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Abstract. A wide array of modern machine learning applications – from adversarial
models to multi-agent reinforcement learning – can be formulated as non-cooperative
games whose Nash equilibria represent the system’s desired operational states. De-
spite having a highly non-convex loss landscape, many cases of interest possess a latent
convex structure that could potentially be leveraged to yield convergence to an equilib-
rium. Driven by this observation, our paper proposes a flexible first-order method that
successfully exploits such “hidden structures” and achieves convergence under minimal
assumptions for the transformation connecting the players’ control variables to the game’s
latent, convex-structured layer. The proposed method – which we call preconditioned
hidden gradient descent (PHGD) – hinges on a judiciously chosen gradient precondition-
ing scheme related to natural gradient methods. Importantly, we make no separability
assumptions for the game’s hidden structure, and we provide explicit convergence rate
guarantees for both deterministic and stochastic environments.

1. Introduction

Many powerful AI architectures are based on the idea of combining conceptually straight-
forward settings coming from game theory with the expressive power of neural nets. Some
prominent examples of this type include generative adversarial networks (GANs) [14], robust
reinforcement learning [37], adversarial training [26], multi-agent reinforcement learning in
games [36, 40, 42], and even multi-player games that include free-form natural-language com-
munication [4]. Intuitively, in all these cases, the game-theoretic abstraction serves to provide
a palpable, easy-to-understand target, i.e., an equilibrium solution with strong axiomatic
justification. However, from a complexity-theoretic standpoint, such targets are excessively
ambitious, requiring huge amounts of data to express and compute, even approximately.
Because of this, the agents’ policies must be encoded via a universal function approximator
(such as a neural net) and training this architecture boils down to iteratively updating these
parameters until the process – hopefully! – converges to the target equilibrium.

Unfortunately, despite the ubiquitousness of these settings, the design of algorithms with
provable convergence guarantees is still relatively lacking. This deficit is not surprising if
one considers that even the – comparatively much simpler – problem of equilibrium learning
in finite games is hindered by numerous computational hardness [9, 10] as well as dynamic
impossibility results [15, 16, 19, 24, 30, 31]. In this regard, our best hope for designing
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provably convergent algorithms is to focus on specific classes of games with some useful
structure to exploit.

One of the most well-established frameworks of this type is the class of monotone games
whose study goes back at least to Rosen [38]. As special cases, this setting includes single-
agent convex minimization problems, two-player convex-concave min-max games, diagonally
convex N -player games, etc. Owing to this connection, there has been a proliferation of
strong positive results at the interface of game theory and optimization, see e.g., [28, 39] and
references therein. In our case however, the agents do not play this monotone game directly,
but can only access it indirectly via an encoding layer of control variables – like the weight
parameters of a neural net that outputs a feasible strategy profile for the game in question.
In this sense, from a machine learning perspective, the strategies of the game are latent
variables, so we can think of each player as being equipped with a smooth mapping from a
high-dimensional space of control variables to the strategy space of the game. Importantly,
in contrast to the control variables, the latent variables are not directly accessible to the
players themselves and should only be viewed as auxiliary variables – to all extents and
purposes, the goal remains to find an operationally desirable control layer configuration.
In this sense, the convex structure of the game becomes “hidden” behind the control layer,
which entangles multiple input/control variables into nonlinear manifolds of latent variables.

As a result, the convex structure of the underlying game is effectively destroyed, resulting
in highly non-convex end-to-end interactions. This raises the following central challenge:

Can we design provably convergent algorithms for non-convex games with a hidden structure
in the presence of general couplings between control and latent variables?

Prior work in the area has shown that this is a promising and, at the same time, highly
challenging question. In [43], the setting of hidden bilinear games was introduced and a
number of negative results were presented, to the effect that gradient-descent-ascent can
exhibit a variety of non-convergent behaviors, even when the game admits a hidden bilinear
structure. Subsequently, [13] provided an approximate minimax theorem for a class of
two-agent games where the players pick neural networks, but did not provide any convergent
training algorithm for this class of games. Instead, the first positive result on the dynamics
of hidden games was obtained by [44] who established a series of non-local convergence
guarantees to the von Neumann max-min solution of the game in the case of two-agent
hidden strictly convex-concave games for all initial conditions satisfying a certain genericity
assumption. This approach, however, only applied to continuous-time dynamics – not
algorithms – and it further imposed strong separability assumptions on the representation of
the game in the control layer. More recently, [32] established the first global convergence
guarantees in hidden games but, once again, these apply only to continuous-time dynamics
and a special case of two-agent convex-concave games (akin to playing a convex combination
of hidden games with one-dimensional latent spaces). This paper is the closest antecedent to
our work as it introduces a dynamical system, called Generalized Natural Gradient Flow,
which makes the L2 norm between the equilibrium in the hidden game and the current set
of latent variables a Lyapunov function for the system.

Our results & techniques. Our paper seeks to provide an affirmative answer to the key
challenge above under minimal assumptions on the coupling between latent and control
variables. To that effect, we only assume that each agent is able to affect a measurable
change along any latent variable by updating their control variables appropriately; without
this assumption spurious equilibria can emerge due to the deficiency of the control layer
architecture. Importantly however, even though the map from control to latent variables
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Figure 1: A hidden game of Rock-Paper-Scissors with strategies encoded by two
multi-layer perceptrons (MLPs), whose 4-dimensional input is dictated by the two
players (cf. [32]). The nonlinearity of the MLP representation maps leads to a
highly non-convex non-concave zero-sum game. However, by employing PHGD,
both players’ MLP control variables accurately identify the (1/3, 1/3, 1/3) equilib-
rium in the game’s latent space.

is known to the players, we do not assume that it can be efficiently inverted (e.g., to solve
for a profile of control variables that realizes a profile of latent variables). Otherwise, if it
could, the entire game could be solved directly in the latent layer and then ported back
to the control layer, thus rendering the whole problem moot – and, indeed, when working
with realistic neural net architectures, this inversion problem is, to all intents and purposes,
impossible.

For intuition, we begin by designing a new continuous-time flow, that we call preconditioned
hidden gradient dynamics, and which enjoys strong convergence properties in games with a
hidden strictly monotone structure (Proposition 1). Similarly to [32], this is achieved by using
the L2 norm in the latent layer as a Lyapunov function in the control layer; however, the
similarities with the existing literature end there. Our paper does not make any separability
or low-dimensionality assumptions, and is otherwise purely algorithmic: specifically, building
on the continuous-time intuition, we provide a concrete, implementable algorithm, that we
call preconditioned hidden gradient descent (PHGD); this algorithm is run with stochastic
gradients, and enjoys a series of strong, global convergence guarantees in hidden games.

First, as a baseline, Theorem 1 shows that a certain averaged process achieves an O(1/
√
t)

convergence rate in all games with a hidden monotone structure and Lipschitz continuous
loss functions. If the hidden structure is strongly monotone, Theorem 2 further shows
that this rate can be improved to O(1/t) for the actual trajectory of the players’ control
variables; and if the algorithm is run with full, deterministic gradients, the rate becomes
geometric (Theorem 3). To the best of our knowledge, these are the first bona fide algorithmic
convergence guarantees for games with a hidden structure.

2. Problem setup and preliminaries

Throughout the sequel, we will focus on continuous N -player games where each player,
indexed by i ∈ N := {1, . . . , N}, has a convex set of control variables θi ∈ Θi := Rmi , and a
continuously differentiable loss function ℓi : Θ → R, where Θ :=

∏
i Θi denotes the game’s

control space. For concreteness, we will refer to the tuple Γ ≡ Γ(N ,Θ, ℓ) as the base game.
The most relevant solution concept in this setting is that of a Nash equilibrium, i.e., an

action profile θ∗ ∈ Θ that discourages unilateral deviations. Formally, we say that θ∗ ∈ Θ is
a Nash equilibrium of the base game Γ if

ℓi(θ
∗) ≤ ℓi(θi; θ

∗
−i) for all θi ∈ Θi, i ∈ N (NE)
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Figure 2: Schematic representation of a game with a hidden / latent structure.

where we employ the standard game-theoretic shorthand (θi; θ−i) to distinguish between the
action of the i-th player and that of all other players in the game. Unfortunately, designing
a learning algorithm that provably outputs a Nash equilibrium is a very elusive task: the
impossibility results of Hart & Mas-Colell [15, 16] already preclude the existence of uncoupled
dynamics that converge to a Nash equilibrium in all games; more recently, Milionis et al. [31]
established a similar impossibility result even for possibly coupled dynamics (in both discrete
and continuous time), while Daskalakis et al. [9, 10] has shown that even the computation of
an approximate equilibrium can be beyond reach.

In view of this, our work focuses on games with a hidden, latent structure that can be
exploited to compute its Nash equilibria. More precisely, inspired by [43, 44] we have the
following definition.

Definition 1. We say that the game Γ ≡ Γ(N ,Θ, ℓ) admits a latent – or hidden – structure if:
(1) Each player’s control variables can be mapped faithfully to a closed convex set of

latent variables xi ∈ Xi ⊆ Rdi ; formally, we posit that there exists a Lipschitz smooth
map χi : Θi → Xi with no critical points and such that cl(χi(Θi)) = Xi.

(2) Each player’s loss function factors through the game’s latent space X :=
∏

i Xi as

ℓi(θ) = fi(χ1(θ1), . . . , χN (θN )) (1)

for some Lipschitz smooth function fi : X → R called the player’s latent loss function.
For concreteness, we will refer to the product map χ(θ) = (χi(θi))i∈N as the game’s
representation map, and the tuple G ≡ G(N ,X , f) will be called the hidden / latent game.
To simplify notation later on, we also assume that Xi has nonempty topological interior, so,
in particular, dim(Xi) = di ≤ mi.

We illustrate the above notions in two simple – but not simplistic – examples below; for a
schematic representation, cf. Fig. 2.

Example 2.1. Consider a single-agent game (N = 1) where the objective is to minimize
the non-convex function ℓ(θ) =

∑|D|
α=1(sigmoid(θα) − sα)

2 over a dataset D = {sα}. This
problem can be recast as a hidden convex problem with f(x) =

∑|D|
α=1(xα − sα)

2 and
χ(θ) = sigmoid(θ).

Example 2.2. A more complex scenario involves non-convex / non-concave min-max opti-
mization problems of the form minθ1 maxθ2 χ1(θ1)

⊺Cχ2(θ2) where χ1 and χ2 are preconfig-
ured multi-layer perceptrons (MLPs) constructed with smooth activation functions (such
as CeLUs). This problem can be reformulated as a hidden bilinear problem by setting
f1(x1, x2) = x⊺1Cx2 = −f2(x1, x2).
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Before moving forward, there are some points worth noting regarding the above definitions.

Remark 1. First, the requirement cl(χ(Θ)) = X means that all latent variable profiles x ∈ X
can be approximated to arbitrary accuracy in the game’s control space. The reason that we
do not make the stronger assumption χ(Θ) = X is to capture cases like the sigmoid map: if
χ(θ) = [1 + exp(−θ)]−1 for θ ∈ R, the image of χ is the interval (0, 1), which is convex but
not closed.

Remark 2. Second, the requirement that χ has no critical points simply means that, for
any control variable configuration θ ∈ Θ, the Jacobian Jac(χ(θ)) of χ at θ has full rank. By
the implicit function theorem [23], this simply means that χ locally looks like a projection
(in suitable coordinates around θ), so it is possible to affect a measurable change along any
feasible latent direction by updating each player’s control variables appropriately. This is
no longer true if χ has critical points, so this is a minimal requirement to ensure that no
spurious equilibria appear in the game’s latent space.

To proceed, we will assume that the latent game is diagonally convex in the sense of Rosen
[38], a condition more commonly known in the optimization literature as monotonicity [12].
Formally, let

gi(x) = ∇ifi(x) := ∇xi
fi(x) (2)

denote the individual gradient of the latent loss function of player i ∈ N , and write
g(x) = (g1(x), . . . , gN (x)) for the profile thereof. We then say that the latent game G is:

• Monotone if
⟨g(x′)− g(x), x′ − x⟩ ≥ 0 for all x, x′ ∈ X . (3a)

• Strictly monotone if

⟨g(x′)− g(x), x′ − x⟩ > 0 for all x, x′ ∈ X , x ̸= x′. (3b)

• Strongly monotone if, for some µ > 0, we have

⟨g(x′)− g(x), x′ − x⟩ ≥ µ∥x′ − x∥2 for all x, x′ ∈ X . (3c)

Clearly, strong monotonicity implies strict monotonicity, which in turn implies monotonicity;
on the other hand, when we want to distinguish between problems that are monotone but
not strictly monotone, we will say that g is merely monotone. Finally, extending the above
to the base game, we will say that Γ admits a hidden monotone structure when the latent
game G is monotone as above (and likewise for strictly / strongly monotone structures).

Examples of monotone games include neural Kelly auctions and Cournot oligopolies
[5, 6, 20, 25], covariance matrix optimization problems and power control [27, 29, 39], certain
classes of congestion games [35], etc. In particular, in the case of convex minimization
problems, monotonicity (resp. strict / strong monotonicity) corresponds to convexity (resp.
strict / strong convexity) of the problem’s objective function. In all cases, it is straightforward
to check that the image x∗ = χ(θ∗) of a Nash equilibrium θ∗ ∈ Θ of the base game satisfies
a Stampacchia variational inequality of the form

⟨g(x∗), x− x∗⟩ ≥ 0 for all x ∈ X . (SVI)

In turn, by monotonicity, this characterization is equivalent to the Minty variational inequality

⟨g(x), x− x∗⟩ ≥ 0 for all x ∈ X . (MVI)
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To avoid trivialities, we will assume throughout that the solution set X ∗ of (SVI)/(MVI) is
nonempty. This is a standard assumption without which the problem is not well-posed –
and hence, meaningless from an algorithmic perspective.
Notation. To streamline notation (and unless explicitly mentioned otherwise), we will denote
control variables by θi and θ, and we will write xi = χi(θi) and x = χ(θ) for the induced
latent variables. We will also write m :=

∑
imi for the dimensionality of the game’s

control space Θ and d :=
∑

i di for the dimensionality of the latent space X (so, in general,
m ≥ d). Finally, when the representation map χ is clear from the context, we will write
Ji(θi) := Jac(χi(θi)) ∈ Rdi×mi for the Jacobian matrix of χi at θi ∈ Θi, and J(θ) =

⊕
i Ji(θi)

for the associated block diagonal sum.

3. Hidden gradients and preconditioning

We are now in a position to present our main algorithmic scheme for equilibrium learning
in games with a hidden monotone structure. In this regard, our aim will be to overcome the
following limitations in the existing literature on learning in hidden games: (i) the literature
so far has focused exclusively on continuous-time dynamics, with no discrete-time algorithms
proven to efficiently converge to a solution; (ii) the number of players is typically limited to
two; and (iii) the representation maps are separable in the sense that the control variables
are partitioned into subsets and each subset affects exactly one latent variable.1

We start by addressing the last two challenges first. Specifically, we begin by introducing
a gradient preconditioning scheme that allows us to design a convergent continuous-time
dynamical system for hidden monotone games with an arbitrary number of players and no
separability restrictions for its representation maps. Subsequently, we propose a bona fide
algorithmic scheme – which we call preconditioned hidden gradient descent (PHGD) – by
discretizing the said dynamics, and we analyze the algorithm’s long-run behavior in Section 4.

3.1. Continuous-time dynamics for hidden games. To connect our approach with previous
works in the literature, our starting point will be a simple setting already captured within
the model of [32], min-max games with a hidden convex-concave structure and unconstrained
one-dimensional control and latent spaces per player, i.e., Θi = R = Xi for i = 1, 2. We
should of course note that this specific setting is fairly restrictive and not commonly found in
deep neural network practice: in real-world deep learning applications, neural nets generally
comprise multiple interconnected layers with distinct activation functions, so the input-output
relations are markedly more complex and intertwined. Nevertheless, the setting’s simplicity
makes the connection with natural gradient methods particularly clear, so as in [32], it will
serve as an excellent starting point.

Concretely, Mladenovic et al. [32] analyze the natural hidden gradient dynamics

θ̇i = − 1

|χ′
i(θi)|2

∂ℓi
∂θi

for all i ∈ N . (NHGD)

The reason for this terminology – and the driving force behind the above definition – is the
observation that, in one-dimensional settings, a direct application of the chain rule to the
defining relation ℓi = fi◦χ of the game’s latent loss functions yields ∂ℓi/∂θi = χ′

i(θi)·∂fi/∂xi
so, in turn, (NHGD) becomes

θ̇i = − 1

χ′
i(θi)

∂fi
∂xi

(4)

1The separability assumption also rules out the logit representation exp(θiα)
/∑

β exp(θiβ) that is standard
when the latent structure expresses mixed strategies in a finite game.
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where, for simplicity, we are tacitly assuming that χi(θi)
′ > 0.

This expression brings two important points to light. First, even though (NHGD) is
defined in terms of the actual, control-layer gradients ∂ℓi/∂θi of Γ, Eq. (4) shows that the
dynamics are actually driven by the latent-layer, “hidden gradients” gi(x) = ∂fi/∂xi of G.
Second, the preconditioner |χ′

i(θi)|−2 in (NHGD) can be seen as a Riemannian metric on Θ:
instead of defining gradients relative to the standard Euclidean metric of Θ ≡ RN , (NHGD)
can be seen as a gradient flow relative to the Riemannian metric gij(θ) = δijχ

′
i(θi), which

captures the “natural” geometry induced by the representation map χ.2

From an operational standpoint, the key property of (NHGD) that enabled the analysis
of [32] is the observation that the L2 energy function

E(θ) = 1
2∥χ(θ)− x∗∥2 (5)

between the latent representation x = χ(θ) of θ and a solution x∗ of (SVI) / (MVI) is a
Lyapunov function for (NHGD). Indeed, a straightforward differentiation yields

Ė(θ) =
1

2

d

dt
∥x− x∗∥2 =

∑
i
ẋi · (xi − x∗i ) = −[g(χ(θ))]⊺(χ(θ)− x∗) ≤ 0 (6)

with the penultimate step following from (4) and the last one from (MVI). It is then
immediate to see that the latent orbits x(t) = χ(θ(t)) of (NHGD) converge to equilibrium in
strictly monotone games.

The approach in the example above depends crucially on the separability assumption
which, among others, trivializes the problem. Indeed, if there is no coupling between control
variables in the game’s latent space, the equations xi = χi(θi) can be backsolved easily for
θ (e.g., via binary search), so it is possible to move back-and-forth between the latent and
control layers, ultimately solving the game in the latent layer and subsequently extracting a
solution configuration in the control layer. Unfortunately however, extending the construction
of (NHGD) to a non-separable setting is not clear, so it is likewise unclear how to exploit
the hidden structure of the game beyond the separable case.

To that end, our point of departure is the observation that the Lyapunov property (6) of
the energy function E(θ) is precisely the key feature that enables convergence of (NHGD).
Thus, assuming that control variables are mapped to latent variables via a general – though
possibly highly coupled – representation map χ : Θ → X , we will consider an abstract
preconditioning scheme of the form

θ̇i = −Pi(θi)vi(θ) (7)

where
vi(θ) := ∇θiℓi(θ) (8)

denotes the individual loss gradient of player i, while the preconditioning matrix Pi(θi) ∈
Rmi×mi is to be designed so that (6) still holds under (7). In this regard, a straightforward
calculation (which we prove in Appendix A) yields the following:

Lemma 1. Under the dynamics (7), we have

Ė(θ) = −
∑

i∈N
[gi(χ(θ))]

⊺Ji(θi)Pi(θi)[Ji(θi)]
⊺(χi(θi)− x∗i ) (9)

where, as per Section 2, Ji(θi) ∈ Rdi×mi denotes the Jacobian matrix of the map χi : Θi → Xi.
More compactly, letting P :=

⊕
i Pi denote the block-diagonal ensemble of the players’

2We do not attempt to provide here a primer on Riemannian geometry; for a masterful introduction, see
[22].
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Figure 3: Exploiting a hidden convex structure in the control layer. On the left, we
present the dynamics (PHGF) in the example of minimizing the simple function
f(θ) = KL(logit(θ1, θ2)∥(1/2, 1/3, 1/6)) over Θ ≡ R2. In the subfigure to the right,
we illustrate the hidden convex structure of the energy landscape, from the non-
convex sublevel sets of Θ to the latent space X ≡ {(x1, x2) ∈ R2

≥0 : x1 + x2 ≤ 1}.

individual preconditioning matrices Pi (and suppressing control variable arguments for
concision), we have

Ė = −g(x)⊺ · JPJ⊺ · (x− x∗) (10)

In view of Lemma 1, a direct way to achieve the target Lyapunov property (6) would be
to find a preconditioning matrix P such that JPJ⊺ = I. However, since J is surjective (by
the faithfulness assumption for χ), the Moore-Penrose inverse J+ of J will be a right inverse
to J, i.e., JJ+ = I. Hence, letting P = (J⊺J)+ = J+[J+]⊺, we obtain:

JPJ⊺ = J(J⊺J)+J⊺ = JJ+(J⊺)+J⊺ = I · I = I (11)

In this way, unraveling the above, we obtain the preconditioned hidden gradient flow

θ̇i = −Pi(θi)∇iℓi(θi) with Pi(θi) = [Ji(θi)
⊺Ji(θi)]

+ (PHGF)

By virtue of design, the following property of (PHGF) is then immediate:

Proposition 1. Suppose that Γ admits a latent strictly monotone structure in the sense of
(3b). Then the energy function (5) is a strict Lyapunov function for (PHGF), and every
limit point θ∗ of θ(t) is a Nash equilibrium of Γ.

Proposition 1 validates our design choices for the preconditioning matrix P as it illustrates
that the dynamics (PHGF) converge to Nash equilibrium, without any separability require-
ments or dimensionality restrictions; in this regard, Proposition 1 already provides a marked
improvement over the corresponding convergence result of [32] for (NHGD). To streamline
our presentation, we defer the proof of Lemma 1 and Proposition 1 to Appendix A, and
instead proceed directly to provide a bona fide, algorithmic implementation of (PHGF).

3.2. Preconditioned hidden gradient descent. In realistic machine learning problems, any
algorithmic scheme based on (PHGF) will have to be run in an iterative, discrete-time
environment; moreover, due to the challenges posed by applications with large datasets and
optimization objectives driven by the minimization of empirical risk, we will need to assume
that players only have access to a stochastic version of their full, deterministic gradients. As
such, we will make the following blanket assumptions that are standard in the stochastic
optimization literature [17, 21]:
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Assumption 1. Each agent’s loss function is an expectation of a random function Li : Θ×Ω →
R over a complete probability space (Ω,F ,P), i.e., ℓi(θ) = E[Li(θ;ω)]. We further assume
that:

(1) Li(θ;ω) is measurable in ω and β-Lipschitz smooth in θ (for all θ ∈ Θ and all ω ∈ Ω
respectively).

(2) The gradients of Li have bounded second moments, i.e.,

sup
θ∈Θ

E[∥∇Li(θ;ω)∥2] ≤M2. (12)

Taken together, the two components of Assumption 1 imply that each ℓi is differen-
tiable and Lipschitz continuous (indeed, by Jensen’s inequality, we have ∥E[∇Li(θ;ω)]∥2 ≤
E[∥∇Li(θ;ω)∥2] ≤M2). Moreover, by standard dominated convergence arguments, ∇Li(θ;ω)
can be seen as an unbiased estimator of ∇ℓi(θ), that is, ℓi(θ) = E[∇Li(θ;ω)] for all θ ∈ Θ.
In view of this, we will refer to the individual loss gradients ∇iLi(θ;ω) of player i ∈ N as
the player’s individual stochastic gradients.

With all this in mind, the preconditioned hidden gradient descent algorithm is defined as
the stochastic first-order recursion

θi,t+1 = θi,t − γtPi,tVi,t (PHGD)

where:
(1) θi,t denotes the control variable configuration of player i ∈ N at each stage t = 1, 2, . . .

(2) γt > 0 is a variable step-size sequence, typically of the form γt ∝ 1/tp for some
p ∈ [0, 1].

(3) Pi,t := Pi(θi,t) = [Ji(θi,t)
⊺Ji(θi,t)]

+ is the preconditioner of player i ∈ N at the t-th
epoch.

(4) Vi,t := ∇iL(θi,t;ωt) is an individual stochastic loss gradient generated at the control
variable configuration θt by an i.i.d. sample sequence ωt ∈ Ω, t = 1, 2, . . .

The basic recursion (PHGD) can be seen as a noisy Euler discretization of the continuous
flow (PHGF), in the same way that ordinary stochastic gradient descent can be seen as a
noisy discretization of gradient flows. In this way, (PHGD) is subject to the same difficulties
underlying the analysis of stochastic gradient descent methods; we address these challenges
in the next section.

4. Convergence analysis and results

In this section, we present our main results regarding the convergence of (PHGD) in
hidden monotone games. Because we are interested not only on the asymptotic convergence
of the method but also on its rate of convergence, we begin this section by defining a suitable
merit function for each class of hidden monotone games under consideration; subsequently,
we present our main results in Section 4.2, where we also discuss the main technical tools
enabling our analysis. To streamline our presentation, all proofs are deferred to Appendix B.

4.1. Merit functions and convergence metrics. In the variational context of (SVI) / (MVI),
the quality of a candidate solution x̂ is typically evaluated by means of the restricted merit
function

GapC(x̂) := supx∈C⟨g(x), x̂− x⟩ (13)
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where the “test domain” C is a relatively open subset of X [3]. The raison d’être of this
definition is that, if g is monotone and x∗ ∈ C is a solution of (SVI) / (MVI), we have

⟨g(x), x∗ − x⟩ ≤ ⟨g(x∗), x∗ − x⟩ ≤ 0 for all x ∈ C, (14)

so the supremum in (B.6) cannot be too positive if x̂ is an approximate solution of
(SVI) / (MVI). This is encoded in the following lemma, which, among others, justifies
the terminology “merit function”:

Lemma 2. Suppose that g is monotone. If x̂ is a solution of (SVI) / (MVI), we have
GapC(x̂) = 0 whenever x̂ ∈ C. Conversely, if GapC(x̂) = 0 and C is a neighborhood of x̂ in
X , then x̂ is a solution of (SVI) / (MVI).

Lemma 2 extends similar statements by Auslender & Teboulle [3] and Nesterov [33]; the
precise variant that we state above can be found in [1], but, for completeness, we provide a
proof in Appendix B.

Now, since a latent variable profile x∗ = χ(θ∗) solves (SVI) if and only if the control
variable configuration θ∗ is Nash equilibrium of the base game, the quality of a candidate
solution θ̂ ∈ Θ with x̂ = χ(θ̂) can be assessed by the induced gap function

Gap(θ̂) := GapX (χ(θ̂)) = supx∈X ⟨g(x), x̂− x⟩. (15)

Indeed, since x̂ = χ(θ̂) ∈ X , Lemma 2 shows that Gap(θ̂) ≥ 0 with equality if and only if x̂ is
a Nash equilibrium of the base game Γ. In this regard, Eq. (15) provides a valid equilibrium
convergence metric for Γ, so we will use it freely in the sequel as such; for a discussion of
alternative convergence metrics, we refer the reader to Appendix B.

4.2. Convergence results. We are now in a position to state our main results regarding
the equilibrium convergence properties of (PHGD). To streamline our presentation, we
present our results from coarser to finer, starting with games that admit a hidden merely
monotone structure and stochastic gradient feedback, and refining our analysis progressively
to games with a hidden strongly monotone structure and full gradient feedback.3 In addition,
to quantify this distortion between the game’s latent and control layers, we will require a
technical regularity assumption for the game’s representation map χ : Θ → X .

Assumption 2. The singular values of the Jacobian J(θ) of the representation map χ are
bounded as

σ2
min ≤ eig(J(θ)J(θ)⊺) ≤ σ2

max (16)

for some σmin, σmax ∈ (0,∞) and for all θ ∈ Θ.

With all this in hand, we begin by studying the behavior of (PHGD) in games with a
hidden monotone structure.

Theorem 1 (PHGD in hidden monotone games). Suppose that players run (PHGD) in a
hidden monotone game with learning rate γt ∝ 1/t1/2. Then, under Assumptions 1 and 2,
the averaged process θ̄t ∈ χ−1

(
t−1

∑t
s=1 xs

)
enjoys the equilibrium convergence rate

E[Gap(θ̄t)] = O(log t/
√
t). (17)

3As expected, convergence rates improve along the way.
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As far as we are aware, Theorem 1 is the first result of its kind in the hidden games
literature – that is, describing the long-run behavior of a discrete-time algorithm with
stochastic gradient input. At the same time, it is subject to two important limitations: the
first is that the averaged state θ̄t cannot be efficiently computed for general representation
maps; second, even if it could, the O(log t/

√
t) convergence rate is relatively slow. The two

results that follow show that both limitations can be overcome in games with a hidden strongly
monotone structure. In this case (SVI)/(MVI) admits a (necessarily) unique solution x∗ in
the game’s control space, so we will measure convergence in terms of the latent equilibrium
distance

Err(θ̂) := 1
2∥χ(θ̂)− x∗∥2. (18)

With this in mind, we have the following convergence results:

Theorem 2 (PHGD in hidden strongly monotone games). Suppose that players run (PHGD)
in a hidden µ-strongly monotone game with γt = γ/t for some γ > µ. Then, under
Assumptions 1 and 2, the induced sequence of play θt ∈ Θ, t = 1, 2, . . . , enjoys the equilibrium
convergence rate

E[Err(θt)] = O(1/t). (19)

This rate is tight, even for standard strongly monotone games. To improve it further, we
will need to assume that (PHGD) is run with full, deterministic gradients, i.e., Vt = g(θt).
In this case, we obtain the following refinement of Theorem 2.

Theorem 3 (PHGD with full gradient feedback in hidden strongly monotone games). Suppose
that players run (PHGD) in a hidden µ-strongly monotone game with full gradient feedback,
and a suffciently small learning rate γ > 0. Then, under Assumptions 1 and 2, the induced
sequence of play θt ∈ Θ, t = 1, 2, . . . , converges to equilibrium at a geometric rate, i.e.,

Err(θt) = O(ρt) (20)

for some constant ρ ∈ (0, 1) that depends only on the primitives of Γ and the representation
map χ.

Importantly, up to logarithmic factors, the convergence rates of Theorems 1–3 mirror
the corresponding rates for learning in monotone games. This take-away is particularly
important as it shows that, when it exists, a hidden convex structure can be exploited to
the greatest possible degree, without any loss of speed in convergence relative to standard,
non-hidden convex problems.

The proofs of Theorems 1–3 are quite involved, so we defer the details to Appendix B.
That said, to give an idea of the technical steps involved, we provide below (without proof)
two lemmas that play a pivotal role in our analysis. The first one hinges on a transformation
of the problem’s defining vector field v(θ) = (∇iℓi(θ))i∈N which, coupled with the specific
choice of preconditioner Pi(θi) = [Ji(θi)

⊺Ji(θi)]
+ in (PHGD) allows us to effectively couple

the latent and control layers of the problem in a “covariant” manner:

Lemma 3. Fix some x̂ ∈ X , and consider the energy function E(θ; x̂) = (1/2)∥χ(θ)− x̂∥2.
Then, for all θ ∈ Θ, we have

J(θ)P(θ)∇θE(θ; x̂) = χ(θ)− x̂. (21)

Our second intermediate result builds on Lemma 3 and provides a “template inequality”
for the energy function E(θ; x̂) in the spirit of [7, 11, 18].
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Figure 4: A solution trajectory of (PHGD) in a hidden Matching Pennies game
over the sub-level sets of the energy function in (5).

Lemma 4 (Template inequality). Suppose that Assumptions 1 and 2 hold. Then, with notation
as in Lemma 3, the sequence Et := (1/2)∥χ(θt)− x̂∥2, t = 1, 2, . . . , satisfies

Et+1 ≤ Et − γtg(xt)
⊺(xt − x̂) + γtϕt + γ2t ψt, (22)

where xt := χ(θt), ϕt := (J(θt)P(θt)Vt − g(xt))
⊺(xt − x̂) and ψt is a random error sequence

with supt E[ψt] <∞.

This inequality plays a pivotal role in our analysis because it allows us to couple the
restricted merit function (B.8) in the game’s control space with the evolution of the algorithm’s
quasi-Lyapunov function in the game’s latent space. We provide the relevant details and
calculations in Appendix B.

5. Experiments

This section demonstrates our method’s applicability in a couple of different and insightful
setups. Technical details of those setups, as well as additional experimental results are deferred
to the supplementary material. We start with a regularized version of Matching Pennies
zero-sum game where the players’ strategies are controlled by two individual preconfigured
differentiable MLPs. Each MLP acts as the player’s representation map χi, which for each
input θi outputs a one-dimensional latent variable xi = χi(θi) guaranteed to lie in Xi ≡ [0, 1];
the player’s latent space.

Figure 4 illustrates the trajectory of (PHGD), represented by the black curve. The
algorithm employs a constant step-size of 0.01 and is initialized at the arbitrary state
(1.25, 2.25) in the control variables’ space. The color map in the figure serves as a visual
representation of the level sets associated with the proposed energy function (5). Notably,
the trajectory of the algorithm intersects each of the energy function’s level sets at most once,
indicating its non-cycling behavior, which is an issue that shows up often in the equilibration
task. Due to the design of our hidden maps, the stabilization at the point (0, 0) corresponds
to the (χ1(0), χ2(0)) = (12 ,

1
2 ) the unique equilibrium of the game.

In the second, more complex, example, we consider a strongly-monotone regularized
modification of an (atomic) El Farol Bar congestion game among N = 30 players [2, 45]. In
this setup, we let the control space of each player i be multi-dimensional, namely, Θi ≡ R5,
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i ∈ N , and, as in the previous example, the representation map of each player is instantiated
by some preconfigured differentiable MLP whose output xi := χi(θi) is guaranteed to lie in
[0, 1]. The MLP’s output is going to be the probability with which player i visits the El
Farol bar. For the interested reader, further details, including technical specification of the
MLPs, and loss functions of the games, can be found in the supplementary material. Fig. 5
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10-15
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Figure 5: The evolution of the L2 error function ErrX (χ(θ)) of (PHGD) and
gradient descent (GD) with constant step-size 0.01 in the regularized games of
Matching Pennies and El Farol Bar as depicted in a semi-logarithmic scale. In the
Matching Pennies game (left) we depict a single trajectory initialized at (1.25, 2.25),
while in the El Farol Bar game (right) game we depict the mean and confidence
bounds of 100 random trajectories.

provides a comparative analysis of the performance between (PHGD), and the standard GD
method in the aforementioned two game scenarios. In Fig. 5 (left) we explore the Matching
Pennies game, where GD exhibits slightly erratic behavior. Despite eventually converging
to the game’s equilibrium point, GD’s convergence rate, in this case, can be described as
linear at best. In Fig. 5 (right), we examine the El Farol Bar game. Interestingly, in this
highly complex setup, GD fails to reach the equilibrium point entirely. In contrast, (PHGD)
not only manages to converge in both of these setups, but it also consistently maintains an
exponential rate of convergence. This stark difference underscores the efficacy and robustness
of our algorithm.

6. Conclusion

This paper proposed a new algorithmic framework with strong formal convergence guaran-
tees in a general class non-convex games with a latent monotone structure. Our algorithmic
method – which we call preconditioned hidden gradient descent – relies on an appropriately
chosen gradient preconditioning scheme akin to natural gradient ideas. Our class of games
combines the useful structure of monotone operators as well as the notion of latent/hidden
variables that arise in neural networks and can thus model numerous AI applications. Our
results indicate the possibility of deep novel algorithmic ideas emerging at the intersection
of game theory, non-convex optimization and ML and offers exciting directions for future
work.

Acknowledgments

This research was supported in part by the National Research Foundation, Singapore and DSO
National Laboratories under its AI Singapore Program (AISG Award No: AISG2-RP-2020-016),
grant PIESGP-AI-2020-01, AME Programmatic Fund (Grant No.A20H6b0151) from A*STAR and



14 I. SAKOS, E. V. VLATAKIS-GKARAGKOUNIS, P. MERTIKOPOULOS, AND G. PILIOURAS

Provost’s Chair Professorship grant RGEPPV2101. PM is also a member of the Archimedes Unit,
Athena RC, Department of Mathematics, University of Athens, and is grateful for financial support
by the French National Research Agency (ANR) in the framework of the “Investissements d’avenir”
program (ANR-15-IDEX-02), the LabEx PERSYVAL (ANR-11-LABX-0025-01), MIAI@Grenoble
Alpes (ANR-19-P3IA-0003), and project MIS 5154714 of the National Recovery and Resilience Plan
Greece 2.0 funded by the European Union under the NextGenerationEU Program.

Appendix A. Omitted proofs from Section 3

In this first appendix, we provide the technical proofs of our results for the continuous-time
dynamics (PHGF), namely Lemma 1 and Proposition 1. For convenience, we restate the
relevant results as needed.

Lemma 1. Under the dynamics (7), we have

Ė(θ) = −
∑

i∈N
[gi(χ(θ))]

⊺Ji(θi)Pi(θi)[Ji(θi)]
⊺(χi(θi)− x∗i ) (9)

where, as per Section 2, Ji(θi) ∈ Rdi×mi denotes the Jacobian matrix of the map χi : Θi → Xi.
More compactly, letting P :=

⊕
i Pi denote the block-diagonal ensemble of the players’

individual preconditioning matrices Pi (and suppressing control variable arguments for
concision), we have

Ė = −g(x)⊺ · JPJ⊺ · (x− x∗) (10)

Proof. Observe that if we expand the dynamical system of equations in (PHGF) with respect
to each individual coordinate, we have that for each player i ∈ N , for all profiles θ ∈ Θ, and
for all coordinates α ∈ {1, . . . ,mi}:

θ̇iα =

mi∑
β=1

Piαβ(θi)
∂ℓi(θ)

∂θiβ
. (A.1)

Now, since Γ has a hidden monotone structure, and due to the decomposition ℓi(θ) = fi(x),
we can expand the above as

θ̇iα =

mi∑
β=1

Piαβ(θi)

di∑
r=1

∂fi(x)

∂xir

∂xir
∂θiβ

. (A.2)

Furthermore, if we expand the left-hand side (LHS) of (9) we also get

Ė(θ) =

N∑
i=1

mi∑
α=1

∂E(θ)

∂θiα
θ̇iα, (A.3)

where each of the summands of the above expression can also be expanded further to

∂E(θ)

∂θiα
θ̇iα = −

di∑
l=1

(xil − x∗il)
∂xil
∂θiα

θ̇iα. (A.4)

Putting everything together (9) follows by some trivial substitutions. ■

Proposition 1. Suppose that Γ admits a latent strictly monotone structure in the sense of
(3b). Then the energy function (5) is a strict Lyapunov function for (PHGF), and every
limit point θ∗ of θ(t) is a Nash equilibrium of Γ.
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Proof. First, observe that for any player i ∈ N , and θi ∈ Θi, since the player’s representation
map χi is faithful, i.e., Ji(θi) is maximal rank, it holds:

Ji(θi)Pi(θi)Ji(θi)
⊺ = Ji(θi)Ji(θi)

+
[
Ji(θi)

+
]⊺
Ji(θi)

⊺

=
[
Ji(θi)Ji(θi)

+
]⊺

= I.

(A.5)

That is,
∑mi

α=1

∑mi

β=1
∂xil

∂θiα
∂xir

∂θiβPiαβ(θi) = δlr for all l, r ∈ {1, . . . , di}, where δlr is the
Kronecker delta.

Now, by Lemma 1 we have that:

Ė(θ) = −
N∑
i=1

di∑
l=1

di∑
r=1

δlr(xil − x∗il)
∂fi(x)

∂xir

= −
N∑
i=1

di∑
l=1

(xil − x∗il)
∂fi(x)

∂xil

= −
〈
g(x), x− x∗

〉
.

(A.6)

which is negative, since x∗ is an optimizer of f , i.e., it satisfies the (MVI) due to monotonicity
of g. Additionally, since g is strictly monotone, x∗ is the unique optimizer of f , and, therefore,
the above condition holds with equality if and only if x = x∗. ■

Appendix B. Auxiliary results from Section 4

B.1. Convergence metrics and merit functions. In this appendix, we provide the technical
scaffolding required for the analysis of(PHGD), namely Lemmas 2–4 in Section 3.2. As
before, we restate the relevant results as needed.

Lemma 2. Suppose that g is monotone. If x̂ is a solution of (SVI) / (MVI), we have
GapC(x̂) = 0 whenever x̂ ∈ C. Conversely, if GapC(x̂) = 0 and C is a neighborhood of x̂ in
X , then x̂ is a solution of (SVI) / (MVI).

Proof of Lemma 2. Let x̂ ∈ X be a solution of (SVI)/(MVI) so ⟨g(x̂), x − x̂⟩ ≥ 0 for all
x ∈ X . Then, by the monotonicity of g, we get:

⟨g(x), x̂− x⟩ ≤ ⟨g(x)− g(x̂), x̂− x⟩+ ⟨g(x̂), x̂− x⟩
= −⟨g(x̂)− g(x), x̂− x⟩ − ⟨g(x̂), x− x̂⟩ ≤ 0, (B.1)

so GapC(x̂) ≤ 0. On the other hand, if x̂ ∈ C, we also get Gap(x̂) ≥ ⟨g(x̂), x̂− x̂⟩ = 0, so we
conclude that GapC(x̂) = 0.

For the converse statement, assume that GapC(x̂) = 0 for some x̂ ∈ C and suppose that C
contains a neighborhood of x̂ in X . We then claim that x̂ is a solution of (MVI) over C, i.e.,

⟨g(x), x− x̂⟩ ≥ 0 for all x ∈ C. (B.2)

To see this, assume to the contrary that there exists some x1 ∈ C such that

⟨g(x1), x1 − x̂⟩ < 0 (B.3)

so, in turn, we get
0 = GapC(x̂) ≥ ⟨g(x1), x̂− x1⟩ > 0, (B.4)

a contradiction.
With this intermediate “local” result in hand, we are now in a position to prove that x̂

solves (SVI). Indeed, if we suppose to the contrary that there exists some z1 ∈ X such that
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⟨g(x̂), z1 − x̂⟩ < 0, then, by the continuity of g, there exists a neighborhood U ′ of x̂ in X
such that

⟨g(x), z1 − x⟩ < 0 for all x ∈ U ′. (B.5)
Hence, assuming without loss of generality that U ′ ⊂ U ⊂ C (the latter assumption due to
the assumption that C contains a neighborhood of x̂), and taking λ > 0 sufficiently small so
that x = x̂+λ(z1− x̂) ∈ U ′, we get that ⟨g(x), x− x̂⟩ = λ⟨g(x), z1− x̂⟩ < 0, in contradiction
to (B.2). We thus conclude that x̂ is a solution of (SVI) – and hence, by monotonicity, also
of (MVI). ■

For intuition, we discuss below some other merit functions that could be considered as
valid convergence metrics. In this regard, the first thing to note is that the definition of
Gap(θ̂) effectively goes through the game’s latent space, so it is natural to ask whether a
similar merit function can be defined directly on the game’s control space. To do so, it will be
more convenient to start with a linearized variant of GapX defined over the cone of tangent
directions at x̂, namely the so-called “tangent residual gap”

TGapX (x̂) := −minz∈TCX (x̂),∥z∥≤1⟨g(x̂), z⟩ (B.6)

i.e., the maximum “ascent” step ⟨−g(x), z⟩ over all admissible displacement directions z
from x̂.4 Just like GapC, this linearized merit function correctly identifies solutions of
(SVI)/(MVI):

Lemma B.1. For all x̂ ∈ X , we have TGapX (x̂) ≥ 0 with equality if and only if x̂ solves
(SVI)/ (MVI).

Proof. Let x̂ ∈ X be some arbitrary profile of latent variables. By definition, we have that
TGapX (x̂) = −minz∈TCX (x̂),∥z∥≤1⟨g(x̂), z⟩, where TCX (x̂) is the tangent cone to X at x̂.
Observe that since TCX (x̂) is a cone, 0 ∈ TCX (x̂), so TGapX (x̂) ≥ −⟨g(x̂), 0⟩ = 0. Now
assume that TGapX (x̂) = 0. Then, the following are equivalent:

TGapX (x̂) = 0 ⇐⇒ −minz∈TCX (x̂),∥z∥≤1⟨g(x̂), z⟩ = 0

⇐⇒ ⟨g(x̂), z⟩ ≥ 0 for all z ∈ TCX (x̂), ∥z∥ ≤ 1

⇐⇒ ⟨g(x̂), z⟩ ≥ 0 for all z ∈ TCX (x̂),

(B.7)

where the last equivalence follows because TCX (x̂) is a cone. Rearranging the terms, we
may equivalently write ⟨−g(x̂), z⟩ ≤ 0 for all z ∈ TCX (x̂). Notice that, by the definition
of the tangent cone, the latter is equivalent to ⟨−g(x̂), x̂− z⟩ ≤ 0 for all z ∈ X . Therefore,
TGapX (x̂) = 0 if and only if x̂ satisfies (SVI). ■

Now, if θ∗ is a Nash equilibrium of the base game, the latent variable configuration
x∗ = χ(θ∗) solves (SVI)/(MVI), so TGapX is a valid equilibrium convergence metric for
Γ. However, since TGapX is still defined on the game’s latent space, it does not give a
straightforward way of definining the quality of a candidate solution directly on the game’s
control space. To that end, one could consider the gap function

TGapΘ(θ̂) := −minη∈Rm,∥η∥≤1⟨v(θ̂), η⟩ = ∥v(θ̂)∥∗ (B.8)

where v(θ) := (∇iℓi(θ))i∈N collects the players’ loss gradients relative to their control
variables, and ∥·∥∗ denotes its dual norm (so TGapΘ(θ̂) is evaluated directly on the game’s
control space). Of course, as control variables are mapped to latent variables, χ introduces a

4In the above, TCX (x̂) denotes the tangent cone to X at x̂, that is, the closure of the set of all rays
emanating from x̂ and intersecting X in at least one other point.
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Figure 6: The distortion of a ball by J(θ).

certaint distortion (due to nonlinearities). This distortion can be quantified by the following
lemma (see also Fig. 6 above):

Lemma B.2. Let x̂ = χ(θ̂) for some θ̂ ∈ Θ. We then have

σmin TGapX (x̂) ≤ TGapΘ(θ̂) ≤ σmax TGapX (x̂) (B.9)

In particular, TGapΘ(θ̂) ≥ 0 for all θ̂ ∈ Θ, with equality if and only if θ̂ is a Nash equilibrium
of Γ.

Proof. To begin with, let us define the balls BΘ ≡ {η ∈ Rm : ∥η∥ ≤ 1}, and BX ≡ {z ∈ Rd :

∥z∥ ≤ 1}. Now, let θ̂ ∈ Θ be some arbitrary profile of control variables. By Assumption 2,
we have that the singular values of the Jacobian J(θ̂) of the representation map χ are
bounded from above and below by σmax <∞ and σmin > 0 respectively. That is, σmin∥η∥ ≤
∥J(θ̂)η∥ ≤ σmax∥η∥ for all η ∈ Rm, which implies that σminBX ⊆ J(θ̂)BΘ ⊆ σmaxBX . By
definition, we also have that, v(θ̂) = J(θ̂)⊺g

(
χ(θ̂)

)
= J(θ̂)⊺g(x̂), and, hence

TGapΘ(θ̂) = − min
η∈BΘ

⟨v(θ̂), η⟩ = − min
z∈J(θ̂)BΘ

⟨g(x̂), z⟩ (B.10)

Now, recall that the set of Nash equilibria Θ∗ ⊂ Θ is non-empty. In particular, since
the Θ ≡ Rm is an open set, the solution set lies in an open set, which, in conjunction with
the fact that the representation maps are faithful representations of Θ to X , also implies
that χ(Θ∗) lies in the interior of X . Finally, since χ is smooth, and in conjunction with the
previous observations, it follows that TGapΘ(θ̂) = ∥v(θ̂)∥ and TGapX (x̂) = ∥g(x̂)∥, hence it
is easy to see from the above discussion that

σmin TGapX (χ(θ̂)) ≤ TGapΘ(θ̂) ≤ σmax TGapX (χ(θ̂)) (B.11)

and our proof is complete. ■

In view of the above discussion, the reader may wonder why not use the tangent gap
TGapΘ directly as a performance metric. The reason for this is that, if the solutions x∗ of
(SVI)/(MVI) do not belong to the image of χ, the dual norm of v(θ̂) may be too stringent as
a performance metric as it does not vanish near an equilibrium (e.g., think of the operator
g(x) = x for x between 0 and 1). In this case, equilibria can be approximated to arbitrary
accurarcy but never attained, so the latent gap functions Gap and Err are more appropriate
as performance measures.
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B.2. Convergence analysis and template inequalities.

Lemma 3. Fix some x̂ ∈ X , and consider the energy function E(θ; x̂) = (1/2)∥χ(θ)− x̂∥2.
Then, for all θ ∈ Θ, we have

J(θ)P(θ)∇θE(θ; x̂) = χ(θ)− x̂. (21)

Proof. Let i ∈ N be some arbitrary player, let θ ∈ Θ be some arbitrary profile of control
variables, and let η ∈ Rdi be some arbitrary vector. Then for each coordinate α ∈ {1, . . . ,mi},
and latent profile x̂ ∈ X , we have that

∂E(θ; x̂)

∂θiα
=

di∑
j=1

(xij − x̂ij)
∂xij
∂θiα

. (B.12)

That is ∇θi E(y; x̂) = Ji(θi)
⊺(xi − x̂i). Now, we can multiply both sides of the above

expression with Pi(θi) to get

Pi(θi)∇θi E(θ; x̂) = Pi(θi)Ji(θi)
⊺(xi − x̂i)

= Ji(θi)
+
(
Ji(θi)

+
)⊺
Ji(θi)

⊺(xi − x̂i)

= Ji(θi)
+(xi − x̂i),

(B.13)

where in the last equality we used the fact that the i-th player’s representation map χi is a
faithful representation, i.e., Ji(θi) is maximal rank. Finally, by expanding the LHS of (21),
and applying the above simplification the result follows. ■

Lemma 4 (Template inequality). Suppose that Assumptions 1 and 2 hold. Then, with notation
as in Lemma 3, the sequence Et := (1/2)∥χ(θt)− x̂∥2, t = 1, 2, . . . , satisfies

Et+1 ≤ Et − γtg(xt)
⊺(xt − x̂) + γtϕt + γ2t ψt, (22)

where xt := χ(θt), ϕt := (J(θt)P(θt)Vt − g(xt))
⊺(xt − x̂) and ψt is a random error sequence

with supt E[ψt] <∞.

Proof. For each t = 1, 2, . . . we expand xt+1 using its second-order Taylor approximation at
θt; i.e., for each player i = 1, . . . , N and each coordinate l = 1, . . . , di:

xil,t+1 = χil(θt+1)

= χil(θi,t) + γt⟨∇χil(θi,t), θi,t+1 − θi,t⟩

+ γ2t (θi,t+1 − θi,t)
⊺Hil(θ̃i,t)(θi,t+1 − θi,t),

(B.14)

where Hil(θ̃i,t) is the Hessian of the latent map χil at some convex combination θ̃i,t of θi,t
and θi,t+1. Then, further expanding θt+1, we also get

xil,t+1 = xil,t − γt⟨∇χil(θi,t),Pi,tVi,t⟩+ γ2t (Pi,tVi,t)
⊺Hil(θ̃i,t)(Pi,tVi,t). (B.15)
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Plugging the above expansion to E(θt+1; x̂) for arbitrary state x̂ we get

Et+1 = E(θt+1; x̂)

=
1

2

N∑
i=1

di∑
l=1

(xt+1 − x̂)2

=
1

2

N∑
i=1

di∑
l=1

[xil,t − x̂il − γt⟨∇χil(θi,t),Pi,tVi,t⟩

+ γ2t (Pi,tVi,t)
⊺Hil(θ̃i,t)(Pi,tVi,t)]

2

= Et − γt

N∑
i=1

di∑
l=1

⟨∇χil(θi,t),Pi,tVi,t⟩(xil,t − x̂il) + γ2t ψt

= Et − γt(JtPtVt)
⊺(xt − x̂) + γ2t ψt,

(B.16)

where the second-order term ψt is given by the formula

ψt =

N∑
i=1

di∑
l=1

⟨∇χil(θi,t),Pi,tVi,t⟩2

+

N∑
i=1

di∑
l=1

(Pi,tVi,t)
⊺Hil(θ̃i,t)(Pi,tVi,t)(xil,t − x̂il)

− γt

N∑
i=1

di∑
l=1

⟨∇χil(θi,t),Pi,tVi,t⟩(Pi,tVi,t)
⊺Hil(θ̃i,t)(Pi,tVi,t)

+ γ2t

N∑
i=1

di∑
l=1

[(Pi,tVi,t)
⊺Hil(θ̃i,t)(Pi,tVi,t)]

2.

(B.17)

For the second-order term, observe that by Assumption 2, we have that [J⊺
t Jt]

+ ⪯ 1
σ2
min

I.
Using that fact, it follows that

N∑
i=1

di∑
l=1

⟨∇χil(θi,t),Pi,tVi,t⟩2 = (JtPtVt)
⊺JtPtVt

= V ⊺
t [J⊺

t Jt]
+J⊺

t Jt[J
⊺
t Jt]

+Vt

= V ⊺
t [J⊺

t Jt]
+Vt

≤ 1

σ2
min

∥Vt∥2,

(B.18)

Furthermore, since the representation maps χi are β-Lipschitz smooth for some Lipschitz
modulus β, we have that Hi,l(θ̄i,t) ⪯ βI for each player i and coordinate l. Consequently, we
have that

(Pi,tVi,t)
⊺Hil(θ̃i,t)(Pi,tVi,t) ≤ βV ⊺

i,tP
2
i,tVi,t ≤

β

σ4
min

∥Vi,t∥2 ≤ β

σ4
min

∥Vt∥2. (B.19)

Let D = diam(χ), then, by applying the Cauchy-Schwarz inequality, we also get that

ψt ≤
1

σ2
min

∥Vt∥2 +
dD

√
β

σ2
min

∥Vt∥+ γ

√
β

σ3
min

∥Vt∥2 + γ2
dβ2

σ8
min

∥Vt∥2, (B.20)
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where γ = supt=1,2,... γt, and d =
∑N

i=1 di.
Finally, let us consider the first-order term of (B.16). Let vt = (∇iℓi(θt))i∈N , and

gt = g(xt). Then, by definition, we also have that vt = J⊺
t gt. Moreover, recall that, by

construction, JtPtJ
⊺
t = I. Consequently, we can write

(JtPtVt)
⊺(xt − x̂) = (JtPtvt)

⊺(xt − x̂) + [JtPt(Vt − vt)]
⊺(xt − x̂)

= (JtPtJ
⊺
t gt)

⊺(xt − x̂) + [JtPt(Vt − J⊺
t gt)]

⊺(xt − x̂)

= g⊺t (xt − x̂) + (JtPtVt − gt)
⊺(xt − x̂),

(B.21)

which concludes our proof. ■

Appendix C. Proofs of Theorems 1–3

We are now in a position to prove Theorems 1–3 regarding the convergence properties of
(PHGD). We proceed sequentially, restating the relevant results as needed.

Theorem 1 (PHGD in hidden monotone games). Suppose that players run (PHGD) in a
hidden monotone game with learning rate γt ∝ 1/t1/2. Then, under Assumptions 1 and 2,
the averaged process θ̄t ∈ χ−1

(
t−1

∑t
s=1 xs

)
enjoys the equilibrium convergence rate

E[Gap(θ̄t)] = O(log t/
√
t). (17)

Proof. Let θ1 ∈ Θ be some arbitrary initialization of the algorithm, and let x̃ ∈ X be some
arbitrary profile of latent variables. Next, by Lemma 4, we have that for all t ≥ 1:

Et+1 ≤ Et − γt⟨g(xt), xt − x̂⟩+ γtϕt + γ2t ψt

ϕt = (J(θt)P(θt)Vt − g(xt))
⊺(xt − x̂)

ψt = κ∥Vt∥2, for some κ > 0.

(C.1)

Rearranging the terms, the above is equivalent to

γt
〈
g(xt), xt − x̃

〉
≤ Et − Et+1 + γtϕt + γ2t ψt. (C.2)

Furthermore, by the monotonicity of g, we also have that
〈
g(xt)− g(x̃), xt − x̃

〉
≥ 0, and by

combining the two, we get that for all t ≥ 1:

γt
〈
g(x̃), xt − x̃

〉
≤ γt

〈
g(xt), xt − x̃

〉
≤ Et − Et+1 + γtϕt + γ2t ψt. (C.3)

Summing up the above terms in both sides of the inequality, we also get that

t∑
s=1

γs
〈
g(x̃), xs − x̃

〉
≤

t∑
s=1

[
Es − Es+1 + γsϕs + γ2sψs

]
= E1 − Et+1 +

t∑
s=1

γsϕs +

t∑
s=1

γ2sψs

≤ E1 +

t∑
s=1

γsϕs +

t∑
s=1

γ2sψs.

(C.4)
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Dividing all terms by γ̃t :=
∑t

s=1 γs, also yields

〈
g(x̃), x̄t − x̃

〉
=

〈
g(x̃),

t∑
s=1

γs
γ̃t
xs − x̃

〉
=

t∑
s=1

γs
γ̃t

〈
g(x̃), xs − x̃

〉
≤ E1

γ̃t
+

∑t
s=1 γsϕs
γ̃t

+

∑t
s=1 γ

2
sψs

γ̃t
,

(C.5)

where x̄t :=
∑t

s=1
γs

γ̃t
xs is the time-average.

Next, let us define the following auxiliary process that will assist us in further bounding
the above expression:

y1 = x1

yt+1 = argmin
x∈X

∥yt − γtηt − x∥ for all t ≥ 2, (C.6)

where ηt := J(θt)P(θt)Vt − g(xt) for all i ∈ N . Observe that

γtϕt = γt⟨ηt, xt − x̃⟩ = γt⟨ηt, yt − x̃⟩+ γt⟨ηt, xt − yt⟩ for all t ≥ 1. (C.7)

Let us, first, focus on the former of the two terms. Notice that for all t ≥ 1, we can write

γt⟨ηt, yt − x̃⟩ = γt⟨ηt, yt+1 − x̃⟩+ γt⟨ηt, yt − yt+1⟩. (C.8)

Furthermore, by the optimality of yt+1, t ≥ 2, we have also have that

⟨yt+1 − yt + γtηt, yt+1 − x̃⟩ ≤ 0. (C.9)

That is, γt⟨ηt, yt+1 − x̃⟩ ≤ ⟨yt − yt+1, yt+1 − x̃⟩.
Let us also recall a couple of useful quadratic identities, namely, we have that ∥yt −

x̃∥2 = ∥yt − yt+1 + yt+1 − x̃∥2 = ∥yt − yt+1∥2 + 2⟨yt − yt+1, yt+1 − x̃⟩ + ∥yt+1 − x̃∥2, and
∥γtηt − (yt − yt+1)∥2 = γ2t ∥ηt∥2 − 2γt⟨ηt, yt − yt+1⟩ + ∥yt − yt+1∥2. Then, in conjunction
with the above, we get that for all t ≥ 1:

γt⟨ηt, yt − x̃⟩ = γt⟨ηt, yt+1 − x̃⟩+ γt⟨ηt, yt − yt+1⟩
≤ ⟨yt − yt+1, yt+1 − x̃⟩+ γt⟨ηt, yt − yt+1⟩

=
1

2
∥yt − x̃∥2 − 1

2
∥yt+1 − x̃∥2 − 1

2
∥γtηt − (yt − yt+1)∥2 +

γ2t
2
∥ηt∥2

≤ 1

2
∥yt − x̃∥2 − 1

2
∥yt+1 − x̃∥2 + γ2t

2
∥ηt∥2

(C.10)
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Finally, summing both sides of the above inequalities, we also get that
t∑

s=1

γs⟨ηs, ys − x̃⟩ ≤ 1

2

t∑
s=1

∥ys − x̃∥2 − 1

2

t∑
s=1

∥ys+1 − x̃∥2 + 1

2

t∑
s=1

γ2s∥ηs∥2

=
1

2
∥y1 − x̃∥2 − 1

2
∥yt+1 − x̃∥2 + 1

2

t∑
s=1

γ2s∥ηs∥2

≤ 1

2
∥y1 − x̃∥2 + 1

2

t∑
s=1

γ2s∥ηs∥2

=
1

2
∥x1 − x̃∥2 + 1

2

t∑
s=1

γ2s∥ηs∥2

= E1 +
1

2

t∑
s=1

γ2s∥ηs∥2

(C.11)

With the above established, let us reconsider the quantity
〈
g(x̃), x̄t − x̃

〉
. Specifically, due

to the above derivations, we have that for all t ≥ 1:〈
g(x̃), x̄t − x̃

〉
≤ E1

γ̃t
+

∑t
s=1 γsϕs
γ̃t

+

∑t
s=1 γ

2
sψs

γ̃t

=
E1

γ̃t
+

1

γ̃t

t∑
s=1

γt⟨ηt, yt − x̃⟩+ 1

γ̃t

t∑
s=1

γt⟨ηt, xt − yt⟩+
∑t

s=1 γ
2
sψs

γ̃t

≤ 3E1

2γ̃t
+

1

2γ̃t

t∑
s=1

γ2s∥ηs∥2 +
1

γ̃t

t∑
s=1

γt⟨ηt, xt − yt⟩+
κ

γ̃t

t∑
s=1

γ2s∥Vs∥2.

Considering the mean of supremum over x̃ ∈ X of the LHS, we end up with

E
[
sup
x̃∈X

〈
g(x̃), x̄t − x̃

〉]
≤ 3E1

2γ̃t
+

1

2γ̃t

t∑
s=1

γ2s E[∥ηs∥2] +
κ

γ̃t

t∑
s=1

γ2s E[∥Vs∥2]

≤ 3E1

2γ̃t
+
M2

γ̃t

t∑
s=1

γ2s +
κM2

γ̃t

t∑
s=1

γ2s

=
3E1

2γ̃t
+ (1 + κ)

M2

γ̃t

t∑
s=1

γ2s

= O
( t∑
s=1

γ2s/γ̃t

)
= O(log t/

√
t),

(C.12)

where the last inequality is direct consequence of the bounded second moment of the stochastic
gradient in Assumption 1 ■

Theorem 2 (PHGD in hidden strongly monotone games). Suppose that players run (PHGD)
in a hidden µ-strongly monotone game with γt = γ/t for some γ > µ. Then, under
Assumptions 1 and 2, the induced sequence of play θt ∈ Θ, t = 1, 2, . . . , enjoys the equilibrium
convergence rate

E[Err(θt)] = O(1/t). (19)
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Proof. Let θ1 ∈ Θ be some arbitrary initialization of the algorithm, and let γ ≥ 1
2µ be

arbitrary. Since the map f is µ-strongly monotone, we have, by the definition of strong
monotonicity, that 〈

g(xt), xt − x∗
〉
≥ µ∥x− x∗∥2 for all x ∈ X . (C.13)

Next, by Lemma 4, we have that for all t ≥ 1:

Et+1 ≤ Et − γt⟨g(xt), xt − x̂⟩+ γtϕt + γ2t ψt

ϕt = (J(θt)P(θt)Vt − g(xt))
⊺(xt − x̂)

ψt = κ∥Vt∥2, for some κ > 0.

(C.14)

That is
Et+1 ≤ Et − µγt∥xt − x∗∥22 + γtϕt + γ2t ψt

= Et − 2µγtEt + γtϕt + γ2t ψt

= (1− 2µγt)Et + γtϕt + γ2t ψt.

(C.15)

Let Ht = {θs : s = 1, . . . , t} be the history of play up to iteration t. In expectation, it follows
from the above that, for all t ≥ 1:

E[Et+1] ≤ (1− 2µγt)E[Et] + γt E[ϕt] + γ2t E[ψt]

= (1− 2µγt)E[Et] + γt E
[
E[ϕt |Ht]

]
+ γ2t E

[
E[ψt |Ht]

]
.

(C.16)

Note that xt is Ht-measurable; hence, we have that

E[ϕt |Ht] =
(
J(θt)P(θt)E[Vt |Ht]− g(xt)

)⊺
(xt − x̂)

=
(
J(θt)P(θt)v(θt)− g(xt)

)⊺
(xt − x̂)

=
(
J(θt)P(θt)J(θt)

⊺g(xt)− g(xt)
)⊺
(xt − x̂)

=
(
g(xt)− g(xt)

)⊺
(xt − x̂)

= 0.

(C.17)

Furthermore, since, by Assumption 1, we have that E[∥Vt∥2 |Ht] ≤M2, it also holds that

E[ψt |Ht] = κE[∥Vt∥2 |Ht] ≤ κM2 (C.18)

Next, by some simple substitutions, we have

E[Et+1] ≤ (1− 2µγt)E[Et] + κM2γ2t

=
(
1− 2µγ

t

)
E[Et] +

κM2γ2

t2

(C.19)

Finally, since γ > 1
2µ , we may apply Chung’s lemma [8] to get that, for all t ≥ 1:

E[Et] ≤
κM2γ2

2µγ − 1
· 1
t
+O

( 1

t2
+

1

t2µγ

)
. (C.20)

■

Theorem 3 (PHGD with full gradient feedback in hidden strongly monotone games). Suppose
that players run (PHGD) in a hidden µ-strongly monotone game with full gradient feedback,
and a suffciently small learning rate γ > 0. Then, under Assumptions 1 and 2, the induced
sequence of play θt ∈ Θ, t = 1, 2, . . . , converges to equilibrium at a geometric rate, i.e.,

Err(θt) = O(ρt) (20)
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for some constant ρ ∈ (0, 1) that depends only on the primitives of Γ and the representation
map χ.

Proof. Due to the absence of randomness, and therefore the absence of noise, Lemma 4 may
be simplified to

Et+1 ≤ Et − γt
〈
g(xt), xt − x∗

〉
+ κγ2t ∥vt∥2 (C.21)

for some constants κ > 0, where vt := (∇iℓi(θt))i∈N .
Let β be the modulus of Lipschitz continuity of the gradients vt = J(θt)

⊺g(xt), and let
µ
2 be the modulus of the strong monotonicity of g. Recall that, by Assumption 2, we have
that the singular values of the Jacobian J(θ) of the representation map χ are bounded from
above and below by σmax <∞ and σmin > 0 respectively. Therefore, since vt is β-Lipschitz,
it follows that

∥vt − v∗∥2 ≤ β2∥θt − θ∗∥2 ≤ β2

σ2
min

∥xt − x∗∥2 (C.22)

In conjunction to the above, we then also have

Et+1 ≤ Et − γt
〈
g(xt), xt − x∗

〉
+ κγ2t ∥vt∥2

= Et − γt
〈
g(xt), xt − x∗

〉
+ κγ2t ∥vt − v∗∥2

≤ Et − µγt
1

2
∥xt − x∗∥2 + κγ2t β

2

σ2
min

∥xt − x∗∥2

= Et − µγtEt +
2κγ2t β

2

σ2
min

Et

= Et

(
1− µγt +

2κγ2t β
2

σ2
min

)
(C.23)

Restricting γt such that

1− µγt +
2κγ2t β

2

σ2
min

< 1 ⇐⇒ γt <
σ2
minµ

2κβ2
, (C.24)

we finally have that, for the choice of γt = γ̂ :=
σ2
minµ

8κβ2
, it holds

Et = O(ρt) where ρ :=
(
1− 3σ2

minµ

32κβ2

)
< 1. (C.25)

Leveraging the equivalence of ErrΘ(θt) and ErrX (xt) = Et completes the proof. ■

Appendix D. Experiments

This section demonstrates the method’s applicability in a series of different applccations.
Along with revisiting the established examples of Section 5 in greater detail, we also present
how the PHGD method performs in a couple of additional settings of interest. We begin with
a high-level description of the common test suite, and afterward, we move to the definitive
details of each of the presented applications.

In each example, we define a base game Γ among two or more players N ≡ {1, . . . , N}.
Each player i control a m-dimensional vector of control variables θi ∈ Rm, which they feed
in an individual differentiable preconfigured MLP with two hidden layers that act as the
player’s representation map χi : Rm → Xi. The dimensions of each layer of the MLPs
vary among the different examples. However, the MLP’s output xi = χi(θi) is guaranteed
to be a representation of a discrete probability distribution among the player’s actions in
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some normal-form game, e.g., a Rock-Paper-Scissors game. The actual latent game G of
Γ, is given by the “hidden” loss functions fi : X → R, i ∈ N . Each loss function fi is a
regularized variation of the aforementioned normal-form game, tuned by some µ

2 -strongly
convex regularizer hµ(x) = µ

2 ·
(∑

i∈N ∥xi−x∗i ∥2
)
, where x∗ is the normal-form game’s unique

equilibrium point. The modulus µ is a hyper-parameter, which we tune such that the vector
field g(x) =

(
∇xi

fi(x)
)
i∈N to be strongly monotone, and to avoid finite-precision numerical

errors, which can potentially arise during the computation of x.
A Hidden Game of Matching Pennies. As a first example, we revisit the two-player hidden
game of Matching Pennies we introduced in Section 5. Here, each player’s i control variables θi
are uni-dimensional, and are fed to each player’s individual MLP given by the representation
maps

χi(θi) = sigmoid
(
α
(2)
i · CeLU(α

(1)
i · θi)

)
for all i = 1, 2, (D.1)

where α(1)
i , α

(2)
i ∈ [−1, 1] are randomly chosen. Although the definition of the activation

functions sigmoid : R → [0, 1], and CeLU : R → (−1,∞) are widely common, we give them
below for reference; that is:

sigmoid(x) =
(
1 + exp(−x)

)−1 (D.2a)
CeLU(x) = max{0, x}+min{0, exp(x)− 1}. (D.2b)

In this, and the following examples, without any loss of the generality, we deliberately set
the bias of each of the MLP’s hidden layers to zero, in order for the base game’s unique
equilibrium to lie in θ∗ = 0⃗, and to simplify the notation. Each of the MLP’s output
xi = χ(θi) is the i-th player’s probability of playing Heads in a regularized game of Matching
Pennies, given by the loss functions

f1(x) = −f2(x) = −(2x1 − 1) · (2x2 − 1) + h0.75(x). (D.3)

The latent game’s unique equilibrium, in this case, is at x∗ = χ(θ∗) = ( 12 ,
1
2 ).

In this particular example it is possible to visualize the trajectories of PHGD and gradient
descent with reference, both, the space of control variables R2, and the space of latent
variables [0, 1]2. In Fig. 7a we depict the trajectory of PHGD, with step-size 0.01, in the
above game, initialized at the arbitrary state (1.25, 2.25) with respect to, both, the space of
control variables (left), and the space of latent variables (right), over the sub-level sets of
the energy function in (5). A similar trajectory of the GD algorithm is depicted in Fig. 7b.
Observe that the PHGD’s crosses the sub-level sets of the energy function at most once until
it asymptotically reaches the game’s equilibrium point at θ∗, as opposed to the trajectory of
GD, which exhibits an erratic behavior. In particular, as is depicted in the semi-log plot in
Fig. 7c, PHGD converges to the game’s equilibrium point at an exponential rate as opposed
to the rate of GD, which, at best, can be described as linear.
A Hidden Game of Rock-Paper-Scissors. In the next example we consider a regularized
hidden game of Rock-Paper-Scissors between two players. In a standard Rock-Paper-Scissors
game each player may choose among three strategies, namely, Rock, Paper, or Scissors. No
strategy dominates over the others, with Rock ruling over Scissors, Paper ruling over Rock,
and Scissors ruling over Paper. In this example, each player i controls a 5-dimensional vector
θi ∈ R5 of control variables, which, once again, they may feed their individual differentiable
preconfigured MLP, whose output xi = χi(θi) lies in the 2-dimensional simplex that encodes
the space of probability distributions among the three strategies of the latent game. The
two MLPs are given by the following representation maps:

χi(θi) = softmax
(
A

(2)
i × CeLU(A

(1)
i × θi)

)
for all i = 1, 2, (D.4)
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(a) A trajectory of PHGD in a regularized game of Matching Pennies over the sub-levels of the energy
function in (5). The trajectory is depicted with reference, both, the space of control variables (left), and the
space of latent variables (right). Notice that the trajectory crosses each sub-level set of the energy function,
at most, once, indicating that the function’s value is monotone along the trajectory.
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(b) A trajectory of GD in a regularized game of Matching Pennies over the sub-levels of the energy function
in (5). The trajectory is depicted with reference, both, the space of control variables (left), and the space of
latent variables (right). Notice that the trajectory crosses each sub-level set of the energy function multiple
times indicating that the function’s value is not monotone along the trajectory.
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(c) The distance of x to the latent game’s equilibrium point x∗ = ( 1
2
, 1
2
) along similar trajectories of PHGD

and GD in a regularized game of Matching Pennies. The distance is depicted in a logarithmic scale in order
to reveal the exponential rate of convergence of PHGD.
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(a) A trajectory of PHGD in a regularized game of Rock-Paper-Scissors as depicted in each player’s 2-
dimensional simplex of latent variables. Notice that the trajectory converges to the latent game’s equilibrium
point x∗.
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(b) A trajectory of GD in a regularized game of Rock-Paper-Scissors as depicted in each player’s 2-dimensional
simplex of latent variables. Notice that the trajectory exhibits erratic behavior.
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(c) The mean distance and confidence bound of x to the latent game’s equilibrium point x∗ along similar
trajectories of PHGD and GD in a regularized game of Rock-Paper-Scissors. The distance is depicted in a
logarithmic scale in order to reveal the exponential rate of convergence of PHGD.



28 I. SAKOS, E. V. VLATAKIS-GKARAGKOUNIS, P. MERTIKOPOULOS, AND G. PILIOURAS

where the matrices A(1)
i ∈ [−1, 1]4×5, and A(2)

i ∈ [−1, 1]3×4 are random, and the activation
function CeLU : R → (−1,∞), given as in (D.2b), is applied pair-wise. The definition of
softmax : Rd → ∆d−1, where ∆d−1 is the (d− 1)-dimensional simplex is given, for reference,
by

softmaxj(x) =
exp(xj)∑d
k=1 exp(xk)

for all j = 1, . . . , d. (D.5)

In this case, the latent game’s loss functions are given by the following polynomial system of
equations, whose unique equilibrium lies at the uniform distributions x∗i = χi(θ

∗
i ) = ( 13 ,

1
3 ,

1
3 ),

i = 1, 2:

f1(x) = −f2(x) = −x⊺1Ax2 + h0.2(x) where A =

 0 −1 1
1 0 −1

−1 1 0

. (D.6)

Although, in this example, it is not possible to visualize the trajectories of PHGD and
GD in the space of control variables due to the large dimensionality of the base game, we
may still get a glimpse of the trajectories’ behavior in the space of latent variables. Fig. 8a
depicts an arbitrary trajectory of PHGD with step-size 0.01, as it evolves in the simplices
of the two players. Notice, that the trajectory, clearly, converges to the equilibrium of the
latent game. A trajectory of GD, with the same step size and initialization point, is depicted
in Fig. 8b. In this case, the erratic behavior of GD is more apparent than in the previous
example. A more in-depth comparison of the algorithms in the current setup is depicted in
the semi-log plot of Fig. 8c, where we visualize the mean distance, and confidence bounds,
to the equilibrium point across 100 random trajectories of the two algorithms. Observe, that
PHGD exhibits an exponential rate of convergence, as opposed to the linear rate of GD.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (t)

10-5

100

PGD
GD

Figure 9: The mean distance and confidence bounds of x to the latent game’s
equilibrium point x∗ along similar trajectories of PHGD and GD in a regularized
Shapley game. The distance is depicted in a logarithmic scale in order to reveal
the exponential rate of convergence of PHGD.

A Hidden Shapley’s Game. The next game we are interested in is a hidden Shapley’s game.
The standard Shapley’s game is a two-player normal-form game with payoff matrices:

A =

1 0 β
β 1 0
0 β 1

 and B =

−β 1 0
0 −β 1
1 0 −β

 , (D.7)
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for some β ∈ (0, 1). The setup of this example is quite similar to the one in the previous
example. However, there are a few noteworthy differences. To begin with, the hidden
Shapley’s game is not a zero-sum game. Specifically, the latent game’s loss functions are
given by the following polynomial system of equations:

f1(x) = −x⊺1Ax2 + h0.2(x)

f2(x) = −x⊺2B⊺x1 + h0.2(x).
(D.8)

As in the hidden Rock-Paper-Scissors game, this game’s unique equilibrium also lies in
x∗i = χi(θ

∗
i ) = (13 ,

1
3 ,

1
3 ), i = 1, 2. A second difference is the small modulus, µ = 0.2, that we

choose for the strongly-convex regularizer of this game. In Fig. 9 we depict a semi-log plot
of the mean performance of PHGD and GD in the above game constructed using the same
parameters as in the case of the hidden Rock-Paper-Scissors game. Notice that although the
behaviour of PHGD is similar in both games, the confidence bounds of GD are drastically
larger in the current example.
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Figure 10: The mean distance and confidence bounds of x to the latent game’s
equilibrium point x∗ along similar trajectories of PHGD and GD in a regularized
El Farol Bar game. The distance is depicted in a logarithmic scale in order to
reveal the exponential rate of convergence of PHGD.

A Hidden El Farol Bar Game. As a final example, we are going to revisit and describe the
details of the hidden El Farol Bar game we introduced in Section 5. The El Farol Bar game is
a famous congestion game that is often described as a game between populations. However,
in this example, we are interested in its atomic N -playe variant. In the standard El Farol Bar
game each player is given the option of visiting a specific bar in El Farol, and the outcome
of the game is determined based on the number of players that decided to visit the bar.
From the perspective of the player, there are three possible situations they may encounter,
which carry some respective payoff. If the player decides to do not to visit the bar, then,
independently of the number of bar tenants, the player receives a payoff S. On the other
hand, if the player decides to visit the El Farol bar, then depending on how crowded the
bar is, they may receive a payoff that is strictly smaller, or strictly larger than S. If the
bar is crowded, i.e., more than C ≥ 0 other players have visited the bar at the same time,
then each of them receives payoff B < S. However, if the bar is not crowded, i.e., the total
number of tenants is less than C, then they receive payoff G > S. It’s not difficult to verify
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that the El Farol Bar game has a unique mixed Nash equilibrium, where each player chooses
to visit the bar with probability C

N .
We are going to consider a hidden variant of the above game among N = 30 players.

Each player i controls a 5-dimensional vector of control variables θi ∈ R5, which feeds to
an individual, differentiable, and preconfigured MLP. The MLP’s output xi = χi(θi) is
guaranteed to lie in [0, 1] and is interpreted as the probability of player i visiting the El
Farol bar. Regarding the MLP configuration, we follow a similar structure as in the previous
examples. Specifically, the representation maps χi : R5 → [0, 1] are defined as

χi(θi) = sigmoid
(
α
(2)
i · CeLU(A

(1)
i × θi)

)
for all i = 1, 2, (D.9)

where A(1)
i ∈ [−0.85, 0.85]4×5, and α

(2)
i ∈ [−1, 1]4 are randomly chosen. The additional

restriction to the domain of A(1) reduces the chance for over-flow numerical errors of the
sigmoid activation function. The activation function CeLU : R → (−1,∞) is given as in
(D.2b) and is applied pair-wise to the output of A(1)

i × θi. The loss functions of this game
follow the standard variant’s definitions, namely, we have that

fi(x) = S + xi

(
G− S + P

(∑
i̸=j

xi ≥ C
)
(B −G)

)
+ h0.5(x) for all i ∈ N , (D.10)

and the latent game’s unique equilibrium is at x∗i = C
N , i ∈ N .

The large dimensionality of the above game prohibits the usage of a detailed visualization
as opposed to the previous examples. However, sufficient information about the behavior
PHGD, and GD can be gathered by the performance log-plot across 100 random trajectories
in Fig. 10. Observe that, regardless of the increased number of players, the behavior of
PHGD is unaffected, i.e., it converges to the game’s equilibrium at an exponential rate. On
the other hand, the GD fails to converge in the game’s equilibrium. In fact it eventually
maintains a constant distance from it, unable to procceed further; an indication of a cycling
behavior.
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