bi,j . (C.4)

It remains to show the reverse inequality.
Take ε > 0. Apply Lemma B.6 to Ci: at the potential cost of reducing ε, we get that

Wε(Ci) is an open neighborhood of Ci.
Take δ > 0 small enough so that Uδ(Ci) ⊂ Wε(Ci), Uδ(Ci) does not intersect with any

other Cl, l ̸= j.
Now, take any N ≥ 1 and ξ ∈ Dr(N) such that ξ0 ∈ Uδ(Ci), ξN−1 ∈ Uδ(Cj), ξn /∈

⋃
l ̸=i,j Cl

for all n = 1, . . . , N − 2.
By the choice of δ, ξ0 cannot be in

⋃
l ̸=i,j Cl and ξ0 is inside Wε(Ci) so that there exists

x ∈ Ci such that ρ(x, ξ0) < ε. Similarly, there exists x′ ∈ Cj such that ρ(ξN−1, x
′) < ε. Now

consider the path ζ ∈ Dr(N + 2) defined as ζ = (x, ξ0, ξ1, . . . , ξN−1, x
′) that satisfies ζ0 ∈ Ci,

ζN ∈ Cj and ζn /∈
⋃

l ̸=i,j Cl for all n = 1, . . . , N − 2. Furthermore, AN+2(ζ) ≤ AN (ξ) + 2ε

and thus Bi,j ≤ AN (ξ) + 2ε. Passing to the infimum over such paths ξ yields

Bδ
i,j ≤ Bδ

i,j + 2ε , (C.5)

which concludes the proof. ■

C.2. Induced chain. We now define an important object: the law of the (accelerated) iterated
at the first time they reach some set V (typically a neighborhood of the critical set). Due to
our interest in the finite-time dynamics, we slightly deviate from the classical definitions of
Douc et al. [16, Chap. 3.4] and Kifer [33, Prop. 5.3] to follow more closely the one of Freidlin
& Wentzell [20, Chap. 6,§2].

Definition 9. Consider Vi, i = 1, . . . , Ncrit disjoint neighborhoods of Ci and denote by
V :=

⋃Ncrit
i=1 Vi their union. We define recursively the sequences of stopping times (ση

n)n≥0

and (τηn)n≥0 by
• For n = 0,

ση
0 := 0 (C.6)

τη0 := 0 . (C.7)

• For n ≥ 0, if xη
τη
n

is in Vin , then

ση
n+1 :=

{
inf{k ≥ τηn : xη

k /∈ Vin} if xη
τη
n
∈ Vin for some in s.t. Cin ∈ {K1, . . . ,KK} ,

τηn otherwise .
(C.8)

τηn+1 := inf{k ≥ ση
n+1 : xη

k ∈ V} . (C.9)

We denote by zn = xη
τη
n
, n = 0, 1, . . ., the induced Markov chain and by QV(x, ·) the

corresponding Markov transition probability i.e., the law of z1 started at z0 = x.

A few remarks are in order on (zn)n≥0:
• zn ∈ V for all n ≥ 1.
• If the chain reaches a neighborhood of Q1, . . . ,QNtarg it stays there forever.
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C.3. Estimates of the transition probabilities.

Lemma C.3. For any ε > 0, A > 0, for any small enough neighborhoods Vi of Ci, i =
1, . . . , Ncrit , there is some η0 > 0 such that for all i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, x ∈ Vi,
0 < η < η0,

QV(x,Vj) ≤

exp
(
−Bi,j

η + ε
η

)
if Bi,j < +∞ ,

exp
(
−A

η

)
otherwise .

(C.10)

Proof. Following the alternative definition of the Bi,j ’s Lemma C.2, choose δ > 0 small
enough so that both U δ

2
(Ci), i = 1, . . . , Ncrit are pairwise disjoints and the following holds

for all i, j ∈ {1, . . . , Ncrit}:

Bδ
i,j ≥

{
Bi,j − ε if Bi,j < +∞ ,

A otherwise .
(C.11)

Require then that Vi be contained in U δ
2
(Ci) for all i = 1, . . . , Ncrit. Note that the Vi’s

are pairwise disjoint by construction.
Given neighborhoods Vi, i = 1, . . . , Ncrit, by compactness of crit(f), there exists δ′ > 0

such that δ′ ≤ δ
2 , U2δ′(Ci) is contained in Vi for all i = 1, . . . , Ncrit.

Fix i, j ∈ {1, . . . , Ncrit} and consider ξ ∈ Dr(N) such that ξ0 ∈ Uδ′(Vi) ⊂ Uδ(Ci),
ξN−1 ∈ Uδ′(Vj) ⊂ Uδ(Cj) and ξn ∈ Uδ′

(
Rd \

⋃
l ̸=i,j Vl

)
for all n = 1, . . . , N − 2. By the

choice of δ′, ξn cannot be in
⋃

l ̸=i,j Uδ′(Cl) for any n = 1, . . . , N − 2.
By construction of ξ we thus have that

AN (ξ) ≥ B̃δ
i,j

≥

{
Bi,j − ε if Bi,j < +∞ ,

A otherwise .
(C.12)

where the last inequality follows from (C.11).
Fix x ∈ Vi. Let us now bound the probability

QV(x,Vj) = Px

(
xη
τη
V
∈ Vi

)
, (C.13)

and start with the case where Bi,j < +∞.
We have, for any N ≥ 0,

Px

(
xη
τη
V
∈ Vi

)
≤ Px

(
xη
τη
V
∈ Vi, τηV < N

)
+ Px(τ

η
V ≥ N) . (C.14)

We first bound the second probability using Lemma B.3 applied to U ← Vi. Take N such
that α0(a−N) + η0b ≤ −Bi,j . Then, by Markov’s inequality and Lemma B.3, it holds that
for all η ≤ η0

Px(τ
η
V ≥ N) ≤ Px

(
exp

(
α0τ

η
V

η

)
≥ exp

(
α0N

η

))
≤ exp

(
α0(a−N)

η
+ b

)
≤ exp

(
−Bi,j

η

)
. (C.15)

We now bound the term Px

(
xη
τη
V
∈ Vj , τηV < N

)
for this choice of N .
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For this, we show that xη
τη
V
∈ Vj with τηV < N implies that

distN

(
xη,Γ

{x}
N (Bi,j − 2ε)

)
>

δ′

2
. (C.16)

Indeed, on the event xη
τη
V
∈ Vj with τηV < N , there is some N ′ ≤ N such that τηV = N ′− 1. If

distN

(
xη,Γ

{x}
N (Bi,j − 2ε)

)
> δ′

2 did not hold, this would mean that there exists ξ ∈ (Rd)N
′

such that distN ′(xη, ξ) < δ′, ξ0 = x and, AN ′(ξ) ≤ Bi,j − 2ε. In particular, ξ would also
satisfy ξN ′−1 ∈ Uδ′(Vj), ξn ∈ Uδ′(Rd \ V) for all n = 1, . . . , N ′ − 2 and, as a consequence,
ξ ∈ Dr(N

′). This would be thus in direct contradiction of (C.12).
Therefore, we have that

Px

(
xη
τη
V
∈ Vj , τηV < N

)
≤ Px

(
distN

(
xη,Γ

{x}
N (Bi,j − 2ε)

)
>

δ′

2

)
≤ exp

(
−Bi,j − 3ε

η

)
, (C.17)

by Proposition B.1.
Combining this bound with (C.15) yields

Px(x
η
τη
V
∈ Vj) ≤ exp

(
−Bi,j − 3ε

η

)
+ exp

(
−Bi,j

η

)
, (C.18)

which concludes the proof when Bi,j < +∞.
Let us now examine the case where Bi,j = +∞. Again, we have, for any N ≥ 0,

Px

(
xη
τη
V
∈ Vi

)
≤ Px

(
xη
τη
V
∈ Vi, τηV < N

)
+ Px(τ

η
V ≥ N) . (C.19)

We first bound the second probability using Lemma B.3 applied to U ← Vi. Take N such
that α0(a−N) + η0b ≤ −A. Then, by Markov’s inequality and Lemma B.3, it holds that for
all η ≤ η0

Px(τ
η
V ≥ N) ≤ Px

(
exp

(
α0τ

η
V

η

)
≥ exp

(
α0N

η

))
≤ exp

(
α0(a−N)

η
+ b

)
≤ exp

(
−A
η

)
. (C.20)

We now bound the term Px

(
xη
τη
V
∈ Vj , τηV < N

)
for this choice of N .

For this, we show that xη
τη
V
∈ Vj with τηV < N implies that

distN

(
xη,Γ

{x}
N (A− ε)

)
>

δ′

2
. (C.21)

Indeed, on the event xη
τη
V
∈ Vj with τηV < N , there is some N ′ ≤ N such that τηV = N ′ − 1.

If distN
(
xη,Γ

{x}
N (A− ε)

)
> δ′

2 did not hold, this would mean that there exists ξ ∈ (Rd)N
′

such that distN ′(xη, ξ) < δ′, ξ0 = x and, AN ′(ξ) ≤ A− ε. In particular, ξ would also satisfy
ξN ′−1 ∈ Uδ′(Vj), ξn ∈ Uδ′(Rd \V) for all n = 1, . . . , N ′−2 and, as a consequence, ξ ∈ Dr(N

′).
This would be thus in direct contradiction of (C.12).

Therefore, we have that

Px

(
xη
τη
V
∈ Vj , τηV < N

)
≤ Px

(
distN

(
xη,Γ

{x}
N (A− ε)

)
>

δ′

2

)



THE GLOBAL CONVERGENCE TIME OF STOCHASTIC GRADIENT DESCENT 25

≤ exp

(
−A− 2ε

η

)
, (C.22)

by Proposition B.1.
Combining this bound with (C.20) yields

Px(x
η
τη
V
∈ Vj) ≤ exp

(
−A− 2ε

η

)
+ exp

(
−A
η

)
, (C.23)

which concludes the proof.
■

Lemma C.4. For any ε > 0,for any neighborhoods Vi of Ci, i = 1, . . . , Ncrit small enough,
there exists η0 > 0 such that for all i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, x ∈ Vi, 0 < η < η0,

QV(x,Vj) ≥ exp

(
−Bi,j

η
− ε

η

)
. (C.24)

Note that this result is trivially valid if Bi,j = +∞.

Proof. For any (i, j) ∈ {1, . . . ,K}×{1, . . . , Ncrit}, there exists Ni,j ≥ 1, ξi,j ∈ Dr(Ni,j) such
that ξi,j0 ∈ Ci, ξ

i,j
Ni,j−1 ∈ Cj , ξi,jn /∈

⋃
l ̸=i,j Cl for all n = 1, . . . , Ni,j−2 and ANi,j

(ξi,j) ≤ Bi,j+ε.

Define δi,j := min
{
d(ξi,jn ,

⋃
l ̸=i,j Cl) : n = 1, . . . , Ni,j − 2

}
and δ := mini,j∈I δi,j . By con-

struction, it holds that δ > 0.
Without loss of generality, at the potential cost of reducing ε, we can assume that

Lemma B.6 can be applied to every Ci, i = 1, . . . ,K with r ← ε and denote by Wi the
corresponding neighborhoods of Ci. Require that Vi be contained in Wi ∩ Uδ/2(Ki) for all
i = 1, . . . ,K. Now, given such Vi neighborhoods of Ci, i = 1, . . . , Ncrit, by compactness,
there exists 0 < δ′ ≤ δ/2 such that Uδ′(Ci) is contained in Vi for all i = 1, . . . , Ncrit.

Apply Lemma B.7 to Ci, i = 1, . . . ,K with ε← min(ε, δ′/2) and denote by Ni the bound
on the length of paths obtained.

We are now ready to prove the result. Fix (i, j) ∈ {1, . . . ,K}×{1, . . . , Ncrit} and consider
x ∈ Vi. Since Vi ⊂ Wi, there exists z ∈ Ki such that ρ(x, z) < ε.

By Lemma B.7, there exists n ≤ N , ξ ∈ Dr(n) such that ξ0 = z, ξN−1 = ξi,j0 , ξk ∈ Uδ′/2(Ki)
for all k = 1, . . . , n− 2 and An(ξ) < ε.

Considering the concatenation

ζ :=
(
x, ξ0, ξ1, . . . , ξn−2, ξn−1, ξ

i,j
1 , . . . , ξi,jNi,j−1

)
(C.25)

which is a path of length n+Ni,j +1 made of x ∈ Vi, then exactly n points in Uδ′/2(Ki) then
Ni,j−2 in Rd \Uδ/2(V) and ξi,jNi,j−1 ∈ Kj . Moreover, by construction, AN+Ni,j (ζ) ≤ B̃i,j+3ε.
Therefore, if

distn+Ni,j+1(x
η, ζ) < δ′/2 , (C.26)

with xη
0 = x, then xη

1 , . . . , x
η
n are in Uδ′(Ki) ⊂ Vi and, since δ′ ≤ δ/2, xη

n+2, . . . , x
η
n+Ni,j−1

are not in Uδ/4(V), and therefore not in V. Moreover, xη
n+Ni,j

would be in Uδ′/2(Kj) ⊂ Vj .
Thus, all the paths xη satisfying (C.26) with xη

0 = x correspond to exactly one transition
of the induced chain (zn)n from x to Vj .

Therefore, using the definition of QV , we have that

QV(x,Vj) ≥ Px

(
distn+Ni,j+1(x

η, ζ) < δ′/2
)

≥ exp

(
−Bi,j + 4ε

η

)
, (C.27)

by Proposition B.1. ■
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C.4. Accelerated induced chain. We will take the following convention, for any i ∈ {1, . . . , Ncrit},
δ > 0:

Bδ
i,i = Bi,i = Bi,i = 0 . (C.28)

Definition 10. Given the induced chain (zn)n≥0, we define the accelerated induced chain
(zKn)n≥0 as follows:

zKn := znK . (C.29)
We denote by QK

V the transition probabilities of the accelerated induced chain which
corresponds to the K − th power of QW : it satisfies10, for any x ∈ Vi, i ∈ {1, . . . , Ncrit} and
any measurable set A ⊂ Rd,

QK
V(x,A) =

∫ ∫
· · ·
∫
1{zK ∈ A}QV(x, dz1)QV(z1, dz2) . . .QV(zK−1, dzK) . (C.30)

Definition 11 (Inspired by Freidlin & Wentzell [20, Chap. 6,§2]). For i ∈ {1, . . . ,K}, j ∈
{1, . . . , Ncrit}, δ > 0,

Bi,j := inf

AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 ∈ Ci, ξN−1 ∈ Cj , ξn /∈
⋃

l ̸=i,j, l>K

Cl for all n = 1, . . . , N − 2


(C.31)

Lemma C.5. For any (i, j) ∈ {1, . . . ,K} × {1, . . . , Ncrit},

Bi,j = min

{
n−2∑
l=0

Bil,il+1
: i0 = i, in−1 = j, il ∈ {1, . . . ,K} for l = 1, . . . , n− 2 , n ≥ 1

}
(C.32)

= min

{
K−1∑
l=0

Bil,il+1
: i0 = i, iK = j, il ∈ {1, . . . ,K} for l = 1, . . . ,K − 1

}
. (C.33)

Proof. We focus on proving the first equality for Bi,j ; the proof for Bi,j follows similarly. Let
us denote by RHS(i, j) the right-hand side:

RHS(i, j) := min

{
n−2∑
l=0

Bil,il+1
: i0 = i, in−1 = j, il ∈ {1, . . . ,K} for l = 1, . . . , n− 2 , n ≥ 1

}
(C.34)

We will prove that Bi,j = RHS(i, j).
(≥): Let us show that Bi,j ≥ RHS(i, j). Fix ε > 0. There is a path ξ ∈ Dr(N) with

ξ0 ∈ Ci, ξN−1 ∈ Cj that avoids
⋃

l ̸=i,j, l>K Cl so that, by definition of Bi,j (Definition 11),

Bi,j ≥ AN (ξ)− ε . (C.35)

Let 1 ≤ n1 < n2 < · · · < nN ′ < N be the times when ξ belongs to some Cl with l ≤ K.
Define i0 = i, iN ′ = j and for 1 ≤ i < N ′, let ik be such that ξnk

∈ Cik . Then, by definition
of B (Definition 5),

AN (ξ) ≥
N ′−1∑
k=0

Bik,ik+1
. (C.36)

Combining (C.35) and (C.36) and taking yields

Bi,j ≥
N ′−1∑
k=0

Bik,ik+1
− ε (C.37)

10This equation is sometimes referred to as the Chapman-Kolmogorov equation.
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≥ RHS(i, j)− ε , (C.38)

since this sequence (ik)
N ′

k=0 satisfies i0 = i, iN ′ = j and ik ∈ {1, . . . ,K} for 1 ≤ k < N ′ .
(≤): Let us show that Bi,j ≤ RHS(i, j). Take ε > 0 and let (ik)N

′

k=0 be a sequence achieving
the minimum in RHS(i, j) up to ε, i.e.,

N ′−1∑
k=0

Bik,ik+1
≤ RHS(i, j) + ε . (C.39)

Take δ > 0 small enough such that Uδ(Cl), l = 1, . . . , Ncrit are pairwise disjoint.
For each 0 ≤ k < N ′, by definition of B (Definition 5), there exists δk ∈ (0, δ) and a

path ξk ∈ Dr(Nk) such that: (i) ξk0 ∈ Cik , (ii) ξkNk−1 ∈ Cik+1
, (iii) ξkn /∈

⋃
l ̸=ik,ik+1

Cl for all
n = 1, . . . , Nk − 2, and (iv) ANk

(ξk) ≤ Bik,ik+1
+ ε/N ′.

By Lemma B.7, for each 0 ≤ k < N ′ − 1, there exists ξ̃k ∈ Dr(Ñk) such that: (i)
ξ̃k0 = ξkNk−1, (ii) ξ̃k

Ñk−1
= ξk+1

0 , (iii) ξ̃kn ∈ Uδ/2(Cik+1
) and therefore ξ̃kn ̸∈

⋃
l ̸=ik+1

Cl for all

n = 1, . . . , Ñk − 2, and (iv) AÑk
(ξ̃k) ≤ ε/N ′.

Concatenating the paths ξ0, ξ̃0, ξ1, ξ̃1, . . . , ξN
′−1 yields a path ζ that: (i) starts in Ci, (ii)

ends in Cj , (iii) avoids
⋃

l ̸=i,j, l>K Cl, and (iv) has total cost at most
∑N ′−1

k=0 Bik,ik+1
+ 3ε.

Therefore, by definition of Bi,j (Definition 11),

Bi,j ≤
N ′−1∑
k=0

Bik,ik+1
+ 3ε

≤ RHS(i, j) + 4ε . (C.40)

The second equality in each case follows from the fact that optimal paths between different
components can be chosen without cycles (since all costs are non-negative), and therefore
their length can be bounded by the number of components K.

■

Lemma C.6 (Upper bound on accelerated induced chain transition probability). For any
ε > 0, A > 0, for any small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit, there is some
η0 > 0 such that for all i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, x ∈ Vi, 0 < η < η0,

QK
V(x,Vj) ≤

exp
(
−Bi,j

η + ε
η

)
if Bi,j < +∞ ,

exp
(
−A

η

)
otherwise .

(C.41)

Proof. Fix i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}. By Lemma C.5, we have that

Bi,j = min

{
K−1∑
l=0

Bil,il+1
: i0 = i, iK = j, il ∈ {1, . . . ,K} for l = 1, . . . ,K − 1

}
. (C.42)

First, let us consider the case where Bi,j < +∞. Take ε > 0 and let (ik)Kk=0 be a sequence
achieving the minimum in (C.42) up to ε, i.e.,

K−1∑
k=0

Bik,ik+1
≤ Bi,j + ε . (C.43)

By definition of the accelerated induced chain (Definition 10), we have that for any x ∈ Vi,

QK
V(x,Vj) =

∑
i1,...,iK−1∈{1,...,K}

∫
Vi1

· · ·
∫
ViK−1

K−1∏
k=0

QV(xk, dxk+1)QV(xK ,Vj) , (C.44)
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where we define x0 = x.
Therefore, combining (C.44) with Lemma C.3 and (C.43), we obtain that for any x ∈ Vi,

QK
V(x,Vj) ≤

∑
i1,...,iK−1∈{1,...,K}

K−1∏
k=0

exp

(
−
Bik,ik+1

η
+

ε

ηK

)

≤ KK−1 exp

(
−Bi,j

η
+

2ε

η

)
. (C.45)

For the case where Bi,j = +∞, by the same reasoning but using the alternative bound
from Lemma C.3, we get

QK
V(x,Vj) ≤ KK−1 exp

(
−A

η

)
. (C.46)

Taking η0 small enough so that KK−1 ≤ exp(ε/η) for all η ≤ η0, the result follows from
(C.45) and (C.46). ■

Lemma C.7 (Lower bound on accelerated induced chain transition probability). For any
ε > 0, for any small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit, there is some η0 > 0
such that for all i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, x ∈ Vi, 0 < η < η0,

QK
V(x,Vj) ≥ exp

(
−Bi,j

η
− ε

η

)
. (C.47)

The proof of Lemma C.7 is very similar to the proof of Lemma C.6 and is therefore
omitted.

We end this section by restating a result from [4]that provides sufficient conditions for
Bi,j to be finite for any (i, j) ∈ {1, . . . ,K} × {1, . . . , Ncrit}.

Lemma C.8 ([4, Lem. D.12]). Consider x, x′ ∈ Rd and assume that there exists T ∈ N,
γ ∈ C1([0, T ],Rd) such that γ0 = x, γT = x′, γn ̸∈

⋃
l ̸=i,j, l>K Cl for all n = 1, . . . , T − 1

and, for every t ∈ [0, T ], ∇f(γt) is in the interior of the closed convex hull of the support of
u(γt, ω), i.e.,

∇f(γt) ∈ int conv suppu(γt, ω) . (C.48)
Then, B(x, x′) < +∞.

C.5. Initial transition.

Definition 12 (Inspired by Freidlin & Wentzell [20, Chap. 6,§2]). For j ∈ {1, . . . , Ncrit}, δ > 0,
x ∈ Rd,

Bx,j := inf

AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 ∈ x, ξN−1 ∈ Cj , ξn /∈
⋃
l ̸=i,j

Cl for all n = 1, . . . , N − 2


(C.49)

Bδ
x,j := inf

AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 = x, ξN−1 ∈ Uδ(Cj), ξn /∈
⋃
l ̸=i,j

Cl for all n = 1, . . . , N − 2

 .

(C.50)

The proof of the following lemmas are very similar to the ones of Lemmas C.2–C.4 and
are therefore omitted.

Lemma C.9. For any j ∈ {1, . . . , Ncrit}, δ > 0, x ∈ Rd,

Bx,j = lim
δ→0

Bδ
x,j . (C.51)
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Lemma C.10. For any ε > 0, x ∈ Rd, for any neighborhoods Vi of Ci, i = 1, . . . , Ncrit small
enough, there exists η0 > 0 such that for all j ∈ {1, . . . , Ncrit}, 0 < η < η0,

QV(x,Vj) ≥ exp

(
−Bx,j

η
− ε

η

)
. (C.52)

Lemma C.11. For any ε > 0, A > 0, x ∈ Rd, for any small enough neighborhoods Vi of Ci,
i = 1, . . . , Ncrit , there is some η0 > 0 such that for all j ∈ {1, . . . , Ncrit}, 0 < η < η0,

QV(x,Vj) ≤

exp
(
−Bx,j

η + ε
η

)
if Bx,j < +∞ ,

exp
(
−A

η

)
otherwise .

(C.53)

Following the same methodology as for transitions between critical components, we now
establish similar results for transitions starting from an arbitrary initial state.

Definition 13 (Inspired by Freidlin & Wentzell [20, Chap. 6,§2]). For x ∈ Rd, j ∈ {1, . . . , Ncrit},
δ > 0,

Bx,j := inf

AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 = x, ξN−1 ∈ Cj , ξn /∈
⋃

l ̸=j, l>K

Cl for all n = 1, . . . , N − 2


(C.54)

This definition mirrors the one of Definition 11, adapting it to account for an arbitrary
initial state rather than starting from a critical component. We can then establish the
following decomposition result, analogous to Lemma C.5.

Lemma C.12. For any x ∈ Rd, j ∈ {1, . . . , Ncrit},

Bx,j = min

{
Bx,i1 +

n−2∑
l=1

Bil,il+1
: in−1 = j, il ∈ {1, . . . ,K} for l = 1, . . . , n− 2, n ≥ 1

}
(C.55)

= min

{
Bx,i1 +

K−1∑
l=1

Bil,il+1
: iK = j, il ∈ {1, . . . ,K} for l = 1, . . . ,K − 1

}
(C.56)

The proof follows the same arguments as in Lemma C.5, replacing the initial component
with the given initial state.

These structural results allow us to establish bounds on the transition probabilities from
an arbitrary initial state, paralleling those of Lemmas C.6 and C.7.

Lemma C.13 (Upper bound on accelerated induced chain initial transition probability).
For any x ∈ Rd, for any ε > 0, A > 0, for any small enough neighborhoods Vi of Ci,
i = 1, . . . , Ncrit, there is some η0 > 0 such that for all j ∈ {1, . . . , Ncrit}, 0 < η < η0,

QK
V(x,Vj) ≤

exp
(
−Bx,j

η + ε
η

)
if Bx,j < +∞ ,

exp
(
−A

η

)
otherwise .

(C.57)

Lemma C.14 (Lower bound on accelerated induced chain initial transition probability). For
any x ∈ Rd, for any ε > 0, for any small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit,
there is some η0 > 0 such that for all j ∈ {1, . . . , Ncrit}, 0 < η < η0,

QK
V(x,Vj) ≥ exp

(
−Bx,j

η
− ε

η

)
. (C.58)
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The proofs of these last two lemmas follow very closely those of Lemmas C.6 and C.7, with
the main modification being the treatment of the initial state instead of an initial component.
The key arguments involving the Chapman-Kolmogorov equation and the handling of the
intermediate transitions remain essentially unchanged.

C.6. Transition time. Let us begin with a preliminary escape result.

Lemma C.15. Given C a connected components of Kcrit, for any ε > 0, for η > 0 small
enough and V a small enough neighborhood of C, it holds that, for any x ∈ V,

Ex[σ
η
V ] ≤ exp

(
ε

η

)
. (C.59)

Proof. Fix ε > 1. By Lemma B.6, Wε(C) is an open neighborhood of C. Since C is closed,
Wε(C) \ C is not empty and open. Therefore, there exists x3 ∈ Wε(C) \ C and δ > 0 such
that B(x3, δ) ⊂ Wε(C) \ C. By construction, there exists x2 ∈ C such that ρ(x2, x3) < ε.

Let us now apply Lemma B.7 to obtain that there exists N ≥ 2 such that, for any x1 ∈ C,
there exists n ≤ N , ξ ∈ Dr(N) such that ξ0 = x1, ξN−1 = x2, An(ξ) < ε.

Require then that V be contained in Wε(C) \ B(x3, δ/2) which is an open neighborhood
of C.

Take x ∈ V. Since V is in particular contained in Wε(C), there exists x1 ∈ C such that
ρ(x, x1) < ε. By our application of Lemma B.7 above, there exists n ≤ N , ξ ∈ Dr(n) such
that ξ0 = x1, ξn−1 = x2, An(ξ) < ε. Now consider the path ζ ∈ Dr(n+ 2) defined by

ζ = (x, ξ0, ξ1, . . . , ξn−1, x3) , (C.60)

which satisfies

An+3(ζ) = ρ(x, x1) +An(ξ) + ρ(x2, x3) < 3ε . (C.61)

If a trajectory of SGD xη with xη
0 = x satisfies distn+2(x

η, ζ) < δ/2, then xη
n+1 is inside

B(x3, δ/2) and therefore not in V.
Hence, we have, for η > 0 small enough,

Px(σ
η
V < N + 3) ≥ Px(σ

η
V < n+ 3)

≥ Px(distn+2(x
η, ζ) < δ/2)

≥ exp

(
−An+2(ζ) + ε

η

)
≥ exp

(
−4ε

η

)
, (C.62)

where we invoked Proposition B.1 and used (C.61).
For any x ∈ V, for n ≥ 2, the (weak) Markov property yields that

Px(σ
η
V > n(N + 2)) = Ex

[
1{ση

V > N + 2}Exη
N+2

[
1{ση

V > N + 2} . . .Exη
(n−2)(N+1)

[1{ση
V > N + 2}] . . .

]]
≤
(
2− exp

(
−4ε

η

))n

, (C.63)

with (C.62).
We can now finally estimate the expectation of ση

V : for x ∈ V,

Ex[σ
η
V ] =

∞∑
n=1

Px(σ
η
V > n)
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=

∞∑
n=1

N∑
k=0

Px(σ
η
V > n(N + 1) + k)

≤ (N + 2)

∞∑
n=0

Px(σ
η
V > n(N + 1))

≤ (N + 2)

∞∑
n=0

(
1− exp

(
−4ε

η

))n

= (N + 2) exp

(
4ε

η

)
, (C.64)

where we used (C.63).
Finally, taking η > 0 small enough so that N + 1 ≤ exp

(
ε
η

)
yields that

Ex[σ
η
V ] ≤ exp

(
5ε

η

)
, (C.65)

which concludes the proof. ■

Lemma C.16. For any X0 ⊂ Rd compact, for any ε > 0, for any small enough neighborhoods
Vi of Ci, i = 1, . . . , Ncrit , there is some η0 > 0 such for all 0 < η < η0, for any x ∈
X0 \

⋃Ncrit
i=K+1 Vi,

1 ≤ Ex[τ
η
1 ] ≤ e

ε
η . (C.66)

Proof. Let us begin with the LHS inequality. There are two cases: either x belongs to⋃K
i=1 Vi or not. If x belongs to

⋃K
i=1 Vi, then by definition ση

1 ≥ 1 and therefore τη1 ≥ 1. If x
does not belong to

⋃K
i=1 Vi, then ση

1 = 0 but necessarily τη1 ≥ 1. Hence, in all cases, τη1 ≥ 1
so that the LHS inequality holds.

We now turn to the RHS inequality. As before, we will separate the proof into two cases:
either x belongs to

⋃K
i=1 Vi or not. If x belongs to some Vi for some i ∈ {1, . . . ,K} then, by

Lemma C.15, we have that
Ex[σ

η
1 ] = Ex[σ

η
Vi
] ≤ e

ε
η . (C.67)

In particular, ση
1 is finite almost surely. Therefore, the strong Markov property implies that

Ex[τ
η
1 ] = Ex[σ

η
1 ] + Ex[Exη

σ
η
1

[τηV ]] . (C.68)

Applying Lemma B.3 with U ←
⋃Ncrit

i=1 Vi and Rd ← X0, and using Jensen’s inequality, we
obtain that

Exη

σ
η
1

[τηV ] ≤ a+
bη0
α0

=: c . (C.69)

Plugging this bound into (C.68) and using (C.67) yields

Ex[τ
η
1 ] ≤ e

ε
η + c , (C.70)

which concludes the proof of this case.
Finally, if x does not belong to

⋃K
i=1 Vi, then one only needs to apply Lemma B.3 as

above to obtain the result. ■

Corollary C.1. For any X0 ⊂ Rd compact, for any N ≥ 1, for any ε > 0, for any small
enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit, there is some η0 > 0 such that for all
0 < η < η0, for any x ∈ X0 \

⋃Ncrit
i=K+1 Vi,

1 ≤ Ex[τ
η
N ] ≤ e

ε
η . (C.71)
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Proof. The lower bound follows directly from the definition of τηN since τηk ≥ k for all k ≥ 1
by construction.

For the upper bound, first note that we can write τηN as a telescoping sum:

τηN =

N−1∑
k=0

(τηk+1 − τηk ) , (C.72)

with the convention that τη0 = 0. Therefore,

Ex[τ
η
N ] =

N−1∑
k=0

Ex[τ
η
k+1 − τηk ] . (C.73)

By the strong Markov property applied at time τηk for each term, we have

Ex[τ
η
k+1 − τηk ] = Ex[Exη

τ
η
k

[τη1 ]]

≤ e
ε
η , (C.74)

where the inequality follows from Lemma C.16 since xη
τη
k

belongs to
⋃Ncrit

i=1 Vi by definition of
τηk for all k ≥ 1 (and for k = 0, we can apply Lemma C.16 directly to the initial point x).

Summing over k from 0 to N − 1 yields

Ex[τ
η
N ] ≤ Ne

ε
η

≤ e
2ε
η , (C.75)

for η small enough. ■

Appendix D. Finite-Time Analysis

D.1. Markov Chains on finite state spaces. In this subsection, we introduce the necessary
notation and then restate a key lemma from Freidlin & Wentzell [20, Chap. 6,§3].

Consider a finite set V and Q ⊆ V. Denote by r := cardV \ Q.
Given p : (V \Q)×V → [0, 1], we define the probability of a g with edges in (V \Q)×V as

π(g, p) :=
∏

i→j∈g

p(i→ j) . (D.1)

A graph g consisting of arrows j → k with j ∈ V \Q, k ∈ V , j ≠ k is called a Q-graph on
V if

(i) Every vertex in V \ Q has exactly one outgoing arrow.
(ii) There are no cycles, or, equivalently, from every vertex in V \ Q there is a directed

path to a vertex in Q.
The set of Q-graphs is denoted by G(Q).

We denote by G(i ̸; Q) the set of graphs with exactly card(V \ Q)− 1 edges from V \ Q
to V, no cycles and no path from i to Q. Note that, equivalently, this set is made of all
Q-graphs from which a single edge from the path from i to Q has been removed.

Lemma D.1 (Freidlin & Wentzell [20, Chap. 6,§3,Lem. 3.4]). Consider a Markov Chain on
state space X =

⋃
i∈V Xi with Xi, i ∈ V disjoint and non-empty, with transition probabilities

that satisfy: for i ∈ V \ Q, j ∈ V with i ̸= j,

∀x ∈ Xi, a−1pij ≤ P(x,Xj) ≤ apij , (D.2)
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for some a ≥ 1, pij > 0. For i ∈ V \ Q, the expected time to reach Q when starting at x
denoted by mQ(x) satisfies: for all x ∈ Xi,

a3×4r

∑
g∈G(i̸;Q) π(g, p)∑

g∈G π(g, p)
≤ mQ(x) ≤ a3×4r

∑
g∈G(i̸;Q) π

(
g, p
)∑

g∈G π
(
g, p
) (D.3)

D.2. Hitting time of the accelerated process. We will instantiate the lemmas of the previous
section Appendix D.1 with V = {1, . . . , Ncrit}, Q = {K + 1, . . . , Ncrit} and Xi = Vi for
i ∈ {1, . . . , Ncrit}. We have r = Ncrit −K.

Define by τηQ := τη⋃
j∈Q Vj

the hitting time of
⋃

j∈Q Vj for the accelerated SGD process.

We also consider the induced chain (zn)n≥0 on
⋃Ncrit

i=1 Vi defined in Definition 9 as well as its
accelerated version defined in Definition 10 and denote by τ̃KQ the hitting time of

⋃
j∈Q Vj for

this accelerated induced chain. These two hitting times are related by the following lemma,
which is a key consequence of Lemma C.16.

Lemma D.2. For any ε > 0, for any small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit ,
there is some η0 > 0 such for all 0 < η < η0, for any x ∈

⋃Ncrit
i=1 Vi,

Ex[τ̃
K
Q ] ≤ Ex[τ

η
Q] ≤ Ex[τ̃

K
Q ]× e

ε
η . (D.4)

Proof. First, if x belongs to
⋃Ncrit

i=K+1 Vi =
⋃

j∈Q Vj , then τηQ = 0 and τ̃KQ = 0 so the statement
holds trivially.

We now consider the case where x belongs to
⋃K

i=1 Vi. Since C1, . . . , CK are compact, we
can require that

⋃K
i=1 Vi be relatively compact. We can now apply Corollary C.1 to the

accelerated process to obtain that with X0 ← cl
⋃K

i=1 Vi, for any small enough neighborhoods
Vi of Ci, i = 1, . . . , Ncrit , there is some η0 > 0 such for all 0 < η < η0, for any x ∈

⋃Ncrit
i=1 Vi,

we have,
1 ≤ Ex[τ

η
K ] ≤ e

ε
η . (D.5)

We now have that, by Definition 9,

Ex[τ
η
Q] = Ex

 ∞∑
n=0

1
{
xη
τη
nK

/∈
⋃
j∈Q
Vj
}(

τη(n+1)K − τηnK

)
=

∞∑
n=0

Ex

1{xη
τη
nK

/∈
⋃
j∈Q
Vj
}(

τη(n+1)K − τηnK

)
=

∞∑
n=0

Ex

1{xη
τη
nK

/∈
⋃
j∈Q
Vj
}
Exη

τ
η
nK

[τη
K ]

 , (D.6)

where we used the strong Markov property in the last equality, since τη1 is always finite
almost surely by (D.5).

Combining (D.6) with (D.5), we obtain the bound:

Ex[τ
η
Q] =

∞∑
n=0

Ex

1{xη
τη
n
/∈
⋃
j∈Q
Vj
} ≤ Ex[τ

η
Q] ≤

∞∑
n=0

Ex

1{xη
τη
n
/∈
⋃
j∈Q
Vj
}×e ε

η = Ex[τ̃
K
Q ]×e

ε
η ,

(D.7)
which yields the result. ■

Assumption 9. For any i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit},
Bi,j < +∞ . (D.8)
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From now on, we will assume that Assumption 9 holds.

Definition 14. For i ∈ V \ Q, we define the following quantities:

E(i ̸; Q) := min

 ∑
k→l∈g

Bk,l : g ∈ G(i ̸; Q)

 (D.9)

E(Q) := min

 ∑
k→l∈g

Bk,l : g ∈ G(Q)

 (D.10)

E(Q | i) := E(Q)− E(i ̸; Q) . (D.11)

Note that Assumption 9 ensures that all these quantities are finite.

Lemma D.3. For any i0 ∈ V \ Q, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of
C1, . . . , CNcrit small enough, there is η0 > 0 such that for all 0 < η < η0, for any x ∈ Vi,

e
E(Q | i)−ε

η ≤ Ex

[
τ̃KQ
]
≤ e

E(Q | i)+ε
η . (D.12)

Proof. Fix i ∈ V \ Q. We will apply Lemma D.1 to the accelerated induced chain.
Let us first verify the assumptions of these lemmas. By Lemmas C.6 and C.7, for any

ε > 0, for small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit, there exists η0 > 0 such
that for all i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, x ∈ Vi, 0 < η < η0:

QK
V(x,Vj) ≤ exp

(
−Bi,j

η
+

ε

η

)
, (D.13)

QK
V(x,Vj) ≥ exp

(
−Bi,j

η
− ε

η

)
. (D.14)

Note that Assumption 9 ensures that both Bi,j and Bi,j are finite.
We define, for any i ∈ V \ Q, j ∈ V with i ̸= j:

pij := exp

(
−Bi,j

η

)
and, pij := exp

(
−Bi,j

η

)
. (D.15)

Let us verify the conditions of Lemma D.1 with a := eε/η:
By (D.13) and (D.14), for all i ∈ V \ Q, j ∈ V with i ̸= j, x ∈ Vi:

apij ≤ QK
V(x,Vj) ≤ apij . (D.16)

Now we can apply Lemma D.1 to obtain that for x ∈ Vi:

a−3×4re
E(Q | i)

η ≤ Ex[τ̃
K
Q ] ≤ a3×4re

E(Q | i)
η . (D.17)

Recalling that a = eε/η, the bounds in (D.17) become:

e
E(Q | i)−3×4rε

η ≤ Ex[τ̃
K
Q ] ≤ e

E(Q | i)+3×4rε
η , (D.18)

which concludes the proof since ε > 0 was arbitrary.
■

Definition 15. Let us now define, for x ∈ Rd,

E(Q |x) =
[
max
i∈V\Q

(E(Q | i)− Bxi)
]
+

. (D.19)

with the convention that these quantities are zero if x ∈
⋃

j∈Q Vj or equal to the quantities
defined in Definition 14 if x ∈

⋃K
i=1 Vi.
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Note that these quantities defined in Definition 15 are non-negative and finite by Assump-
tion 9.

Lemma D.4. For any x0 ∈ Rd, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit

small enough, there is η0 > 0 such that for all 0 < η < η0,

e
E(Q | x0)−ε

η ≤ Ex

[
τ̃KQ
]
≤ e

E(Q | x0)+ε
η . (D.20)

Proof. If x0 ∈
⋃K

i=1 Vi, then Lemma D.3 applies and yields the result. if x0 ∈
⋃Ncrit

i=K+1 Vi,
then the result holds trivially. Let us now consider the general case where x0 ∈ Rd \

⋃Ncrit
i=1 Vi

and let us first prove the upper bound, the lower bound follows similarly.
By Lemma D.3 and Lemma C.13: for small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit,

there exists η0 > 0 such that for all 0 < η < η0, i ∈ {1, . . . ,K}, x′ ∈ Vi, both

Ex′ [τ̃KQ ] ≤ exp

(
E(Q | i) + ε

η

)
(D.21)

and,

QK
V(x0,Vi) ≤ exp

(
−Bx0,i

η
+

ε

η

)
(D.22)

hold.
Using the strong Markov property at time τηK (which is finite almost surely by Corol-

lary C.1), we have:

Ex0 [τ̃
K
Q ] =

Ncrit∑
i=1

Ex0

[
(1 + Exη

τ
η
K

[τ̃KQ ])1
{
xη
τη
K
∈ Vi

}]

= 1 +

K∑
i=1

Ex0

[
Exη

τ
η
K

[τ̃KQ ]1
{
xη
τη
K
∈ Vi

}]
+

Ncrit∑
i=K+1

0× 1
{
xη
τη
K
∈ Vi

}

≤ 1 +

K∑
i=1

exp

(
E(Q | i)− Bx0,i + 2ε

η

)
, (D.23)

where we used (D.21) and (D.22) in the last inequality. Bounding the sum as follows

1 +

K∑
i=1

exp

(
E(Q | i)− Bx0,i + 2ε

η

)
≤ (K + 1) exp

(
0 ∨maxi∈{1,...,K}(E(Q | i)− Bx0,i + 2ε)

η

)
= (K + 1) exp

(
E(Q |x0) + 2ε

η

)
, (D.24)

yields the upper bound.
The lower bound follows similarly using Lemma C.14 and the lower bound from Lemma D.3.

■

Theorem D.1. For any x0 ∈ Rd, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of
C1, . . . , CNcrit small enough, there is η0 > 0 such that for all 0 < η < η0,

e
E(Q | x0)−ε

η ≤ Ex0

[
τηQ
]
≤ e

E(Q | x0)+ε
η . (D.25)

Proof. The result follows directly by combining Lemmas D.2 and D.4.
Specifically, by Lemma D.4, for any ε > 0, for small enough neighborhoods Vi of Ci,

i = 1, . . . , Ncrit, there exists η0 > 0 such that for all 0 < η < η0:

e
E(Q | x0)+ε

η ≤ Ex0

[
τ̃KQ
]
≤ e

E(Q | x0)+ε
η . (D.26)
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Then by Lemma D.2, potentially reducing η0, we have:

Ex0
[τ̃KQ ] ≤ Ex0

[τηQ] ≤ Ex0
[τ̃KQ ]× e

ε
η . (D.27)

Combining these inequalities and using the fact that ε > 0 was arbitrary concludes the
proof. ■

The following lemma, though looking at first weaker than Theorem D.1, will be useful
later due to its uniformity in the initial condition in neighborhoods of the components.

Lemma D.5. Under Assumption 9, for any i ∈ V \ Q, for any ε > 0, for V1, . . . ,VNcrit

neighborhoods of C1, . . . , CNcrit small enough, there is η0 > 0 such that for all 0 < η < η0, for
any x ∈ Vi,

e
E(Q | i)−ε

η ≤ Ex

[
τηQ
]
≤ e

E(Q | i)+ε
η . (D.28)

Proof. The result follows directly by combining Lemmas D.2 and D.3.
Specifically, by Lemma D.3, for any ε > 0, for small enough neighborhoods Vi of Ci,

i = 1, . . . , Ncrit, there exists η0 > 0 such that for all 0 < η < η0, for any x ∈ Vi:

e
E(Q | i)+ε

η ≤ Ex

[
τ̃KQ
]
≤ e

E(Q | i)+ε
η . (D.29)

Then by Lemma D.2, potentially reducing η0, we have:

Ex[τ̃
K
Q ] ≤ Ex[τ

η
Q] ≤ Ex[τ̃

K
Q ]× e

ε
η . (D.30)

Combining these inequalities and using the fact that ε > 0 was arbitrary concludes the
proof. ■

Another technical lemma that will be useful later is the following.

Lemma D.6. For any x0 ∈ Rd, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit

small enough, there is η0 > 0 such that for all 0 < η < η0,

e
E(Q | x0)−ε

η ≤ Ex0
[τ̃Q] (D.31)

Proof. This result follows directly from Lemma D.4 and the fact that τ̃Q ≤ τ̃KQ . ■

D.3. Hitting time of SGD.

Theorem D.2. For any x0 ∈ Rd, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of
C1, . . . , CNcrit small enough, there is η0 > 0 such that for all 0 < η < η0,

Ex0
[τQ] ≤ e

E(Q | x0)+ε
η . (D.32)

Proof. This result follows from Theorem D.1 and the fact that, by construction,

τQ ≤ τηQ
⌈
η−1

⌉
, (D.33)

with ⌈η−1⌉ ≤ e
ε
η for small enough η. ■

Corollary D.1. For any x0 ∈ Rd, for any ∆ > 0, for V1, . . . ,VNcrit neighborhoods of
C1, . . . , CNcrit small enough, there is η0 > 0 such that for all 0 < η < η0,

Px

(
τQ < exp

(
E(Q |x0) + ∆

η

))
≤ e−

∆
2η . (D.34)
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Proof. By Markov’s inequality and Theorem D.2, for any x0 ∈ Rd, for V1, . . . ,VNcrit neigh-
borhoods of C1, . . . , CNcrit small enough, there exists η0 > 0 such that for all 0 < η < η0:

Px

(
τQ ≥ exp

(
E(Q |x0) + ∆

η

))
≤ Ex[τQ]

exp
(

E(Q | x0)+∆
η

) (D.35)

≤
exp
(

E(Q | x0)+∆/2
η

)
exp
(

E(Q | x0)+∆
η

) = exp(−∆/2η) . (D.36)

■

Let us now focus on the lower-bound which requires more care. We will require the
following additional assumption:

Assumption 10. Assume that there exist µ > 0, σ2
∞ < +∞, R > 0, such that,

(1) clUR(Qj), j = 1, . . . , Ntarg are pairwise disjoint.
(2) for all j = 1, . . . , Ntarg, x ∈ clUR(Qj), u(x, ω) is a σ2

∞-sub-Gaussian:

∀p ∈ Rd, logE
[
e⟨p,u(x,ω)⟩

]
≤ σ2

∞
2
∥p∥2 . (D.37)

(3) for all j = 1, . . . , Ntarg, x ∈ clUR(Qj), there exists x′ ∈ projQj
(x) a projection of x

on Qj such that:
⟨∇f(x), x− x′⟩ ≥ µ

2
∥x− x′∥2 (D.38)

Note that, by Assumption 2 and compactness of crit(f), such a σ2
∞ always exists since

one can take

σ2
∞ = sup

σ2
∞(f(x)) : x ∈

Ntarg⋃
j=1

clUR(Qj)

 . (D.39)

In particular, if σ2
∞ is constant, then one can simply take σ2

∞ = σ2
∞.

Lemma D.7. Under Assumption 10, for any j ∈ Q, there exists η0 > 0 such that for all
0 < η < η0, for any x0 ∈ Rd satisfying d(x0,Qj) ≤ R

12 , we have, for SGD started at x0:

Px0
(∀n ≥ 0, d(xn,Qj) ≤ R) ≥ 1− exp

(
− µR2

1152σ2
∞η

)
. (D.40)

Proof. Let us denote by K := clUR(Qj) Given x0 ∈ K, we define the projected SGD sequence
as {

p0 = x0

pn+1 ∈ projK(pn − η∇f(pn) + ηun) , where un = u(pn, ωn) .
(D.41)

By Assumption 10, for any n ≥ 0, there exists yn ∈ projQj
(pn) such that:

⟨∇f(pn), pn − yn⟩ ≥
µ

2
∥pn − yn∥2 . (D.42)

Define the martingale sequence (Mn)n≥0 by:

Mn :=

n∑
k=0

(1− µη)n−k⟨uk, pk − yk⟩ . (D.43)

We recursively compute the moment generating function of Mn: for α ≥ 0, n ≥ 0, by the
tower property of conditional expectation and Assumption 10:

E
[
eαMn

]
≤ exp

(
α2R2σ2

∞
2

)
exp

(
(1− µη)2α2σ2

∞
2

)
. . . exp

(
(1− µη)2nα2σ2

∞
2

)
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= exp

(
α2R2σ2

∞
2

× 1− (1− µη)2(n+1)

1− (1− µη)2

)
≤ exp

(
α2R2σ2

∞
2µη

)
, (D.44)

provided that η is small enough so that µη < 1. Note that we used that the iterates of (D.41)
are at distance at most R from Qj by construction.

Since
(
eαMn

)
n≥0

is a convex function of the martingale sequence (Mn)n≥0, it is a sub-
martingale. We can apply Doob’s maximal inequality to the non-negative sub-martingale
(Mn)n≥0 to obtain that for any ∆ > 0, N ≥ 0:

P
(

sup
n≤N−1

Mn ≥ ∆

)
≤ P

(
sup

n≤N−1
eαMn ≥ eα∆

)
≤ exp

(
α2R2σ2

∞
2µη

− α∆

)
, (D.45)

where we used (D.44) in the last inequality. Optimizing the right-hand side of (D.45) with
respect to α and setting α = µη∆

R2σ2
∞

, we obtain:

P
(

sup
n≤N−1

Mn ≥ ∆

)
≤ exp

(
− µη∆2

2R2σ2
∞

)
. (D.46)

Taking ∆← ∆/η and N → +∞, we obtain that, by monotone continuity of probability
measures, for any ∆ > 0:

P
(
sup
n≥0

ηMn ≥ ∆

)
≤ exp

(
− µ∆2

2ηR2σ2
∞

)
. (D.47)

Denote by G := supx∈K,ω∈Ω∥−∇f(x) + u(x, ω)∥ the bound on the gradient and on the
noise on K, which is finite by Assumptions 5 and 7.

Let us now derive a recursive inequality for the distance to Qj . For any iterate n ≥ 0, by
non-expansiveness of the projection, we have:

d2(pn+1,Qj) ≤ ∥pn+1 − yn∥2

≤ ∥pn − η∇f(pn) + ηun − yn∥2

= ∥pn − yn∥2 + η2∥∇f(pn)− un∥2

− 2η⟨∇f(pn), pn − yn⟩+ 2η⟨un, pn − yn⟩
≤ (1− µη)∥pn − yn∥2 + η2G2 + 2η⟨un, pn − yn⟩ , (D.48)

where we used (D.42) in the last inequality.
Iterating this inequality and using that d(pn,Qj) = ∥pn − yn∥, we obtain:

d2(pn,Qj) ≤ (1− µη)nd2(x0,Qj) + η2G2
n−1∑
i=0

(1− µη)i

+ 2η

n−1∑
i=0

(1− µη)n−1−i⟨ui, pi − yi⟩

= (1− µη)nd2(x0,Qj) + η2G2 1− (1− µη)n

µη
+ 2ηMn−1

≤ (1− µη)nd2(x0,Qj) +
2ηG2

µ
+ 2ηMn−1 . (D.49)
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Using that d(x0,Qj) ≤ R
12 by assumption, requiring that η > 0 be small enough so that

2ηG2

µ ≤ R2

12 and taking ∆← R2

24 in (D.47), we obtain that for any n ≥ 0, with probability at

least 1− exp
(
− µR2

1152σ2
∞η

)
:

d2(pn,Qj) ≤
R2

4
. (D.50)

In addition, take η > 0 small enough so that R
2 + ηG ≤ R

2 : this implies that if x ∈ Rd so
that d(x,Qj) ≤ R

2 , then x− η∇f(x) + ηu(x, ω) ∈ K. Combining this remark with (D.50),
we can show recursively that the sequences (xn)n≥0 and (pn)n≥0 coincide with probability
at least 1− exp

(
− µR2

1152σ2
∞η

)
, yielding the desired result.

■

Define by τ̃Q the hitting time of
⋃

j∈Q Vj by the induced chain (zn)n≥0 (see Definition 9).

Lemma D.8. Define
B∞ := max

i∈V\Q
min
j∈Q

Bi,j + 1 . (D.51)

For any x0 ∈ Rd, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit small enough, there is
η0 > 0 such that for all 0 < η < η0, for any n ≥ 0,

Px0
(τ̃Q > n) ≤

(
1− e−

B∞
η

)n
. (D.52)

Note that Assumption 9 ensures that B∞ is finite.

Proof. Fix some x0 ∈ Rd. By definition of B∞, for any vertex i ∈ V \ Q, there exists j ∈ Q
such that:

Bi,j ≤ B∞ − 1 . (D.53)
Fix ε ← 1. By Lemma C.4, for small enough neighborhoods Vi of Ci, i = 1, . . . , Ncrit,

there exists η0 > 0 such that for all i ∈ V \ Q, x ∈ Vi, 0 < η < η0:

QV

x,
⋃
j∈Q
Vj

 ≥ max
j∈Q

QV(x,Vj)

≥ exp

(
−minj∈Q Bi,j

η
− ε

η

)
≥ exp

(
−B∞

η

)
. (D.54)

Therefore, for any n ≥ 1, by the strong Markov property, we have:

Px0
(τ̃Q > n) = Ex0

1{τ̃Q > n− 1}1{zn /∈
⋃
j∈Q
Vj}


= Ex0

1{τ̃Q > n− 1}Ezn−1

1{zn /∈
⋃
j∈Q
Vj}


≤
(
1− exp

(
−B∞

η

))
Px0

(τ̃Q > n− 1) , (D.55)

where we used the (D.54) in the last inequality. Iterating (D.55), we obtain the desired
result.

■
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Theorem D.3. Fix x0 ∈ Rd. Under Assumption 10 and assuming that,
µR2

1152σ2
∞

> B∞ − E(Q |x0) , (D.56)

for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit small enough, there is η0 > 0
such that for all 0 < η < η0:

Ex0
[τQ] ≥ e

E(Q | x0)−ε
η . (D.57)

Remark D.1. Note that the condition (D.56) is implied by the stronger condition

µR2

1152σ2
∞

> B∞ . (D.58)

In particular, B∞ does not depend on f nor on the noise distribution on the interior of the
basins of attraction of Q1, . . . ,QNtarg . Indeed, by definition, B∞ is equal to

B∞ = max
i∈V\Q

min
j∈Q

Bi,j + 1 , (D.59)

and, for i ∈ V \ Q, j ∈ Q, thanks to Lemma B.6, we have that

Bi,j = inf

{
ST (γ) : γ ∈ C([0, T ]) γ0 ∈ Ci, γT ∈ Attr(Cj), γn /∈

⋃
k∈V

Ck ∀n ∈ 1, . . . , T − 1

}
,

(D.60)
since for any x ∈ Attr(Cj), the gradient flow started at x converges to Cj and has zero action
cost (Lemma B.4).

Hence, this condition assumption will be satisfied for functions with a sufficiently sharp
profile near Q1, . . . ,QNtarg and a given profile away from it.

Proof. Let us first begin by invoking Lemma D.6: for V1, . . . ,VNcrit neighborhoods of
C1, . . . , CNcrit small enough, there is η0 > 0 such that for all 0 < η < η0,

e
E(Q | x0)−ε

η ≤ Ex0 [τ̃Q] . (D.61)

Also require that, for all j ∈ Q, Vj ⊂
{
x ∈ Rd : d (x,Qj) ≤ R

12

}
with R as in Assumption 10.

If x0 ∈
⋃

j∈Q Vj , then the result is trivial so let us assume that x0 /∈
⋃

j∈Q Vj .
Let us denote by

H := {∀n ≥ 0, d(xn+τQ ,Qj) ≤ R with xτQ ∈ Vj} (D.62)

the event that, after SGD hits
⋃

k∈Q Vk at Vj , it stays in Vj forever. Note that Theorem D.2
ensures that τQ is finite almost surely. By the strong Markov property, we thus obtain from
Lemma D.7 that

Px0(H) ≥ 1− exp

(
− µR2

1152σ2
∞η

)
. (D.63)

Let us now start from Ex0
[τ̃Q] where τ̃Q is the hitting time of

⋃
j∈Q Vj by the induced

chain (zn)n≥0 (see Definition 9), for which we have a lower-bound from Lemma D.6. We
write

Ex0
[τ̃Q] = Ex0

[τ̃Q 1H ] + Ex0
[τ̃Q 1HC ] . (D.64)

We begin with the first term of the RHS of (D.64). With the notations from Definition 9, let
us consider k ≥ 0 such that τηk ⌊η−1⌋ < τQ ≤ τηk+1⌊η−1⌋ (which is is possible since these hitting
times are finite almost surely and τQ > 0). But, on the event H, zk+1 = xη

τη
k+1

= xτη
k+1⌊η−1⌋

must be in Vj . This means that, on H, τ̃Q = k + 1. Moreover, τQ ≤ k⌊η−1⌋ so that, on H

τ̃Q ≤
τQ
⌊η−1⌋

+ 1 . (D.65)
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and,

Ex0
[τ̃Q 1H ] ≤ Ex0

[
τQ
⌊η−1⌋

+ 1

]
. (D.66)

Let us now focus on the second term of the RHS of (D.64). By Fubini’s theorem for
non-negative integrands, we can rewrite the expectation as:

Ex0 [τ̃Q 1HC ] = Ex0

[∫ +∞

0

1{τ̃Q > t}1HC dt

]
=

∫ +∞

0

Px0

(
τ̃Q > t,HC

)
dt . (D.67)

Let us now split the integral into two parts. For T > 0, we have:

Ex0
[τ̃Q 1HC ] =

∫ T

0

Px0

(
τ̃Q > t,HC

)
dt+

∫ +∞

T

Px0

(
τ̃Q > t,HC

)
dt

≤
∫ T

0

Px0

(
HC

)
dt+

∫ +∞

T

Px0
(τ̃Q > t)dt . (D.68)

By (D.63), the first term of the RHS of (D.68) is upper-bounded as:∫ T

0

Px0

(
HC

)
dt ≤ T exp

(
− µR2

1152σ2
∞η

)
. (D.69)

By (D.56), take ε > 0 small enough so that

µR2

1152σ2
∞
≥ B∞ − E(Q |x0) + 3ε , (D.70)

and define

T := exp

(
µR2

1152σ2
∞η

+
E(Q |x0)− 2ε

η

)
. (D.71)

(D.69) now becomes: ∫ T

0

Px0

(
HC

)
dt ≤ e

E(Q | x0)−2ε
η (D.72)

By Lemma D.8, the second term of the RHS of (D.68) can be upper-bounded as:∫ +∞

T

Px0
(τ̃Q > t)dt ≤

∫ +∞

T

(
1− e−

B∞
η

)t
dt

≤
∫ +∞

T

exp
(
e−

B∞
η t
)
dt

= e
B∞
η exp

(
−B∞

η
T

)
, (D.73)

where we used 1− x ≤ e−x for any x ∈ R in the last inequality. Injecting the definition of T
(D.71), this bound becomes∫ +∞

T

Px0
(τ̃Q > t)dt ≤ exp

(
B∞

η
− exp

(
µR2

1152σ2
∞η

+
E(Q |x0)−B∞ − 2ε

η

))
≤ exp

(
B∞

η
− exp

(
ε

η

))
, (D.74)

where we used (D.70) in the last inequality. With η > 0 small enough, we finally obtain∫ +∞

T

Px0(τ̃Q > t)dt ≤ 1 . (D.75)
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Combining (D.72) and (D.75) in (D.68), we obtain:

Ex0 [τ̃Q 1HC ] ≤ e
E(Q | x0)−2ε

η + 1 , (D.76)

and, combining (D.66) and (D.76) above in (D.64), we get:

Ex0 [τ̃Q] ≤ Ex0

[
τQ
⌊η−1⌋

+ 1

]
+ e

E(Q | x0)−2ε
η + 1 . (D.77)

Plugging in (D.61) yields:

e
E(Q | x0)−ε

η ≤ Ex0

[
τQ
⌊η−1⌋

+ 1

]
+ e

E(Q | x0)−2ε
η + 1 , (D.78)

which yields the desired result by taking η > 0 small enough.
■

Let us state a variant of Theorem D.3 that will be useful later.

Lemma D.9. Fix i ∈ {1, . . . , Ncrit}. Under Assumption 10 and assuming that,

µR2

1152σ2
∞

> B∞ − E(Q | i) , (D.79)

for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit small enough, there is η0 > 0
such that for all 0 < η < η0, x ∈ Vi:

Ex[τQ] ≥ e
E(Q | i)−ε

η . (D.80)

The only difference with Theorem D.3 is that the result is uniform over the initial state
in Vi instead of being specific to a given initial point. Its proof is identical to the proof of
Theorem D.3: it simply uses Lemma D.5 to obtain the necessary variant of Lemma D.6 and
then follows the same steps. It is therefore omitted.

D.4. Basin-dependent convergence result. Let us recall the potential function from [4].

Definition 16 (Potential, [4, Def. 4]). Define, for x ∈ Rd

U∞(x) = 2α∞ ◦ f(x) (D.81)

where α∞ : Rd → R is a twice continuously differentiable primitive of 1/σ2
∞.

Lemma D.10. For any γ ∈ C([0, T ]), t ∈ [0, T ], we have

U∞(γ(t))− U∞(γ(0)) ≤ S0,T (γ) . (D.82)

Proof. We have that, with U∞ defined in Definition 16, by Young’s inequality,

U∞(γt)− U∞(γ0) = 2

∫ t

0

⟨γ̇s,∇f(γs)⟩
σ2
∞ ◦ f(γs)

ds

≤
∫ t

0

∥γ̇s∥2

2σ2
∞ ◦ f(γs)

ds+

∫ t

0

∥∇f(γs)∥2

2σ2
∞ ◦ f(γs)

ds+

∫ t

0

⟨γ̇s,∇f(γs)⟩
σ2
∞ ◦ f(γs)

ds

=

∫ t

0

∥γ̇s +∇f(γs)∥2

2σ2
∞ ◦ f(γs)

ds

≤
∫ t

0

L(γs, γ̇s) ds

≤ S0,T (γ) . (D.83)

where we used Lemma B.2 in the last inequality. ■

Lemma D.11. U∞ is coercive i.e., U∞(x)→ +∞ as ∥x∥ → +∞.
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Proof. By Assumption 8, σ2
∞(s) = o(s2) as s→∞ and therefore α a primitive of 1/σ2

∞ must
be coercive. By coercivity of f (Assumption 5), U∞ = 2α ◦ f is also coercive. ■

Lemma D.12. For any K ⊂ Rd compact, for any c > 0, the set

{γ(t) : t ∈ [0, T ], γ ∈ C([0, T ]), T ∈ N, γ0 ∈ K, St,T (γ) ≤ c} (D.84)

is included in the set {
x ∈ Rd : U∞(x) ≤ c+ sup

K
U∞

}
, (D.85)

which is compact.

Proof. Consider such a path γ ∈ C([0, T ]) with T ∈ N. By Lemma D.10, we have, for any
t ∈ [0, T ],

U∞(γ(t))− U∞(γ(0)) ≤ S0,T (γ) ≤ c . (D.86)
Hence the set from (D.84) is included in{

x ∈ Rd : U∞(x) ≤ c+ sup
K

U∞

}
. (D.87)

Now, by Lemma D.11, the set of (D.87) is compact, so that the set of (D.84) is bounded. ■

The following lemma is a slight refinement of [4, Lem. D.33]. For any C ⊂ crit(f)
connected component of the set of critical points, we define its basin of attraction as the set
of points from which the gradient flow converges to C:

Attr(C) :=

{
x ∈ Rd : lim

t→+∞
d(Θt(x), C) = 0

}
. (D.88)

Lemma D.13. For any C ⊂ crit(f) connected component which is minimizing, for δ > 0
small enough, for δ′ ∈ [0, δ) small enough,

B(Uδ′(C),Rd \ Uδ(C)) > 0 . (D.89)

Moreover, Uδ(C) can be assumed to be contained in Attr(C).

Proof. Since C is minimizing, there exists δ0 > 0 such that, for any x ∈ Uδ0(C)\C, f(x) > fC
where fC is the value of f on C. Moreover, by Lemma B.9, taking δ > 0 small enough also
ensures that Uδ0(C) ⊂ Attr(C).

Take δ ≤ δ0, U := Uδ(C) and ∆ := min
{
U∞(x)− α∞(fC) : x ∈ Rd, d(x,C) = δ/2

}
. By

the continuity of U∞ and the fact that α∞ is (strictly) increasing, we have that ∆ > 0.
Finally, take δ′ ∈ [0, δ/2) small enough so that, for any x ∈ Uδ′(C), f(x) ≤ α∞(fC)+∆/2.

To conclude the proof of this lemma, we now show that B(Uδ′(C),Rd \Uδ(C)) > 0. Consider
some T > 0 and γ ∈ C([0, T ],Rd) such that γ0 ∈ Uδ′(C), γT ∈ Rd \ Uδ(C). By continuity of
γ and d(·, C), there exists t ∈ [0, T ] such that d(γt, C) = δ/2. By Lemma D.10, we have that

∆ ≤ U∞(γt)− α∞(fC)

= U∞(γt)− U∞(γ0) + U∞(γ0)− α∞(fC)

≤ S0,T (γ) +
∆

2
. (D.90)

Since this is valid for any γ, we obtain that B(Uδ′(C),Rd \ Uδ(C)) ≥ ∆/2 > 0. ■

We now proceed to the key result of this section.

Lemma D.14. For any C ⊂ crit(f) connected component which is minimizing, for any
x ∈ Attr(C),

B(x,Rd \Attr(C)) > 0 . (D.91)
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Proof. First, let us invoke Lemma D.13 to obtain some 0 < δ′ < δ such that

B(Uδ′(C),Rd \ Uδ(C)) > 0 . (D.92)

and Uδ(C) ⊂ Attr(C).
Then, by Lemma D.12 and continuity of f and σ2

∞, the set{
σ2
∞(f(γ(t))) : t ∈ [0, T ], γ ∈ C([0, T ]), T ∈ N, γ0 = x, St,T (γ) ≤ 1

}
(D.93)

is bounded by some finite constant a ∈ (0,+∞).
With (Θt(x))t≥0 the gradient flow starting from x (Definition 4), by definition of Attr(C),

there exists S > 0 such that
ΘS(x) ∈ Uδ/2(C) . (D.94)

Now, consider some T ∈ N and γ ∈ C([0, T ]) such that γ0 = x, γT ∈ Rd \ Attr(C) and
ST (γ) ≤ 1.

We now define
gt :=

1

2
∥γt −Θt(x)∥2 . (D.95)

In particular, γ must be differentiable almost everywhere and so we have

ġt = ⟨γ̇t − Θ̇t(x), γt −Θt(x)⟩
= ⟨∇f(Θt(x))−∇f(γt), γt −Θt(x)⟩+ ⟨γ̇t +∇f(γt), γt −Θt(x)⟩

≤ β∥γt −Θt(x)∥2 +
1

2
∥γ̇t +∇f(γt)∥2 +

1

2
∥γt −Θt(x)∥2

=

(
β +

1

2

)
gt +

1

2
∥γ̇t +∇f(γt)∥2 , (D.96)

where in the last inequality we used the smoothness of f (Assumption 5) and Young’s
inequality.

Rewriting (D.96), we have
d

dt

(
e−(β+

1
2 )tgt

)
≤ e−(β+1)t 1

2
∥γ̇t +∇f(γt)∥2

≤ 1

2
∥γ̇t +∇f(γt)∥2 , (D.97)

so that integrating yields, for any t ∈ [0, T ],

gt ≤
e(β+

1
2 )t

2

∫ t

0

∥γ̇s +∇f(γs)∥2 ds (D.98)

where we used that Θ0(x) = x = γ0.
Furthermore, introducing a, we have

gt ≤ ae(β+
1
2 )t

∫ t

0

∥γ̇s +∇f(γs)∥2

σ2
∞(f(γs))

ds

≤ ae(β+
1
2 )tS0,t(γ) , (D.99)

by Lemma B.2.
Hence, we have that, for any t ∈ [0, T ],

∥γt −Θt(x)∥2 ≤ 2ae(β+
1
2 )tS0,t(γ) . (D.100)

Therefore, if we consider γ such that, in addition, ST (γ) ≤ e−(β+1
2
)S

2a × δ′2

4 , we have that,
for t = min(T, S),

∥γt −Θt(x)∥ ≤
δ′

2
. (D.101)
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We now distinguish two cases:
• If t = S i.e., S ≤ T , then (D.101) combined with (D.94) yields that γS ∈ Uδ′(C). But

γT must be in Rd \Attr(C) and so in Rd \ Uδ(C), so that one must have

AT (γ) ≥ B(Uδ′(C),Rd \Attr(C)) . (D.102)

• If t = T i.e., T ≤ S, we extend the path γ to φ ∈ C([0, S]) such that φt = γt for

t ∈ [0, T ] and φt = Θt(x) for t ∈ [T, S]. In particular, SS(φ) = ST (γ) ≤ e−(β+1
2
)T

2a × δ′2

4
so that the same computations leading to (D.101) can be applied to φ to yield that

∥φS −ΘS(x)∥ ≤
δ′

2
. (D.103)

This means that φS ∈ Uδ′(C) which is included in Attr(C). This is contradiction since
this means that γT is in Attr(C). Therefore, this case cannot happen.

Therefore, we have shown that, for any γ ∈ C([0, T ]) such that γ0 = x and γT ∈
Rd \Attr(C), it holds that

ST (γ) ≥ min

(
1,

e−(β+ 1
2 )T

2a
× δ′

2

4
, B
(
Uδ′(C),Rd \ Uδ(C)

))
, (D.104)

which is positive by (D.92). ■

We are now ready to prove the main result of this section.

Theorem D.4. Consider x0 ∈ Rd that belongs to Attr(Ci) for some i ∈ {1, . . . , Ncrit} such
that Ci is minimizing. Then, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit

small enough, there is η0 > 0, an event H and a positive constant A such that for all
0 < η < η0,

Px0(H) ≥ 1− e−A/η (D.105)
and,

e
E(Q | i)−ε

η ≤ Ex0

[
τηQ |H

]
≤ e

E(Q | i)+ε
η . (D.106)

Proof. First, Lemma D.14 ensures that B(x0,Rd \Attr(Ci)) > 0 so that, for any j ∈ V , j ̸= i,
it holds B(x0, Cj) > 0. Define

A := min
j∈V, j ̸=i

B(x0, Cj) > 0 . (D.107)

Let us now apply Lemma C.11 to obtain that, for any small enough neighborhoods Vi of
Ci, i = 1, . . . , Ncrit , there is some η0 > 0 such that for all j ∈ {1, . . . , Ncrit}, 0 < η < η0,

QV(x,Vj) ≤ e−
A
2η . (D.108)

Now define the event H as
H :=

{
xη
τη
1
∈ Vi

}
(D.109)

with the notation of Definition 9. (D.108) then ensures that

Px0(H) ≥ 1− e−
A
4η , (D.110)

provided that η is small enough so that e−
A
4η Ncrit ≤ 1. If i ∈ Q, the result is immediate. In

the following, we assume that i /∈ Q.
Let us now invoke Lemma D.5 to obtain that, at the potential cost of requiring smaller

V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit or of reducing η0, it holds that, for any 0 < η <
η0, x ∈ x0,

e
E(Q | i)−ε

η ≤ Ex

[
τηQ
]
≤ e

E(Q | i)+ε
η . (D.111)
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To conclude the proof, write, by the strong Markov property,

Ex0

[
τηQ |H

]
=

Ex0

[
1H τηQ

]
Px0(H)

=

Ex0

[
1H

(
1 + Exη

τ
η
1

[
τηQ
])]

Px0
(H)

≤ Ex0
[1H ]e

E(Q | i)+2ε
η

Px0(H)

= e
E(Q | i)+2ε

η , (D.112)

where we used (D.111) in the last inequality and taking η small enough so that e
ε
η ≥ 2. We

have thus shown the RHS of the inequality of the statement, and the LHS is obtained by
the same argument.

■

Similarly to how Theorem D.2 was obtained from Theorem D.1, we immediately obtain
the following corollary.

Theorem D.5. Consider x0 ∈ Rd that belongs to Attr(Ci) for some i ∈ {1, . . . , Ncrit} such
that Ci is minimizing. Then, for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit

small enough, there is η0 > 0, an event H and a positive constant A such that for all
0 < η < η0,

Px0(H) ≥ 1− e−A/η (D.113)
and,

Ex0
[τQ |H] ≤ e

E(Q | i)+ε
η . (D.114)

We now turn our attention to the lower-bound counterpart of Theorem D.5.

Theorem D.6. Consider x0 ∈ Rd that belongs to Attr(Ci) for some i ∈ {1, . . . , Ncrit} such
that Ci is minimizing. Under Assumption 10 and assuming that,

µR2

1152σ2
∞

> B∞ − E(Q | i) , (D.115)

for any ε > 0, for V1, . . . ,VNcrit neighborhoods of C1, . . . , CNcrit small enough, there is η0 > 0,
an event H and a positive constant A such that for all 0 < η < η0,

Px0
(H) ≥ 1− e−A/η (D.116)

and,

Ex0 [τQ] ≥ e
E(Q | i)−ε

η . (D.117)

Theorem D.6 is obtained by combining Lemma D.9 with Lemma D.14 in the same way as
Theorem D.4 was obtained from Lemma D.5.

D.5. Full transition costs.

Definition 17. We define, for i, j ∈ {1, . . . , Ncrit},

Ci,j := inf{AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 ∈ Ci, ξN−1 ∈ Cj}
= inf{ST (γ) : T ∈ N, γ ∈ Dr(T ), γ0 ∈ Ci, γT ∈ Cj} . (D.118)

With the same arguments as Lemma C.2, we can show the alternate expression for Ci,j .
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Lemma D.15. For any i, j ∈ {1, . . . , Ncrit}, it holds that

Ci,j = lim
δ→0

Cδ
i,j , (D.119)

where

Cδ
i,j := inf{AN (ξ) : N ≥ 1, ξ ∈ Dr(N), ξ0 ∈ Uδ(Ci), ξN−1 ∈ Uδ(Cj)}

= inf{ST (γ) : T ∈ N, γ ∈ Dr(T ), γ0 ∈ Uδ(Ci), γT ∈ Uδ(Cj)} . (D.120)

We can also relate Ci,j in terms Bi,j .
Lemma D.16. For any i ∈ {1, . . . ,K}, j ∈ {1, . . . , Ncrit}, it holds that

Ci,j ≤ Bi,j , (D.121)

and, if Ci,j < Bi,j, then there must exist l ∈ Q such that Bi,l ≤ Ci,j < Bi,j.
This lemma is a direct consequence of the definitions of Ci,j (Definition 17) and Bi,j

(Definition 11) and is therefore omitted.

Lemma D.17. For any i ∈ {1, . . . , Ncrit},

E(Q | i) ≤ min

 ∑
k→l∈g

Ck,l : g ∈ G(Q)

−min

 ∑
k→l∈g

Ck,l : g ∈ G(i ̸; Q)

 . (D.122)

Proof. By Definition 14, we have that

E(Q | i) = E(Q)− E(i ̸; Q) . (D.123)

Let us begin by lower-bounding the second term. By Lemma D.16, it holds that

E(i ̸; Q) = min

 ∑
k→l∈g

Bk,l : g ∈ G(i ̸; Q)


≥ min

 ∑
k→l∈g

Ck,l : g ∈ G(i ̸; Q)

 . (D.124)

Now, let us turn our attention to the first term: by Lemma D.16, we have that

E(Q) := min

 ∑
k→l∈g

Bk,l : g ∈ G(Q)


≥ min

 ∑
k→l∈g

Ck,l : g ∈ G(Q)

 . (D.125)

But, for any g ∈ G(Q) which reaches that minimum, all its edges k → l must be such
Bk,l = Ck,l by Lemma D.16 (otherwise we would replace it by an edge to Q with a lower
cost). Therefore, we must also have that

min

 ∑
k→l∈g

Ck,l : g ∈ G(Q)

 ≥ min

 ∑
k→l∈g

Bk,l : g ∈ G(Q)

 , (D.126)

which shows that

E(Q) = min

 ∑
k→l∈g

Ck,l : g ∈ G(Q)

 . (D.127)

This concludes the proof. ■
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Finally, let us restate a result from [4]that will be relevant in the following.

Lemma D.18 ([4, Lem. D.31]). If Ci is not asymptotically stable, then there exists j ∈ V such
that Bi,j = 0 and such that Cj is asymptotically stable.

D.6. Link to topological properties of the loss landscape. The goal of this section is to prove
the following result.

Proposition D.1. The following properties are equivalent:
(i) For all x ∈ Rd, E(Q |x) = 0.
(ii) For all i ∈ {1, . . . ,K}, E(Q | i) = 0.
(iii) For all i ∈ {1, . . . ,K}, Ki is not locally minimizing.

Proof. Items (i) and (ii) are equivalent by definition of E(Q |x) (Definition 15). We thus
focus on the equivalence of (ii) and (iii).

First, let us consider the case where there is some i ∈ {1, . . . ,K} such that Ki is locally
minimizing. By Lemma D.13, there exists δ > 0 small enough such that

B(Ki,Rd \ Uδ(Ki)) > 0 . (D.128)

As a consequence, for any j ̸= i, Bi,j > 0.
Consider g ∈ G(V) such that

E(Q) =
∑

k→l∈g

Bk,l . (D.129)

Consider the graph g′ obtained by removing the edge in graph that exits i. This edge must
have positive cost and therefore∑

k→l∈g

Bk,l >
∑

k→l∈g′

Bk,l ≥ E(i ̸; Q) . (D.130)

Combining (D.129) and (D.130), we obtain that E(Q | i) > 0.
Let us now turn to the case where there is no i ∈ {1, . . . ,K} such that Ki is locally

minimizing. Take any i ∈ {1, . . . ,K}. We bound E(Q | i) with Lemma D.17:

E(Q | i) ≤ min

 ∑
k→l∈g

Ck,l : g ∈ G(Q)

−min

 ∑
k→l∈g

Ck,l : g ∈ G(i ̸; Q)

 . (D.131)

Take any g ∈ G(i ̸; Q). By Lemma D.18, there exists j ∈ V such that Bi,j = 0 and Kj

is asymptotically stable. By assumption, j must thus belong to Q. Consider g′ ∈ G(Q)
obtained by adding the edge i→ j to g. (D.131) then yields that E(Q | i) = 0. ■

Appendix E. Potential-based Bounds

E.1. Noise assumptions. Assumption 11 introduces key requirements for the noise behavior
through bounds on H̄ and L̄ around the gradient ∇f(x). Intuitively, the bound on H̄ controls
how large the noise can be (upper bound), while the bound on L̄ ensures the noise maintains
sufficient variance in all directions (lower bound) around the gradient. We then present two
ways to satisfy these requirements:
Gaussian noise. The first approach, detailed in Lemma E.2, considers the case when the
noise follows a truncated Gaussian distribution. This is a standard Gaussian with variance
σ2(f(x)), but restricted to stay within a ball of radius R(f(x)).
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Support and covariance conditions. Lemma E.1 provides a more general approach with two
main requirements:
• A support condition ensuring the noise can be large enough in any direction around
∇f(x) with some positive probability

• A lower bound on the covariance matrix of the noise
This second approach is more flexible as it allows for non-Gaussian noise distributions. A

key example is discrete noise distributions, where u(x, ω) takes values in a finite set. The
support condition then requires that some points in the support are sufficiently far from
∇f(x) in every direction.

Assumption 11. For some X ⊂ Rd, there exist σ2, σ2 : R→ (0,+∞) continuous functions
such that, for all x ∈ X, it holds that

∀p ∈ Rd s.t. ∥p∥ ≤ 2∥∇f(x)∥
σ2(f(x))

, H̄(x, p) ≤ σ2(f(x))∥p∥2

2

∀v ∈ Rd s.t. ∥v −∇f(x)∥ ≤ ∥∇f(x)∥ , L̄(x, v) ≤ ∥v∥2

2σ2(f(x))
. (E.1)

Note that, in general, we will have σ2 ≥ σ2.

Lemma E.1. Assume that, for some X ⊂ Rd relatively compact,
• there exists a > 0 such that,

b := inf
{
P(⟨u(x, ω)−∇f(x), q⟩ ≥ a+ ∥∇f(x)∥) : x ∈ X, q ∈ Sd−1

}
> 0 , (E.2)

• there exists ζ2 : R→ (0,+∞) continuous function such that, for all x ∈ X, it holds that

cov u(x, ω) ≽ ζ2(f(x))I , (E.3)

Then, for any x ∈ X, v ∈ Rd such that ∥v −∇f(x)∥ ≤ ∥∇f(x)∥, it holds that

L̄(x, v) ≤ max

(
1,

log b−1

ac

)
∥v∥2

ζ2(f(x))
, (E.4)

where c > 0 is a constant small enough such that

∀x ∈ X, p ∈ B(0, c),
∥∥Hessp H̄(x, p)− cov u(x, ω)

∥∥ ≤ 1

2
ζ2(f(x)) , (E.5)

for the matrix norm associated with the Euclidean norm.

Note that c always exists by the relative compactness of X and the fact that

Hessp H̄(x, 0) = cov u(x, ω) . (E.6)

Proof. The first part of the proof consists in showing that, for x ∈ X, p ∈ Rd, it holds that

H̄(x, p) ≤ ζ2(f(x))min(c, ∥p∥)∥p∥
4

. (E.7)

Let us first consider the case where ∥p∥ ≤ c. Since both H̄(x, 0) = 0 and ∇pH̄(x, 0) =
E[u(x, ω)] = 0, we have that

H̄(x, p) = 1

2

∫ 1

0

〈
p,Hessp H̄(x, tp)p

〉
dt

≥ 1

2

(∫ 1

0

⟨p, cov u(x, ω)p⟩dt− 1

2
ζ2(f(x))∥p∥2

)
≥ ζ2(f(x))∥p∥2

4
, (E.8)



50 W. AZIZIAN, F. IUTZELER, J. MALICK, AND P. MERTIKOPOULOS

where we successively used Cauchy-Schwarz inequality, (E.6) and (E.4). (E.9) readily yields
(E.8) when ∥p∥ ≤ c.

Let us now consider the case where ∥p∥ > c. By concavity of the function s 7→ sc/∥p∥s on
R+ and Jensen’s inequality, we have that

H̄(x, p) ≥ ∥p∥
c
H̄
(
x, c

p

∥p∥

)
≥ ∥p∥

c

ζ2(f(x))∥c p
∥p∥∥

2

4
=

ζ2(f(x))c∥p∥
4

, (E.9)

where we used (E.9) in the last inequality. This concludes the proof of (E.8).
The second step of this proof now consists in showing that, for x ∈ X, v ∈ Rd such that

∥v −∇f(x)∥ ≤ ∥∇f(x)∥, it holds that

argmax
p∈Rd

{
⟨p, v⟩ − H̄(x, p)

}
= argmin

p∈Rd

{
H̄(x, p)− ⟨p, v⟩

}
⊂ B

(
0,

log b−1

a

)
. (E.10)

For x ∈ X, p ∈ Rd, we can lower-bound H̄(x, p) using (E.3):

H̄(x, p) = logE[exp(⟨p, u(x, ω)⟩)]
= ⟨p,∇f(x)⟩+ logE[exp(⟨p, u(x, ω)−∇f(x)⟩)]

≥ ⟨p,∇f(x)⟩+ logE
[
e∥p∥(a+∥∇f(x)∥) 1

{〈
u(x, ω)−∇f(x), p

∥p∥

〉
≥ a+ ∥∇f(x)∥

}]
≥ ⟨p,∇f(x)⟩+ ∥p∥(a+ ∥∇f(x)∥) + log b . (E.11)

As a consequence, for v ∈ Rd such that ∥v −∇f(x)∥ ≤ ∥∇f(x)∥, we obtain that

H̄(x, p)− ⟨p, v⟩ ≥ ⟨p,∇f(x)− v⟩+ ∥p∥(a+ ∥∇f(x)∥) + log b

≥ ∥p∥a+ log b , (E.12)

where we used Cauchy-Schwarz inequality and the condition on v.
In particular, (E.13) implies that p 7→ H̄(x, p) − ⟨p, v⟩ is coercive on Rd and therefore

argminp∈Rd

{
H̄(x, p)− ⟨p, v⟩

}
is well-defined.

Remarking that H̄(x, 0)−⟨0, v⟩ = 0, we can now conclude that argminp∈Rd

{
H̄(x, p)− ⟨p, v⟩

}
must be included in {

p ∈ Rd : ∥p∥a+ log b ≤ 0
}
= B

(
0,

log b−1

a

)
, (E.13)

which completes the proof of (E.11).
To conclude the proof of this lemma, we now use (E.11) to obtain that, for x ∈ X, v ∈ Rd

such that ∥v −∇f(x)∥ ≤ ∥∇f(x)∥,

L̄(x, v) = sup
p∈Rd

{
⟨p, v⟩ − H̄(x, p)

}
= sup

{
⟨p, v⟩ − H̄(x, p) : p ∈ B

(
0,

log b−1

a

)}
≤ sup

{
⟨p, v⟩ − ζ2(f(x))min(c, ∥p∥)∥p∥

4
: p ∈ B

(
0,

log b−1

a

)}
, (E.14)

where we used (E.8) in the last inequality.
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Now, we note that, for any p ∈ B
(
0, log b−1

a

)
, it holds that

ζ2(f(x))min(c, ∥p∥)∥p∥
4

≥

{
ζ2(f(x))∥p∥2

4 if ∥p∥ ≤ c
a

log b−1

ζ2(f(x))c∥p∥2

4 if ∥p∥ > c

≥ min

(
1,

ac

log b−1

)
ζ2(f(x))∥p∥2

4
. (E.15)

Plugging (E.16) into (E.15), we obtain that

L̄(x, v) ≤ sup

{
⟨p, v⟩ −min

(
1,

ac

log b−1

)
ζ2(f(x))∥p∥2

4
: p ∈ B

(
0,

log b−1

a

)}
≤ sup

{
⟨p, v⟩ −min

(
1,

ac

log b−1

)
ζ2(f(x))∥p∥2

4
: p ∈ Rd

}
= max

(
1,

log b−1

ac

)
∥v∥2

ζ2(f(x))
, (E.16)

which concludes the proof of this lemma. ■

The following lemma is an immediate consequence of Lemma F.1.

Lemma E.2. Consider ε > 0. Assume that u(x, ω) follows a Gaussian distribution N (0, σ2(f(x))I)
conditioned on being in B(0, R(f(x)) for all x ∈ Rd and some continuous function σ2, R :

R→ (0,+∞). Assume that 8∥∇f(x)∥ ≤ R(f(x)) for all x ∈ Rd and that infx∈Rd
R(f(x))
σ(f(x)) ≥

O(log 1/ε). Then Assumption 11 holds with X = Rd, σ2(f(x)) = (1 + ε)σ2(f(x)) and
σ2(f(x)) = (1− ε)σ2(f(x)) for all x ∈ Rd.

E.2. Potentials and path reversal. Let us now define the potentials associated to the variance
functions σ2 and σ2 introduced in Assumption 11.

Definition 18. Given σ2, σ2 : R → (0,+∞) continuous functions, we define the potentials
U,U : R→ R as

U(x) := 2α(f(x)) where α : R→ R is a primitive of 1/σ2 (E.17)

U(x) := 2α(f(x)) where α : R→ R is a primitive of 1/σ2 . (E.18)

We begin by adapting [4, Lem .E.1] to the current setting.

Lemma E.3. Consider γ ∈ C([0, T ]). Then, there exists γ̃ ∈ C([0, S]) a reparametrization of
γ such that, for any t ∈ [0, S],

∥ ˙̃γs∥ = ∥∇f(γ̃s)∥ . (E.19)
and, under Assumption 11,

ST (γ) ≥
∫ S

0

∥ ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
ds . (E.20)

Proof. By the proof Freidlin & Wentzell [20, Chap. 4, Lem. 3.1], there exists t(s) change of
time such that, with γ̃s = γt(s), ∥ ˙̃γs∥ = ∥∇f(γ̃s)∥.

We have that

ST (γ) =
∫ t−1(T )

0

ṫ(s)L(γ̃s, (ṫ(s))−1 ˙̃γs) ds , (E.21)

so it suffices to bound L(γ̃s, ˙̃γs) from below: by definition, we have

L(γ̃s, (ṫ(s))−1 ˙̃γs) ≥ sup

{
⟨p, (ṫ(s))−1 ˙̃γs +∇f(γ̃s)⟩ − H̄(γ̃s, p) : ∥p∥ ≤

2∥∇f(γ̃s)∥
σ2(f(γ̃s))

}
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≥ sup

{
⟨p, (ṫ(s))−1 ˙̃γs +∇f(γ̃s)⟩ −

σ2(f(γ̃s))

2
∥p∥2 : ∥p∥ ≤ 2∥∇f(γ̃s)∥

σ2(f(γ̃s))

}
,

(E.22)

by Assumption 11. Applying Lemma F.2 with v ← (ṫ(s))−1 ˙̃γt, w ← ∇f(γ̃s) and λ← (ṫ(s))−1,
now exactly yields, for almost all s,

L(γ̃s, (ṫ(s))−1 ˙̃γs) ≥ (ṫ(s))−1 sup

{
⟨p, ˙̃γs +∇f(γ̃s)⟩ −

σ2(f(γ̃s))

2
∥p∥2 : ∥p∥ ≤ 2∥∇f(γ̃s)∥

σ2(f(γ̃s))

}
= (ṫ(s))−1 ∥ ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
, (E.23)

since p 7→ ⟨p, ˙̃γs + ∇f(γ̃s)⟩ −
σ2(f(γ̃s))

2 ∥p∥2 reaches it maximum at p∗ =
˙̃γs+∇f(γ̃s)
σ2(f(γ̃s))

whose

norm satisfies ∥p∗∥ ≤ 2∥∇f(γ̃s)∥
σ2(f(γ̃s))

. ■

An important consequence of Assumption 11 is that the action cost of going from x to x′

can be related to the action cost of going from x′ to x. This is formalized in Lemma E.4.

Lemma E.4. For any T > 0, x, x′ ∈ Rd, γ ∈ C([0, T ]) such that γ0 = x and γT = x′, under
Assumption 11, if γ is contained in X, it holds that,

ST (γ) ≥ inf
x∈X

σ2(f(x)

σ2(f(x))
×
(
B(x, x′) + U(x′)− U(x)

)
, (E.24)

Proof. Let us first invoke Lemma E.3: there exists γ̃ ∈ C([0, S]) a reparametrization of γ
such that, for any t ∈ [0, S],

∥ ˙̃γs∥ = ∥∇f(γ̃s)∥ . (E.25)
and,

ST (γ) ≥
∫ S

0

∥ ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
ds

≥ inf
x∈X

σ2(f(x)

σ2(f(x))
×

(∫ S

0

∥ ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
ds

)
. (E.26)

It now suffices to lower-bound the integral on the RHS of (E.27). We have∫ S

0

∥ ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
ds =

∫ S

0

∥− ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
ds+

∫ S

0

2⟨ ˙̃γs,∇f(γ̃s)⟩
σ2(f(γ̃s))

ds . (E.27)

By definition of U (Definition 18) the second integral is equal to∫ S

0

2⟨ ˙̃γs,∇f(γ̃s)⟩
σ2(f(γ̃s))

ds =

∫ S

0

⟨ ˙̃γs,∇U(γ̃s)⟩ ds

= U(x′)− U(x) . (E.28)

For the first integral in (E.28), define the path (φs)s∈[0,S] by φs = γ̃S−s. We have that∫ S

0

∥− ˙̃γs +∇f(γ̃s)∥2

2σ2(f(γ̃s))
ds =

∫ S

0

∥φ̇s +∇f(φs)∥2

2σ2f(φs))
ds

≥
∫ S

0

L̄(φs, φ̇s +∇f(φs)) ds

= SS(φ)
≥ B(x, x′) , (E.29)
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where we used Assumption 11 in the first inequality with v ← φ̇s +∇f(φs) whose norm
satisfies the condition of Assumption 11 by (E.26). Plugging (E.30) and (E.30) into (E.28)
and then into (E.27) yields the desired result. ■

E.3. Graph representation. Let us reuse the notation of Appendix D. In Appendix D, we
consider graphs over the set of vertices V = {1, . . . , Ncrit} and the set of edges (V \ Q)× V
where Q = {1, . . . , Ntarg}.

Let us consider a set of particular edges Ẽ ⊂ (V \ Q)× V such that

Ẽ := {i→ j ∈ (V \ Q)× V : i ̸= j, cl Attr(Ci) ∩ cl Attr(Cj) ̸= ∅} . (E.30)

Note that by Lemma B.8, we have that Attr(Ci), i ∈ {1, . . . , Ncrit} is a partition of Rd.
Therefore, (V, Ẽ) still satisfies that, from every i ∈ V there is a path that leads to Q.

Lemma E.5. For any i→ j ∈ Ẽ, let us define

xi,j ∈ argmin
x∈cl Attr(Ci)∩cl Attr(Cj)

f(x) . (E.31)

Then, under Assumption 11, if X is large enough so that it contains the bounded set{
x ∈ Rd : f(x) ≤ max

i∈V\Q,j∈V,i̸=j
f(xi,j) + 1

}
, (E.32)

for any i→ j ∈ Ẽ, it holds that

Ci,j ≤ U(xi,j)− U(Ci) . (E.33)

Proof. Note that the coercivity of f (Assumption 5) ensure that xi,j is well-defined and the
set of (E.33) is bounded.

Take i ∈ V \ Q, j ∈ V, i ̸= j. We first consider the case where ∇f(xi,j) ̸= 0. Fix ε > 0.
By Lemma D.15, we have that there exists δ0 > 0 such that, for any δ ∈ (0, δ0),

Ci,j ≤ Cδ
i,j + ε . (E.34)

At the potential cost of reducing δ0 > 0, assume that, for any x ∈ B(xi,j , δ0/2), it holds that

a ≤ ∥∇f(x)∥ ≤ b and σ2
∞(f(x)) ≥ c , (E.35)

for some 0 < a ≤ b and c > 0. Moreover, by continuity of f and U , also assume that δ0 is
small enough so that, for any x ∈ B(xi,j , δ0/2), it holds that

U(x) ≤ U(xi,j) + ε (E.36)

and,
f(x) ≤ f(xi,j) + 1 . (E.37)

Finally, also assume that δ0 is small enough such that, for any x ∈ Uδ(Ci), it holds that

U(x) ≥ U(Ci)− ε . (E.38)

Fix δ ∈ (0, δ0) such that δ ≤ ε. Now, since xi,j ∈ clAttr(Ci) ∩ clAttr(Cj), there exist
xi ∈ Attr(Ci) ∩ B(xi,j , δ/2) and xj ∈ Attr(Cj) ∩ B(xi,j , δ/2). By construction, the gradient
flows started at xi and xj converge respectively to Ci and Cj . Hence, there exists T ≥ 1
integer such that ΘT−α/2(xi) ∈ Uδ(Ci) and ΘT−α/2(xj) ∈ Uδ(Cj) for all α := δ/a.

Let us now estimates the action costs of the paths (ΘT−α/2−t(xi))t∈[0,T−α/2] and (Θt(xj))t∈[0,T−α/2].
By (E.38) and definition of the flow, the whole path (ΘT−α/2−t(xi))t∈[0,T−α/2] is contained
in (E.33) and therefore in X. Therefore, by Assumption 11, we have that

ST−α/2(ΘT−α/2−·(xi)) =

∫ T−α/2

0

L(ΘT−α/2−t(xi),∇f(ΘT−α/2−t(xi))) dt
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=

∫ T−α/2

0

L̄(ΘT−α/2−t(xi), 2∇f(ΘT−α/2−t(xi))) dt

≤
∫ T−α/2

0

4∥∇f(ΘT−α/2−t(xi))∥2

2σ2(f(ΘT−α/2−t(xi)))
dt , (E.39)

where we used Assumption 11 in the last inequality. Rewriting this integral we obtain,

ST−α/2(ΘT−α/2−·(xi)) ≤
∫ T−α/2

0

2⟨∇f(ΘT−α/2−t(xi)), Θ̇T−α/2−t(xi)⟩
σ2(f(ΘT−α/2−t(xi)))

dt

=

∫ T−α/2

0

2⟨∇U(ΘT−α/2−t(xi)), Θ̇T−α/2−t(xi)⟩ dt

= U(xi)− U(ΘT−α/2(xi))

≤ U(xi,j)− U(Ci) + 2ε , (E.40)

by (E.37) and (E.39).
For the path (Θt(xj))t∈[0,T−α/2], since it is a trajectory of the gradient flow, we have that

ST−α/2(Θ·(xj)) = 0 . (E.41)

Finally, let us consider the path (γt)t∈[0,α] defined by γt = xi + α−1t(xj − xi). We have
γ̇t = α−1(xj − xi) so that ∥γ̇t∥ ≤ δ/α = a ≤ ∥∇f(γt)∥ by (E.36). Moreover, (E.38) ensures
that γt ∈ X for all t ∈ [0, α].

Therefore, by Assumption 11, we have that

Sα(γ) =
∫ α

0

L(γt, γ̇t) dt

=

∫ α

0

L̄(γt,∇f(γt)γ̇t) dt

≤
∫ α

0

∥γ̇t +∇f(γt)∥2

2σ2(f(γt))
dt

≤ α
(a+ b)2

2c

=
δ(a+ b)2

2ac

≤ ε(a+ b)2

2ac
. (E.42)

Putting the three paths (ΘT−α/2−·(xi))t∈[0,T−α/2], (γt)t∈[0,α] and (Θt(xj))t∈[0,T−α/2]

together, we obtain a path that goes from Uδ(Ci) to Uδ(Cj) in integer time 2T and whose
action cost is upper-bounded by

U(xi,j)− U(Ci) + 2ε+
ε(a+ b)2

2ac
. (E.43)

Combined with (E.35), this yields

Ci,j ≤ U(xi,j)− U(Ci) + 3ε+
ε(a+ b)2

2ac
, (E.44)

which yields the result.
Let us now briefly discuss the case where ∇f(xi,j) = 0. In this case, xi,j belongs to some

Cl, l ∈ V . To adapt the proof above, it suffices to require that xi and xj are close enough to
xi,j so that they belong to Wε(Cl) (give by Lemma B.6) and to use Lemma B.7 to build a
path from xi to xj with cost at most ε. ■
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We provide an iterated version of Lemma E.5 that will be convenient in the following.

Corollary E.1. For any i ∈ V \ Q, j ∈ V, define

Ci,j := min

{
N−1∑
n=0

U(xjn,jn+1
)− U(Cjn) : j0 = i, jN = j, jn → jn+1 ∈ Ẽ

}
. (E.45)

Then, under the same assumptions as Lemma E.5, it holds that

Ci,j ≤ Ci,j . (E.46)

Let us now specify how big enough we will need the set X from Assumption 11 to be.

Lemma E.6. Define
C∞ := max

i,j∈V\Q
Ci,j + 1 < +∞ . (E.47)

Then, if X is large enough so that it contains the bounded set{
x ∈ Rd : U∞(x) ≤ sup

i∈V\Q,x∈Ci

U(x) + C∞

}
, (E.48)

then, for any i, j ∈ V \ Q, it holds that Ci,j is equal to

inf{ST (γ) : γ ∈ C([0, T ]), T ∈ N, γ0 ∈ Ci, γT ∈ Cj , {γ(t) : t ∈ [0, T ]} ⊂ X} . (E.49)

Proof. Note that C∞ is finite by Assumption 9. The rest of the result is then a direct
consequence of Lemma D.12. ■

We can now combine Lemma E.4 with Lemma E.6 to obtain the following result.

Lemma E.7. Under Assumption 11, if X is large enough so that it satisfies the requirement
of Lemma E.6, then for any i, j ∈ V \ Q, i ̸= j, it holds that

Cj,i − Ci,j ≤ ∆Cj,i + (1−∆)(U i − U j) , (E.50)

where ∆ ∈ [0, 1] satisfies

∆ ≥ sup
x∈X

1− σ2(f(x))

σ2(f(x))
. (E.51)

Proof. Lemma E.6 allows us to consider only paths that are contained in X to compute Ci,j .
Taking the infimum over such paths in Lemma E.4 yields:

Ci,j ≥ (1−∆)(Cj,i + (U j − U i)) . (E.52)

Rearranging the terms, we obtain the result. ■

To simplify the notation for the following lemma, let us define, for i ∈ V \Q, j ∈ V , i ≠ j,

U i,j := U(xi,j) and U j := U(Cj) . (E.53)

Lemma E.8. Assume that Assumption 11 holds with X satisfying the assumptions of Lem-
mas E.5 and E.6.

For any i0 ∈ V \ Q, g ∈ G(i0 ↛ Q), there exists i ∈ V \ Q such that there is a path from
i0 to i in g and there is g′ ∈ G such that the cost difference between g and g′∑

k→l∈g′

Ck,l −
∑

k→l∈g

Ck,l (E.54)

is upper-bounded by

min

{
max

l=0,...,p−1
max

(
U jl,jl+1

− U jl , U jl,jl+1
− U i

)
+ 2∆(Ncrit

2 + 1) sup
X

U :
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j0 = i, jp ∈ Q, jl ∈ V \ Q, jl → jl+1 ∈ Ẽ , l = 0, . . . , p− 1

}
, (E.55)

where ∆ ∈ [0, 1] satisfies

∆ ≥ sup
x∈X

1− σ2(f(x))

σ2(f(x))
. (E.56)

Proof. By definition of G(i0 ↛ Q) (Appendix D.1), there exists i ∈ V \ Q, j ∈ V, i ≠ j such
that if we were to add the edge i→ j to g, it would be a Q-graph. In other words, i→ j is
not in g and there are paths from i0 → i and j → Q in g.

Now, take consider a path that goes from i to j with only edges from Ẽ : j0 = i, jp = j

and jl ∈ V \ Q, jl → jl+1 ∈ Ẽ , l = 0, . . . , p− 1.
Define k ≥ 0 to be the smallest integer such that there is a path from jk to Q in g. Such

a k exists since there is a path from j to Q in g, and k ≥ 1 since there is no path from i
to Q in g. In particular, there is no path from jk−1 to Q in g. From the definition of the
graphs G(i0 ↛ Q), this implies either there is a path from i to jk−1 in g or a path from jk−1

to i in g.
• If there is a path from i to jk−1 in g, then we consider the graph g′ ∈ G(Q) obtained

by adding the edge jk−1 → jk to g. Since jk−1 → jk is in Ẽ , by Lemma E.5, the cost of
adding that edge is bounded as

Cjk−1,jk ≤ U jk−1,jk − U jk−1
, (E.57)

in which case (E.57) is immediately satisfied.
• If there is a path from jk−1 to i in g, then we consider the graph g′ ∈ G(Q) obtained by

reversing the path from jk−1 to i in g and adding the edge jk−1 → jk. Let us denote
by m0 = jk−1, mq = i and ml ∈ V \ Q, ml → ml+1 ∈ g, l = 0, . . . , q − 1 the path from
jk−1 to i. By Lemmas E.5 and E.7 the cost of reversing that path and adding the edge
jk−1 → jk is upper-bounded by

q−1∑
l=0

(
Cml+1,ml

−
p−1∑
l=0

Cml,ml+1

)
+ Cjk−1,jk ≤

q−1∑
l=0

(
∆Cml+1,ml

+ (1−∆)(Uml
− Uml+1)

)
+ U jk−1,jk − U jk−1

=

q−1∑
l=0

∆Cml+1,ml
+ (1−∆)(U jk−1

− U i) + U jk−1,jk − U jk−1
.

(E.58)

Now, Corollary E.1 ensures that the sum
∑q−1

l=0 ∆Cml+1,ml
is upper-bounded by

2Ncrit
2∆supX U so we obtain that the RHS of (E.61) is upper-bounded by

2Ncrit
2∆sup

X
U + U jk−1,jk − U i + 2∆sup

X
U , (E.59)

which concludes the proof.
■

To obtain the main result, we will require the following lemma.

Lemma E.9. Under Assumption 11, if X is large enough so that it satisfies the assumptions
of Lemma E.6, then for any i, j ∈ V \Q, i ≠ j, it holds that For any i ∈ V \Q, j ∈ V, i ≠ j,
it holds that

Ci,j ≥ Ci,j := inf

{
sup
s<t

(U(γt)− U(γs)) : γ ∈ C([0, T ]), T ∈ N, γ0 ∈ Ci, γT ∈ Cj
}
. (E.60)
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Proof. This lemma follows the same proof as Lemma D.10 with the additional use of
Lemma E.6 to be able to leverage Assumption 11. ■

We are now finally ready to prove the main result.

Theorem E.1. Assume that Assumption 11 holds with X satisfying the assumptions of
Lemmas E.5 and E.6.

For any i0 ∈ V \ Q, define

r := min

 ∑
k→l∈g

Ck,l : g ∈ G(i0 ̸; Q)

 . (E.61)

there exists i ∈ V \ Q such that Ci0,i
≤ r such that E(Q | i0) is upper-bounded by

min

{
max

l=0,...,p−1
max

(
U jl,jl+1

− U jl , U jl,jl+1
− U i

)
+ 2∆(Ncrit

2 + 1) sup
X

U :

j0 = i, jp ∈ Q, jl ∈ V \ Q, jl → jl+1 ∈ Ẽ , l = 0, . . . , p− 1

}
, (E.62)

where ∆ ∈ [0, 1] satisfies

∆ ≥ sup
x∈X

1− σ2(f(x))

σ2(f(x))
. (E.63)

Proof. By Lemma D.16, E(Q | i0) is upper-bounded as

E(Q | i0) ≤ min

 ∑
k→l∈g

Ck,l : g ∈ G(Q)

−min

 ∑
k→l∈g

Ck,l : g ∈ G(i0 ̸; Q)

 . (E.64)

By Corollary E.1, we have that

min

 ∑
k→l∈g

Ck,l : g ∈ G(i0 ̸; Q)

 ≤ min

 ∑
k→l∈g

Ck,l : g ∈ G(i0 ̸; Q)

 = r . (E.65)

Hence, take g ∈ argmin
{∑

k→l∈g Ck,l : g ∈ G(Q↛ Q)
}

and it must satisfy∑
k→l∈g

Ck,l ≤ r . (E.66)

Apply Lemma E.8 to obtain that there exists i ∈ V \Q such that there is a path from i0 to i
in g and there is g′ ∈ G such that the cost difference between g and g′ is bounded by (E.66).
Combined with (E.68), this yields that E(Q | i0) is upper-bounded by (E.66).

Finally, denote by j0 = i0, jp = i and jl ∈ V \ Q, jl → jl+1 ∈ g, l = 0, . . . , p− 1 the path
from i0 to i in g. (E.70) ensures that

r ≥
p−1∑
l=0

Cjl,jl+1
≥ Ci0,i

, (E.67)

which, combined with Lemma E.9, implies that Ci0,i
≤ r. ■
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Appendix F. Auxiliary results

F.1. Truncated Gaussian distribution. Let us restate two technical lemmas from [4]on which
we rely. The first one provides bounds on the Hamiltonian and Lagrangian of a truncated
Gaussian distribution.

Lemma F.1 ([4, Lem. F.2]). Consider X ∼ N (0, σ2I) a multivariate Gaussian distribution
with σ2 > 0. For R > 0, define the truncated Gaussian random variable (r.v.) XR by
conditioning X to the ball B(0, R). Define

H̄(p) := logE
[
e⟨p,XR⟩

]
(F.1)

L̄(p) := H̄∗(p) , (F.2)

and

E(σ2, R) := e−
R2

16σ2 2d+3(d+ 1) (F.3)
and assume that R > 0 satisfies

R ≥ 4σ
√

(d+ 3) log 2 + log(d+ 1) . (F.4)

Then, for any p ∈ Rd such that ∥p∥ ≤ R
2σ2 , v ∈ Rd such that ∥v∥ ≤ R

4 , it holds that(
1− E(σ2, R)

)σ2∥p∥2

2
≤H̄(p) ≤

(
1 + E(σ2, R)

)σ2∥p∥2

2
(F.5)(

1− 2E(σ2, R)
)∥v∥2
2σ2

≤L̄(v) ≤
(
1 + 2E(σ2, R)

)∥v∥2
2σ2

. (F.6)

We will also require the following technical lemma.

Lemma F.2 ([4, Lem. F.3]). Consider v, w ∈ Rd such that 0 < ∥w∥ ≤ µR
2 for some R,µ > 0.

Define,
f(u) = sup

p∈Rd:∥p∥≤R

⟨p, u⟩ − µ

2
∥p∥2 , (F.7)

then, with λ = ∥v∥
∥w∥ ,

λf
( v
λ
+ w

)
≤ f(v + w) . (F.8)
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