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Abstract. The long-run behavior of multi-agent learning – and, in particular, no-regret
learning – is relatively well-understood in potential games, where players have aligned
interests. By contrast, in harmonic games – the strategic counterpart of potential games,
where players have conflicting interests – very little is known outside the narrow subclass
of 2-player zero-sum games with a fully-mixed equilibrium. Our paper seeks to partially fill
this gap by focusing on the full class of (generalized) harmonic games and examining the
convergence properties of follow-the-regularized-leader (FTRL), the most widely studied
class of no-regret learning schemes. As a first result, we show that the continuous-time
dynamics of FTRL are Poincaré recurrent, that is, they return arbitrarily close to their
starting point infinitely often, and hence fail to converge. In discrete time, the standard,
“vanilla” implementation of FTRL may lead to even worse outcomes, eventually trapping
the players in a perpetual cycle of best-responses. However, if FTRL is augmented with a
suitable extrapolation step – which includes as special cases the optimistic and mirror-prox
variants of FTRL – we show that learning converges to a Nash equilibrium from any
initial condition, and all players are guaranteed at most O(1) regret. These results provide
an in-depth understanding of no-regret learning in harmonic games, nesting prior work
on 2-player zero-sum games, and showing at a high level that harmonic games are the
canonical complement of potential games, not only from a strategic, but also from a
dynamic viewpoint.

1. Introduction

The question of “as if” rationality – that is, whether selfishly-minded, myopic agents
may learn to behave “as if ” they were fully rational – has been one of the cornerstones of
non-cooperative game theory, and for good reason. Especially in modern applications of
game theory to machine learning and data science – from online ad auctions to recommender
systems and multi-agent reinforcement learning – the standard postulates of rationality
(knowledge of the game, capacity to compute an equilibrium, flawless execution of equilibrium
strategies, common knowledge of rationality, etc.) are almost never met in practice; as
a result, game-theoretic predictions that rely on these assumptions are likewise put into
question. By contrast, given the ease of implementing and deploying cheap, computationally
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efficient learning algorithms and policies at a large scale, it is often more logical to turn
to the policy being deployed as the object of interest. The aim is then to understand its
long-run behavior – and, in particular, whether it ultimately leads to equilibrium.

A major obstacle in this approach is the complexity of computing a Nash equilibrium, a
problem which is known to be complete for PPAD – and hence intractable – by the seminal
work of Daskalakis et al. [12]. This result implies that it is not plausible to expect any
algorithm to converge to Nash equilibrium in all games (at least, not in a reasonable amount
of time), so it dovetails naturally with the impossibility results of Hart & Mas-Colell [22, 23]
who showed that there are no uncoupled learning dynamics that converge to Nash equilibrium
in all games. On that account, it is natural to ask in which classes of games we can expect a
learning algorithm to converge, in which classes we cannot, and under what conditions.

Perhaps the most well-behaved class of games in terms of learning is the class of potential
games [44, 55], where players have common interests – not necessarily driving them to play
the same strategy, but in the sense that externalities are symmetric and aligned along a
common objective (the potential of the game). In this class of games, the behavior of learning
dynamics – and, in particular, no-regret learning [8, 13, 19, 27, 28, 36, 40, 43, 59] – are
relatively well understood, and there is a wide range of equilibrium convergence results, from
continuous to discrete time, and even with bandit, payoff-based feedback [24, 25, 55].

By contrast, in the presence of conflicting interests, the situation can be quite different.
In two-player zero-sum games with a fully-mixed equilibrium – such as Matching Pennies –
the continuous-time dynamics of no-regret, regularized learning are recurrent in the sense of
Poincaré – that is, the induced trajectory of play returns arbitrarily close to where it started
infinitely many times [41, 48]. In discrete time, the situation becomes more complicated:
the vanilla version of follow-the-regularized-leader (FTRL) – the most widely studied family
of no-regret algorithms – is no longer recurrent, but it diverges away from equilibrium in
the same class of games [18, 42]. On the other hand, if players employ an optimistic /
extra-gradient variant of FTRL, the induced trajectory of play converges to equilibrium
[15, 42] and, under certain conditions, it is even possible to show that it converges at a
geometric rate [62].

At the same time, zero-sum games may also admit a potential function, so it is not
possible to predict the outcome of a learning process based on where it stands along the
potential / zero-sum axis. The non-trivial intersection of these classes means that potential
and zero-sum games are not complementary, and this, not only from a strategic, but also from
a dynamic viewpoint. Instead, the true strategic complement of potential games is the class
of harmonic games. This class was first considered by Candogan et al. [6], who established a
remarkable decomposition result: Every game in normal form can be decomposed as the
sum of a potential game and a harmonic game, and this decomposition is unique up to affine
transformations that do not alter the equilibrium outcomes of the game. In particular, the
class of potential and harmonic games intersect trivially (up to strategic equivalence), and all
two-player zero-sum games with an interior equilibrium are harmonic, thus lending credence
to the fact that it is harmonic games, not zero-sum games, that correctly capture the notion
of conflicting interests in this context. This raises the following natural question:

What is the behavior of no-regret algorithms and dynamics in harmonic games?

Except for a very recent paper by Legacci et al. [35] (which we discuss below), almost
nothing is known on this question. Accordingly, against this backdrop, our contributions can
be summarized as follows:

(1) Starting with a continuous-time model of no-regret learning, we show that all FTRL
dynamics are Poincaré recurrent in all harmonic games. This generalizes and extends
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the recent result of Legacci et al. [35] for the replicator dynamics in uniform harmonic
games (a subclass of harmonic games in which the uniform distribution is always a
Nash equilibrium).1

(2) In discrete-time models of learning, the standard implementation of FTRL cannot be
expected to converge (since it fails to do so in Matching Pennies). To correct this
behavior, we consider a flexible algorithmic template, inspired by Azizian et al. [3] and
dubbed extrapolated FTRL (FTRL+), which augments FTRL with a forward-looking,
extrapolation step (including as special cases the optimistic and extra-step variants of
FTRL, cf. Section 4). We then establish the following results:
(a) Under extrapolated FTRL, players are guaranteed constant individual regret (so,

as a consequence, the players’ empirical frequency of play converges to coarse
correlated equilibrium at a rate of O(1/T )).2 This should be contrasted with the
results of [13, 14] who showed that players can achieve polylogarithmic regret in
any game (finite or convex).

(b) The induced trajectory of play converges to Nash equilibrium from any initial
condition.

Our results aim to provide an in-depth understanding of no-regret learning in harmonic games,
nesting prior work on 2-player zero-sum games – from Poincaré recurrence [41, 48] to constant
regret [27] and convergence under optimistic / extra-gradient schemes [11, 15, 18, 42, 62].
In partiucular, at a high level, our results show that harmonic games are the canonical
complement of potential games, not only from a strategic, but also from a dynamic, learning
viewpoint.

2. Preliminaries

2.1. Preliminaries on finite games. Throughout the sequel, we will work with finite games in
normal form. Formally, such games consist of (i) a finite set of players i ∈ N ≡ {1, . . . , N};
(ii) a finite set of actions Ai per player i ∈ N ; and (iii) an ensemble of payoff functions
ui :

∏
j Aj → R, each determining the reward ui(α) of player i ∈ N in a given action profile

α = (α1, . . . , αN ). Putting everything together, we will write A :=
∏

iAi for the game’s
action space and Γ ≡ Γ(N ,A, u) for the game with primitives as above.

During play, each player selects an action according to some mixed strategy, that is, a
probability distribution xi over Ai which assigns probability xiαi

to αi ∈ Ai. In a slight
abuse of notation, if xi assigns all probability mass to some action αi ∈ Ai (that is, xiαi = 1),
we will identify xi with αi and we will call it pure. We will also write Xi := ∆(Ai) ⊆ RAi

for the mixed strategy space of player i, x = (x1, . . . , xN ) for the strategy profile collecting
the strategies of all players, and X :=

∏
i Xi for the game’s strategy space.

The mixed payoff of player i under a mixed strategy profile x ∈ X may then be written as

ui(x) = Eα∼x[ui(α)] =
∑
α∈A

ui(α)xα =
∑

αi∈Ai

ui(αi;x−i)xiαi
(1)

1In more detail, the way that Legacci et al. [35] obtained their result hinges on the so-called Shahshahani
metric, a choice which is essentially “mandated” by the structure of the replicator dynamics. Specifically,
the key property of the Shahshahani metric is that incompressibility of the replicator field is equivalent
to the underlying game being uniformly harmonic; however, finding a variant of the Shahshahani metric
attuned to FTRL seems to be a formidable task, and likewise for non-uniform harmonic games. Because
of this, the “incompressibility” approach of [35] does not seem applicable to our setting – at least, not in a
straightforward way.

2We clarify here that “constant” refers to the horizon T of play; the dependence on the number of actions
may be logarithmic or worse (depending on the specific regularized learning scheme employed by the players).
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where xα :=
∏

i xiαi denotes the joint probability of α = (α1, . . . , αN ) ∈ A under x ∈ X ,
and, in standard game-theoretic notation, we write (xi;x−i) = (x1, . . . , xi, . . . , xN ) for the
profile where player i plays xi ∈ Xi against the strategy x−i ∈ X−i :=

∏
j ̸=i Xj of all other

players. We also respectively define the individual payoff field of player i and the game’s
payoff field as

vi(x) = (ui(αi;x−i))αi∈Ai
and v(x) = (v1(x), . . . , vN (x)) (2)

so ui(x) =
∑

αi∈Ai
viαi

(x)xiαi
≡ ⟨vi(x), xi⟩, where ⟨·, ·⟩ is the standard duality pairing on

RAi . By multilinearity, each player’s individual payoff field is Lipschitz continuous on X ,
and we will write Gi for its Lipschitz modulus, that is

∥vi(x′)− vi(x)∥∗ ≤ Gi∥x′ − x∥ for all x, x′ ∈ X . (3)

Remark. In the above and throughout, ∥·∥ denotes an ambient norm on RAi (usually the
L1 norm), and ∥·∥∗ is the corresponding dual norm (usually the L∞ norm). To simplify
notation, we will not carry the player index i in ∥·∥, and we will instead rely on the context
to resolve any ambiguities.

In terms of solution concepts, we will focus almost exclusively on the notion of a Nash
equilibrium (NE), i.e., a strategy profile x∗ ∈ X that is unilaterally stable in the sense that

ui(x
∗) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

Equivalently, (NE) can be expressed in terms of the game’s payoff field as a variational
inequality of the form

⟨v(x∗), x− x∗⟩ ≤ 0 for all x ∈ X . (VI)
Thus, writing supp(x∗i ) = {αi ∈ Ai : xiαi

> 0} for the support of x∗i , it follows that x∗ is a
Nash equilibrium if and only if ui(αi;x

∗
−i) ≥ ui(βi;x∗−i) for all αi ∈ supp(x∗i ) and all βi ∈ Ai,

i ∈ N . We will use all this freely in the rest of our paper.

2.2. Harmonic games. Our main focus in what follows will be the class of harmonic games,
first introduced by Candogan et al. [6] as a game-theoretic model for strategic situations
with conflicting, anti-aligned interests. Specifically, as was shown by Candogan et al. [6]
– and, in a more general setting, by Abdou et al. [1] – every game in normal form can be
decomposed as the sum of a potential game and a harmonic game, and this decomposition is
unique up to affine transformations that do not alter the equilibrium outcomes of the game.3

In this decomposition, the potential component of a game captures multi-agent strategic
interactions with common interests, whereas the harmonic component covers interactions
with conflicting interests.4

Formally, adapting the more general setup by Abdou et al. [1], we have the following
definition:

Definition 1. A finite game Γ ≡ Γ(N ,A, u) is said to be harmonic when it admits a harmonic
measure, i.e., a collection of weights µiαi

∈ (0,∞), αi ∈ Ai, i ∈ N , such that∑
i∈N

∑
βi∈Ai

µiβi
[ui(αi;α−i)− ui(βi;α−i)] = 0 for all α ∈ A . (HG)

3We briefly recall here that Γ ≡ Γ(N ,A, u) is a potential game if it admits a potential function ϕ : X → R
such that ui(βi;α−i)− ui(αi;α−i) = ϕ(βi;α−i)− ϕ(αi;α−i) for all α, β ∈ A and all i ∈ N [44].

4The terminology “harmonic” is due to Candogan et al. [6] and alludes to the harmonic component of the
graphical Hodge decomposition [30].
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In particular, if Γ is harmonic relative to the uniform measure µiαi = 1, αi ∈ Ai, i ∈ N , we
will say that Γ is a uniform harmonic game (UHG).

Remark. With regard to terminology, Candogan et al. [6] call “harmonic games” what we
call “uniform harmonic games”, and Abdou et al. [1] call “µ-harmonic games” what we call
“harmonic games”.5 We use this convention because it simultaneously simplifies notation
and terminology while capturing all relevant strategic features of the game; for a detailed
discussion, see Appendix A. To avoid needless repetition, and unless there is a danger of
confusion, when we say that Γ is harmonic, we will write µi for the corresponding measure,
and we will write mi = |µi| =

∑
βi∈Ai

µiβi for the total mass of µi. ♦

Broadly speaking, in harmonic games, for any player considering a deviation toward a
specific pure strategy profile, there exist other players with an incentive to deviate away
from said profile. In this regard, harmonic games can be seen as the strategic complement of
potential games, where player interests are aligned and sequences of unilateral best responses
generate a finite improvement path that terminates at a pure Nash equilibrium [44]. By
contrast, except for trivial cases (like the zero game) harmonic games do not admit pure
Nash equilibria, and they possess non-terminating best-response paths. For all these reasons,
harmonic games can be considered as “orthogonal” to potential games, in a sense made
precise by the decomposition results of Candogan et al. [6] and Abdou et al. [1].

It is of course natural to ask what is the relation between harmonic games and zero-sum
games. Games belonging to the latter class – such as Matching Pennies and Rock-Paper-
Scissors – have long been used as prototypical examples of strategic conflict; at the same
time, there are zero-sum games that are also potential (and even possess strict equilibria),
so the potential / zero-sum distinction does not capture the whole picture. As a matter of
fact, it is not a coincidence that the textbook examples of zero-sum games admit fully-mixed
Nash equilibria: as we discuss in Appendix A, two-player zero-sum games with a fully mixed
Nash equilibrium are harmonic, so the existing results for such games are, in a sense, more
closely attuned to their harmonic character.

3. Continuous-time analysis: Poincaré recurrence

The most basic rationality postulate in the context of online learning is the minimization
of a player’s (external) regret, i.e., the difference between a player’s cumulative payoff and
that of the player’s best possible strategy in hindsight. In more detail, assuming for the
moment that play evolves in continuous time, the regret of player i ∈ N relative to a sequence
of play x(t) ∈ X is defined as

Regi(T ) = max
pi∈Xi

∫ T

0

[ui(pi;x−i(t))− ui(x(t))] dt (4)

and we say that the player has no regret under x(t) if Regi(T ) = o(T ) as T →∞.
The most widely used scheme for attaining no regret is the family of policies known as

follow-the-regularized-leader (FTRL) [57, 58]. At a high level, the idea behind FTRL is that,
at all times t ≥ 0, each player i ∈ N plays a mixed strategy xi(t) ∈ Xi that maximizes
the player’s cumulative payoff up to time t minus a certain regularization penalty. In our

5To be even more precise, the definition of Abdou et al. [1] involves an additional set of weights, called a
comeasure; however, as we explain in Appendix A, these weights do not change the preference structure of
the game, so we disregard this extra degree of generality.
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continuous-time setting, this gives rise to the FTRL dynamics

xi(t) = argmax
pi∈Xi

{∫ t

0

ui(pi;x−i(τ)) dτ − hi(pi)
}

= argmax
pi∈Xi

{∫ t

0

⟨vi(x(τ)), pi⟩ dτ − hi(pi)
}
(5)

or, more compactly,
ẏi(t) = vi(x(t)) xi(t) = Qi(yi(t)) (FTRL-D)

where hi : Xi → R is a convex penalty function known as the regularizer of the method, Qi

denotes the regularized choice map of player i, and Q = (Q1, . . . , QN ) denotes the profile
thereof. Formally, writing Yi ≡ RAi for the payoff space of player i ∈ N – that is, the space
of all possible payoff vectors vi of player i – the regularized choice map Qi : Yi → Xi is
defined as

Qi(yi) = argmaxxi∈Xi
{⟨yi, xi⟩ − hi(xi)} for all yi ∈ Yi . (6)

In essence, Qi is a “soft” version of the argmax correspondence yi 7→ argmaxxi∈Xi
⟨yi, xi⟩,

suitably regularized by a penalty term intended to incentivize exploration. For technical
reasons, we will also assume that each hi is strongly convex, i.e.,

hi(txi + (1− t)x′i) ≤ thi(xi) + (1− t)hi(x′i)− 1
2Kit(1− t)∥xi − x′i∥2 (7)

for some Ki > 0 (commonly referred to as the strong convexity modulus of hi), and for all
xi, x

′
i ∈ X , t ∈ [0, 1]. In plain words, this simply means that hi has “enough curvature” in

the sense that it can be bounded from below by a (positive) quadratic function which agrees
with hi to first order.

The go-to example of this setup is the entropic regularizer

hi(xi) =
∑

αi∈Ai

xiαi log xiαi (8)

which yields the so-called logit choice map

Qi(yi) ≡ Λi(yi) :=
(exp(yiαi

))αi∈Ai∑
αi∈Ai

exp(yiαi)
for all yi ∈ Yi. (9)

By Pinsker’s inequality, the entropic regularizer is 1-strongly convex relative to the L1-norm
on Xi [57], and by a standard calculation [37, 54], the induced sytem (FTRL-D) boils down to
the replicator dynamics of Taylor & Jonker [60]. Some other standard examples of (FTRL-D)
include the Euclidean projection dynamics of Friedman [17] when hi(xi) = (1/2)∥xi∥22, the
q-replicator dynamics [21, 38], etc. To streamline our presentation, we defer a detailed
discussion of these examples to Appendix C, and we proceed below to state the main regret
guarantee of (FTRL-D), originally due to [33]:

Theorem 1. Under (FTRL-D), each player’s regret is bounded as Regi(T ) ≤ Hi := maxhi −
minhi.

Theorem 1 showcases the strong no-regret properties of (FTRL-D): it is not possible
to guarantee less than constant, O(1) regret, so (FTRL-D) is optimal in this regard. In
turn, by standard results [47], Theorem 1 implies further that the players’ (correlated)
empirical frequencies zα1,...,αN

(t) := (1/t)
∫ t

0

∏
i xiαi

(τ) dτ converge to the game’s set of
coarse correlated equilibria (CCE) at a rate of O(1/t).

Importantly, this result makes no assumptions about the underlying game, but it does not
carry the same predictive power in all games: for one thing, a game’s set of CCE may include
highly non-rationalizable outcomes (such as dominated strategies and the like) [61]; for
another, the time-averaging that is inherent in the definition of empirical distributions may
conceal a wide range of non-convergence phenomena, from cycles to chaos [48, 56]. On that
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account, the day-to-day behavior of (FTRL-D) in harmonic games cannot be understood
from Theorem 1 alone, and requires a closer, more in-depth look.

Our first result below provides such a lense and shows that (FTRL-D) is almost-periodic
in harmonic games, a property known as Poincaré recurrence.

Theorem 2. Suppose Γ is harmonic. Then almost every orbit x(t) of (FTRL-D) returns
arbitrarily close to its starting point infinitely often: specifically, for (Lebesgue) almost every
initial condition x(0) = Q(y(0)) ∈ X , there exists an increasing sequence of times tn ↑ ∞
such that x(tn)→ x(0).

An immediate consequence of Theorem 2 is that no-regret learning under (FTRL-D) fails
to converge in any harmonic game; in particular, since the orbits of (FTRL-D) eventually
return to (almost) where they started, it is debatable if the players have learned anything
at all, despite the fact that they incur at most constant regret. This cyclic, non-convergent
landscape is the polar opposite of the long-run behavior of (FTRL-D) in potential games,
where the dynamics are known to converge globally [24]. Thus, in addition to the strategic
viewpoint of the previous section, Theorem 2 shows that harmonic games are orthogonal to
potential games also from a dynamic viewpoint.

Theorem 2 also provides a far-reaching generalization of existing results on Poincaré
recurrence in (possibly networked) two-player zero-sum games with an interior equilibrium
[41] to general-sum, N -player games. Combined with our previous remark, and given that the
zero-sum property is not as meaningful for N players as it is for two,6 the class of harmonic
games can be seen as the more natural N -player generalization of two-player zero-sum games
from a learning viewpoint.

To the best of our knowledge, the only comparable result to Theorem 2 in the literature
is the very recent paper of Legacci et al. [35] who showed that the replicator dynamics – a
special case of (FTRL-D) – are Poincaré recurrent in uniform harmonic games, that is, in
harmonic games where the uniform distribution is a Nash equilibrium, cf. (A.1) and the
discussion surrounding Definition 1. In this regard, Theorem 2 extends the recent results of
Legacci et al. [35] along two axes: (i) it applies to the entire class of FTRL dynamics (not
only the replicator dynamics); and (ii) it applies to the entire class of harmonic games (and
not only uniformly harmonic games).

In terms of techniques, Legacci et al. [35] obtained their result through a surprising
connection between a certain Riemannian metric underlying the replicator dynamics and the
defining relation of uniformly harmonic games. This relation no longer holds for different
instances of (FTRL-D) or for non-uniform harmonic games, so the techniques of [35] cannot
be extended – and, in fact, Legacci et al. [35] stated this generalization as an open problem.
Our techniques instead rely on the fact that the orbits y(t) of (FTRL-D) comprise a volume-
preserving flow in the game’s payoff space Y ≡

∏
i Yi (though not necessarily on X ), and

then deriving a suitable constant of motion. In the case of the logit map (9), this constant
of motion can be written as

G(x) =
∏
i∈N

∏
αi∈Ai

x
µiαi
iαi

for all x ∈ X , (10)

where µ = (µiαi
)αi∈Ai,i∈N is the harmonic measure on X defining Γ. In the more general

case, the construction of a constant of motion for (FTRL-D) involves a characterization of
harmonic games in terms of a “strategic center”, which we carry out in detail in Appendix C.

6Recall that any N-player game can be turned into an equivalent zero-sum game by adding a fictitious
player.
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4. Discrete-time analysis: Convergence and constant regret via
extrapolation

We now proceed to examine the regret and convergence properties of regularized learning
algorithms in harmonic games. Starting with the standard, vanilla implementation of
FTRL, we reproduce a well-known observation that FTRL spirals out to a non-terminating
cycle of best-responses in Matching Pennies (which is a harmonic game). Subsequently, to
correct this non-convergent behavior, we examine a flexible algorithmic template, which we
call extrapolated FTRL (FTRL+), and which includes as special cases the optimistic and
extra-gradient versions of FTRL.

4.1. Vanilla implementation of FTRL. Building on the discussion of the previous section,
the standard implementation of FTRL in discrete time for n = 1, 2, . . . is

xi,n+1 = argmax
pi∈Xi

{∑n

k=1
ui(pi;x−i,n)− λihi(pi)

}
= argmax

pi∈Xi

{∑n

k=1
⟨vi(xk), pi⟩ − λihi(pi)

}
(11)

or, in more compact, iterative notation

yi,n+1 = yi,n + ηivi(xn) xi,n = Qi(yi,n) (FTRL)

where, as per (6), the map Qi : Yi → Xi denotes the regularized choice map of player i ∈ N ,
λi is a player-specific regularization weight parameter, and ηi = 1/λi represents the learning
rate of player i. Apart from their obvious differences – discrete vs. continuous time – a
salient point that sets (FTRL) apart from (FTRL-D) is the inclusion of the parameter ηi;
this parameter is necessary to control the algorithm’s behavior, and we will discuss it in
detail in the sequel.

As mentioned in the introduction, a major shortfall of (FTRL) – and one of the main
reasons for the increased popularity of optimistic / extra-gradient methods – is that it may
spiral away from Nash equilibrium, even in simple 2× 2 games with a unique equilibrium.
The standard example of this behavior is Matching Pennies, a two-player zero-sum game with
a fully-mixed equilibrium which is also uniformly harmonic, so the trajectories of (FTRL-D)
are Poincaré recurrent (and, in fact, periodic). In more detail, this game can be compactly
represented by the payoff field v(x1, x2) = (4x2− 2, 2− 4x1) for x1, x2 ∈ [0, 1], and its unique
Nash equilibrium is x∗ = (1/2, 1/2). Thus, if we run (FTRL) with a Euclidean reqularizer
– that is, hi(xi) = x2i /2 for i = 1, 2 – and the same learning rate η for both players, a
straightforward calculation shows that the distance Dn = (x1,n − x∗1)2/2 + (x2,n − x∗2)2/2
between xn and x∗ evolves as

Dn+1 = 1
2 (x1,n + ηv1(xn)− x∗1)2 + 1

2 (x2,n + ηv2(xn)− x∗2)2 = (1 + 16η2)Dn (12)

as long as xn + ηv(xn) ∈ X . In other words, the distance of the iterates of (FTRL) from
the game’s equilibrium grows at a geometric rate until xn reaches the boundary of X and is
ultimately trapped in a non-terminating cycle of best responses, cf. Fig. 1. In this regard,
the rationality properties of (FTRL) are even worse than those of (FTRL-D) because the
game’s equilibrium is now repelling.

4.2. Extrapolated FTRL. To mitigate this undesirable, divergent behavior of (FTRL), a
standard approach in the literature is the inclusion of a forward-looking, “extrapolation step”.
Instead of updating the algorithm’s “base state” xn directly, players first move to an interim
“leading state” xn+1/2 using payoff information from xn (this is the extrapolation step);
subsequently, players update xn using payoff information from the leading state xn+1/2, and
the process repeats. In this way, players attempt to anticipate their payoff landscape and, in
so doing, to take a more informed update step at each iteration.
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The seed of this idea goes back to Korpelevich [32] and Popov [49] in the context of
solving monotone variational inequality problems, and it has since percolated to a wide array
of “extra-gradient” or “optimistic” methods, such as the mirror-prox algorithm of Nemirovski
[45], the dual extrapolation variant of Nesterov [46], the optimistic mirror descent algorithm
of Chiang et al. [9] and Rakhlin & Sridharan [50], and many others. Given the different
operational envelope of each of these methods, we consider below an integrated algorithmic
template, which we call extrapolated FTRL (FTRL+), and which is sufficiently flexible to
account for a broad range of these schemes.

Formally, the proposed algorithmic blueprint unfolds in two phases as follows:

a) Extrapolation phase: yi,n+1/2 = yi,n + ηiv̂i,n xi,n+1/2 = Qi(yi,n+1/2)

b) Update phase: yi,n+1 = yi,n + ηiv̂i,n+1/2 xi,n+1 = Qi(yi,n+1)

(FTRL+)

In the above, ηi > 0 is the learning rate of player i, xn and xn+1/2 denote respectively the
method’s base and leading states at stage n = 1, 2, . . . , and v̂i,n and v̂i,n+1/2 are sequences
of “black-box” payoff models at xn and xn+1/2 respectively.

Specifically, following Azizian et al. [3], we will assume throughout that

v̂i,n+1/2 = vi(xn+1/2) for all i ∈ N and all n = 1, 2, . . . (13a)

i.e., players always update the base state xn using payoff information from the leading state
xn+1/2. By contrast, the leading state xn+1/2 can be generated in many different ways,
depending on the targeted update structure. In this regard, we will consider the linear model

v̂i,n = ai vi(xn) + bi vi(xn−1/2) for all i ∈ N and all n = 1, 2, . . . (13b)

where the player-specific coefficients ai, bi ≥ 0 satisfy ai + bi ≤ 1 and represent a mix of past
and present payoff information. In this way, depending on the values of ai and bi, we obtain
the following prototypical regularized learning methods as special cases of (FTRL+):

a) FTRL: if ai = bi = 0 for all i ∈ N , players essentially forego any look-ahead efforts,
so we get

v̂n = 0 for all n = 1, 2, . . . (14a)

In turn, this gives xn+1/2 = xn, i.e., (FTRL+) regresses to (FTRL).
b) Extra-Step FTRL: if ai = 1 and bi = 0 for all i ∈ N , we have

v̂n = v(xn) for all n = 1, 2, . . . (14b)

i.e., players use payoff information from their current state to generate the leading state
xn+1/2. This update structure requires two payoff queries per iteration and its origins
can be traced back to the work of Korpelevich [32]. Specifically, depending on the
choice of hi, it is essentially equivalent to the mirror-prox [45] and dual extrapolation
[46] algorithms, it contains as a special case the forward-looking algorithm of [15, 42],
etc.

c) Optimistic FTRL: if ai = 0 and bi = 1 for all i ∈ N , we have

v̂n = v(xn−1/2) for all n = 1, 2, . . . (14c)

i.e., players reuse the latest available payoff information instead of making a fresh
query at xn (so the algorithm only requires one payoff query per iteration). In this
way, (FTRL+) recovers the optimistic algorithms of [9, 26, 50, 59], the OMW update
scheme of [11, 59] when Q = Λ, etc.
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Clearly, the list above is not exhaustive: many other configurations are possible, e.g.,
with different players using different parameter settings for ai and bi, depending on the
information they have at hand and any other individual considerations. To avoid needlessly
complicating the analysis, our only standing assumption will be that ai + bi > 0 for all i ∈ N
(since, otherwise, the benefits of the extrapolation step would vanish). In particular, by
rescaling the players’ learning rates if needed, we will normalize ai and bi to ai + bi = 1,
leading to the convex model

v̂i,n = λi vi(xn) + (1− λi) vi(xn−1/2) (15)

for some arbitrarily chosen ensemble of player-specific extrapolation coefficients λi ∈ [0, 1],
i ∈ N .

Remark. To simplify the presentation of our results, we will assume throughout the rest of
our paper that (FTRL+) is initialized with y1 = y1/2 = 0.

4.3. Analysis & results. With all this in hand, we are finally in a position to state our main
results for (FTRL+) in harmonic games. We begin by showing that (FTRL+) achieves
order-optimal regret:

Theorem 3. Suppose that each player in a harmonic game Γ is following (FTRL+) with
learning rate ηi ≤ miKi[2(N + 2)maxj mjGj ]

−1 and payoff models as per (13a) and (15).
Then the individual regret of each player i ∈ N is bounded as

Regi(T ) := max
pi∈Xi

T∑
n=1

[ui(pi;x−i,n)− ui(xn)] ≤
Hi

ηi
+

2Gi

N + 2

∑
j∈N

Hj

ηjGj
(16)

where Hi = maxhi −minhi, and Gi is the Lipschitz modulus of vi.

Even though Theorem 3 invites a natural comparison with the constant regret bound
of Theorem 1, the continuous- and discrete-time settings are fundamentally different, so
any conclusions drawn from such a comparison would be specious. Indeed, constant regret
guarantees in the spirit of (16) are particularly rare in the context of discrete-time algorithms,
and as far as we are aware, similar bounds have only been established for optimistic methods
in variationally stable and two-player zero-sum games [27]; other than that – and always to
the best of our knowledge – the tightest regret bounds available for general games (finite
or convex) seem to be (poly)logarithmic [13, 14]. In this regard, just like the recurrence
result of Theorem 2, the O(1) regret bound of Theorem 3 represents a significant extension
of existing results on zero-sum games (and polylogarithmic regret in general games), and
suggests that, from a learning viewpoint, harmonic games are the most natural generalization
of two-player zero-sum games to a general N -player context. We defer the proof of Theorem 3
to Appendix D.

As an immediate corollary of the above, we conclude that, under (FTRL+), the empirical
frequencies of play zα,n := (1/n)

∑n
k=1 xα,k, α ∈ A, converge to the game’s set of CCE at a

rate of O(1/n). This rate is, again, optimal, but as we discussed in Section 3, it offers little
information in games where the marginalization of CCE does not lead to Nash equilibrium
– and, in general N -player harmonic games, there is little hope that it would. In addition,
even when the marginalization of CCE is Nash, the actual trajectory of play may – and, in
fact, often does – behave very differently from the time-averaged frequency of play.

Despite these hurdles, we show below that (FTRL+) does converge to Nash equilibrium.
To state this result formally, we will focus on the case where each player’s regularizer is
smooth in the sense that

hi(xi + t(x′i − xi)) is continuously differentiable at t = 0 (17)
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Figure 1: The evolution of vanilla vs. extrapolated FTRL schemes in harmonic
games. In the left figure, we consider the game of Matching Pennies (blue: FTRL+;
green: FTRL; red: continuous time FTRL); in the center and to the right, two
different orbits in a 2× 2× 2 harmonic game from two different viewpoints (blue:
FTRL+; green/orange:FTRL; payoff profiles on vertices). In all cases, we ran
the optimistic variant of FTRL+ (λi = 0 for all players), and we see that the
trajectories of (FTRL) diverge away from equilibrium and the trajectories of
(FTRL-D) are recurrent (actually, periodic), whereas (FTRL+) converges. We
also see the highly non-convex structure of harmonic games as evidence by their
equilibrium set (thick red line in center and right subfigures).

for all xi ∈ imQi and all x′i ∈ Xi.7 Our prototypical examples – the entropic and Euclidean
regularizers – both satisfy this mild requirement, as do all regularizers of the form hi(xi) =∑

αi∈Ai
θi(xiαi) for some smooth convex function θi : [0, 1]→ R. We then have the following

convergence result:

Theorem 4. Suppose that each player in a harmonic game Γ follows (FTRL+) with learning
rate ηi ≤ miKi[2(N + 2)maxj mjGj ]

−1 and payoff models as per (13a) and (15). Then xn
converges to the set of Nash equilibria of Γ.

To the best of our knowledge, Theorem 4 is the first result of its kind for harmonic games
– and, in that regard, it is somewhat unexpected. To be sure, two-player zero-sum games
with a fully-mixed equilibrium exhibit a comparable pattern: FTRL is Poincaré recurrent in
continuous time, its vanilla discretization is unstable, and its optimistic / forward-looking
implementation is convergent. However, the convex-concave structure of min-max games
which enables this analysis is completely absent in harmonic games, so it is less clear what
to expect in this case (where even the set of Nash equilibria is non-convex, cf. Fig. 1). By
this token, the convergence of (FTRL+) in harmonic games is a property that one could
optimistically hope for, but not one that can be taken for granted.

From a technical standpoint, the proof of Theorems 3 and 4 involves two concurrent
challenges:

(1) Deriving a Lyapunov function with a “sufficient descent” property for all harmonic
games.

(2) Providing an integrated analysis for all possible update structures in (FTRL+).
With regard to the first point, our analysis hinges on the “energy function”

E(p, y) =
∑
i∈N

mi

ηi
Fi(pi, yi) p ∈ X , y ∈ Y, (18)

7The restriction to imQi is technical in nature and is related to the subdifferentiability of hi, cf.
Appendix B.
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In the above, p ∈ X is a benchmark strategy profile acting as a “reference point” for the
analysis while

Fi(pi, yi) = max
xi∈Xi

{⟨yi, xi⟩ − hi(xi)} − [⟨yi, pi⟩ − hi(pi)] (19)

denotes the Fenchel coupling associated to the regularizer hi of player i ∈ N , and represents a
“primal-dual” measure of divergence between pi ∈ Xi and yi ∈ Yi (for an in-depth discussion,
see Appendices B and D). Then, letting En = E(p, yn), the heavy lifting for our analysis is
provided by the “template inequality”

En+1 ≤ En +
∑
i∈N

mi⟨vi(xn+1/2), xi,n+1/2 − pi⟩

+
∑
i∈N

mi⟨vi(xn+1/2)− vi(xn), xi,n+1 − xi,n+1/2⟩

+
∑
i∈N

mi(1− λi)⟨vi(xn)− vi(xn−1/2), xi,n+1 − xi,n+1/2⟩

−
∑
i∈N

miKi

ηi

[
∥xi,n+1 − xi,n+1/2∥2 + ∥xi,n+1/2 − xi,n∥2

]
. (20)

A first important consequence of (20) is that the sequences An = ∥xn+1 − xn+1/2∥2 and
Bn = ∥xn+1/2 − xn∥2 are both summable: this requires a repeated use of the Fenchel-Young
inequality, and an instantiation of p to the strategic center q of Γ; we detail the relevant
arguments in Appendices A and D. Then, by establishing a similar template inequality for
each player i ∈ N , we are able to bound the players’ individual regret by the same upper
bound that we derived for

∑
nAn and

∑
nBn, and which is (up to certain secondary factors)

the bound (16).
For the convergence to Nash equilibrium, the summability argument above also plays a

crucial role. First, by a standard result on numerical sequences, the summability of An and
Bn coupled with the template inequality (20) implies that the energy En of the algorithm
relative to the game’s strategic center converges to some limit value E∞. In turn, this
implies that the score sequence yn is bounded up to a multiple of the vector (1, . . . , 1),
which corresponds to a constant payoff shift in the underlying game. Then, by focusing on
convergent subsequences of yn and the optimality condition resulting from the definition of
Q, we are able to show that any limit point of v(xn) satisfies the variational characterization
(VI) of Nash equilibria, from which our claim follows.

5. Concluding remarks

Our results suggest that the long-run behavior of no-regret algorithms and dynamics
in harmonic games is a very rich topic, and one which opens the door to an entirely new
class of games where positive convergence results can be obtained. We find this particularly
appealing, not only because harmonic games comprise the strategic complement of potential
games, but also because they go beyond standard problems with a convex structure – for
instance, even their equilibrium set is non-convex. As such, the fact that it is possible to
obtain optimal regret guarantees and positive equilibrium convergence results in this setting
is very promising for future work on the topic.

In terms of open questions, it would be important to examine the rate of convergence of
(FTRL+) to equilibrium. Even though (FTRL+) has order-optimal regret bounds, this only
helps in establishing a convergence rate to the game’s set of coarse correlated equilibria; for
Nash equilibria, earlier work by Golowich et al. [19] and some more recent results by Cai
et al. [5] and Gorbunov et al. [20] have shed some light on the convergence of constrained
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Euclidean optimistic methods, but the technology therein does not extend to non-monotone,
non-Euclidean problems. Inspired by Wei et al. [62], we conjecture that the convergence rate
of (FTRL+) in harmonic games is linear: this is based on the observation that any harmonic
game admits a fully-mixed Nash equilibrium, and the weighted sum in the definition of a
harmonic game looks formally similar to the condition needed to establish metric subregularity
in [62]; however, a proof would likely require different techniques.

Another important research direction has to do with the information available to the
players. A first open question here concerns the case where players do not have access to full
information on their mixed payoff vectors, but can only observe their pure payoffs – either in
a “what if”, counterfactual manner, or in the form of bandit, payoff-based feedback. In a
similar manner, the algorithms presented here are not adaptive, in the sense that the players’
step-size policy has to satisfy a certain bound that depends on correctly estimating some
of the game’s parameters. Obtaining an adaptive version of (FTRL+) which, in the spirit
of Rakhlin & Sridharan [50] and Hsieh et al. [27, 28, 29], remains convergent and attains
order-optimal regret in both adversarial and game-theoretic settings without any pre-play
tuning is also an ambitious question for future research.
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Appendix A. Harmonic Games

The class of uniform harmonic games (UHGs) introduced by Candogan et al. [6] provides
a game-theoretic framework for modeling strategic situations with conflicting, anti-aligned
interests.8 Broadly speaking, the characterizing property of uniform harmonic games is the
following: for any player considering a deviation towards a specific pure strategy profile,
there exist other players who are motivated to deviate away from that profile.

Given a finite game Γ = Γ(N ,A, u), this is formalized by the condition that, for all α ∈ A,∑
i∈N

∑
βi∈Ai

[
ui(αi;α−i)− ui(βi;α−i)

]
= 0 . (A.1)

From a strategic viewpoint, uniform harmonic games complement potential games: Candogan
et al. [6] showed that any finite game can be uniquely decomposed into the sum of a potential
game and a uniform harmonic game, up to linear transformations of the payoff functions
that do not change the strategic structure of the game.

Since their introduction, harmonic games have generated a substantial body of literature;
for a brief survey, we refer the reader to [35].

8We include here the word “uniform” to distinguish the class of harmonic games introduced by Candogan
et al. [6] from the more general class of harmonic games considered in this work, cf. Definition 1.
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A.1. Harmonic games, measures and comeasures. The class of uniform harmonic games
exhibits intriguing, yet restrictive, properties. Notably, a UHG always admits the uniformly
mixed strategy as a NE, and it generally possesses a continuum of Nash equilibria [6].
Additionally, the framework of UHGs and the decomposition proposed by Candogan et al.
[6] are incompatible with common game-theoretical transformations, such as the duplication
of strategies or rescaling of payoffs [1]. To address the above limitations, Abdou et al. [1]
extended the definition of harmonic games by the introduction of two parameters: a measure,
that is a positive weight each player assigns to each of their own strategy; and a comeasure,
that is a positive weight each player assigns to each of the other players’ action profiles.

Definition A.1. Let Γ(N ,A, u) be a finite game. A player measure µi is a function µi : Ai →
R++; a player co-measure γi is a function γi : A−i → R++. Correspondingly, a collection
µ = {µi}i∈N (resp. γ = {γi}i∈N ) of player measures (resp. comeasures) is called game
measure (resp. game comeasure). If µi is a player measure, we will write |µi| :=

∑
αi
µiαi

.
Finally, a probability measure is a game measure µ such that |µi| = 1 for all i ∈ N ; a uniform
measure is a game measure µ such that µiαi

= 1 for all i ∈ N , αi ∈ Ai; and a uniform
comeasure is a game comeasure γ such that γiα−i = 1 for all i ∈ N , α−i ∈ A−i.

With these notions in place, Abdou et al. [1] define a finite game Γ to be (µ, γ)-harmonic
if there exist a game measure µ and a game comeasure γ such that, for all α ∈ A,∑

i

∑
βi

µiβi
γiα−i

[
ui(αi;α−i)− ui(βi;α−i)

]
= 0 . (A.2)

In this work, we focus solely on harmonic games with uniform comeasure. As discussed after
Definition 1 in the main body of the article, this choice comes without loss of generality:
the game comeasure in Eq. (A.2) can be absorbed by a payoff rescaling to give a game that
is still harmonic, and preference equivalent to the original game – in a sense that we make
precise in the next section.

A.2. Preference equivalence between harmonic games. The strategic structure of a game
is preserved under monotonic transformations of the utility functions, since the set of pure
Nash equilibria of a game is an ordinal object – it depends only on the signs of unilateral
payoff differences, and not on their absolute values. For this reason, two games Γ(N ,A, u)
and Γ′(N ,A, u′) are called preference-equivalent (PE) if for all α, β ∈ A and all i ∈ N , we
have

sgn
[
u′i(βi;α−i)− u′i(αi;α−i)

]
= sgn

[
ui(βi;α−i)− ui(αi;α−i)

]
. (A.3)

Two games are strategically equivalent (SE) – and we write Γ ∼ Γ′ – if they have the same
unilateral payoff differences, that is if

u′i(βi;α−i)− u′i(αi;α−i) = ui(βi;α−i)− ui(αi;α−i) (A.4)

for all α, β ∈ A and all i ∈ N ; strategically equivalent games are clearly preference-equivalent.

Lemma A.2. Let Γµ,γ = Γµ,γ(N ,A, u) be a harmonic game in the sense of Eq. (A.2). Then
the game (N ,A, u′) with u′i(αi;α−i) = γiα−iui(αi;α−i) is preference-equivalent to the game
Γµ,γ , and it is harmonic in the sense of Eq. (A.2) with measure µ and uniform comeasure.

Proof. Let u′′i (αi;α−i) = µiαi
γiα−i

ui(αi;α−i). Then replacing above, for all α ∈ A,

0 =
∑
i∈N

∑
βi∈Ai

µiβi

[
u′′i (αi;α−i)

µiαi

− u′′i (βi;α−i)

µiβi

]
.
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Let u′i(αi;α−i) =
u′′
i (αi;α−i)

µiαi
= γiα−iui(αi;α−i). The game u′ is preference-equivalent to u,

and
0 =

∑
i∈N

∑
βi∈Ai

µiβi

[
u′i(αi;α−i)− u′i(βi;α−i)

]
(A.5)

for all α ∈ A, so u′ is harmonic in the sense of A.2 with measure µ and uniform comeasure. ■

In the proof above we perform the intermediate step u→ u′′ rather than defining directly
u→ u′ to stress the difference between rescaling the payoffs of a game by a game measure µ
and by a game comeasure γ. The game with payoffs u′ = γu (the meaning of this notation
made precise in the proof above) is preference-equivalent to the game with payoffs u, i.e.,
rescaling the payoffs by a comeasure does not change the strategic structure of the game.
On the other hand, the game with payoffs u′′ = µu′ – again, the meaning made precise
in the proof – is not PE to the game with payoffs u′: rescaling the payoffs by a measure
can change the preferences of the players, and leads to a game with intrinsically different
strategic structure.

Lemma A.2 motivates our choice to focus in this work on harmonic games with arbitrary
measures and uniform comeasures, and to adopt (HG) from Definition 1 to characterize
harmonic games: a harmonic game (HG) Γµ = Γµ(N ,A, u) is a finite game (N ,A, u) with a
game measure µ such that (HG) holds, i.e.,

∑
i∈N

∑
βi∈Ai

µiβi [ui(αi;α−i)− ui(βi;α−i)] = 0
for all α ∈ A.

A.3. Mixed characterization of harmonic games. The defining property (HG) allows for an
equivalent characterization of harmonic games in terms of their mixed payoffs:

Lemma A.3. A finite game Γ = Γ(N ,A, u) is harmonic with measure µ if and only if∑
i∈N
|µi|

〈
vi(x), xi −

µi

|µi|

〉
= 0 for all x ∈ X . (HG-mixed)

Proof. Given a finite game Γ = Γ(N ,A, u) and a game measure µ, let Fi : A → R be defined
by Fi(α) =

∑
βi∈Ai

µiβi
[ui(αi;α−i)− ui(βi;α−i)]. By definition, Γ is a µ-harmonic game if

and only if F (α) :=
∑

i∈N Fi(α) = 0 for all α ∈ A. Denote (with slight abuse of notation)
by F : X → R the multilinear extension of F : A → R, i.e., F (x) =

∑
α xαF (α), with

xα :=
∏

i xiαi
. Now, F (α) = 0 for all α ∈ A if and only if F (x) = 0 for all x ∈ X , which is

the case if and only if

0 = F (x) =
∑

α
xα

∑
i
Fi(α)

=
∑

i

∑
αi

∑
α−i

xiαi
x−iα−i

∑
βi

µiβi
[ui(αi;α−i)− ui(βi;α−i)]

=
∑

i

∑
βi

µiβi
[ui(xi;x−i)− ui(βi;x−i)]

=
∑

i

[
|µi|⟨vi(x), xi⟩ − ⟨vi(x), µi⟩

]
for all x ∈ X , (A.6)

from which our claim follows by factoring out the terms involving |µi|. ■

Remark. The first equality in the second line holds true for harmonic games with uniform
comeasure γiα−i

= 1, since γiα−i
≠ 1 terms would couple with the corresponding x−iα−i

terms in the sum.

The above result can be reformulated as follows:
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Proposition A.4. A finite game Γ = Γ(N ,A, u) is harmonic if and only if it admits a strategic
center (m, q), viz. if there exist (i) a vector m ∈ RN

++ and (ii) a fully mixed strategy q ∈ X
such that ∑

i∈N
mi ⟨vi(x), xi − qi⟩ = 0 for all x ∈ X . (HG-center)

This expression is intriguing: it suggest that a game is harmonic precisely if there exists a
fully mixed strategy q such that, for all x ∈ X , the payoff vector v(x) is perpendicular (with
respect to a m-weighted inner product) to x− q; cf. Example A.1 and Fig. 2. The striking
dynamical consequences of this “circular” strategic structure – hinted at in Fig. 2, showing
a periodic orbit of FTRL in continuous time – are captured precisely by Theorem 2 in the
main text.

Proof of Proposition A.4. Let Γµ = Γµ(N ,A, u) be harmonic; then by Lemma A.3 that there
exist a strategic center (m, q) given by mi := |µi| and qi := µi/|µi| with i ∈ N . Conversely
let Γ = Γ(N ,A, u) admit a strategic center (m, q); then by the same argument Γ is harmonic
with µi := miqi for all i ∈ N . ■

An immediate corollary is the following:

Corollary A.5. If a finite game Γ admits a strategic center (m, q), then q is a Nash equilibrium.

Proof. By Proposition A.4 if Γ admits a strategic center (m, q) then it is µ-harmonic with
µi = miqi for all i ∈ N ; and (µi/|µi|)i∈N is always a NE for µ-harmonic games [1, Theorem
1]. ■

Remark. The converse does not hold: a fully mixed Nash equilibrium is not necessarily a
strategic center. If it were, a game would be harmonic precisely if it admitted a fully mixed
NE, which is not the case – think for example of coordination or anti-coordination games,
that admit a fully mixed Nash equilibrium and are not harmonic.

Example A.1 (A harmonic game: Siege). Consider the following 2×2 game: an army (the row
player) must choose between Attacking a fortress (pure strategy A ) and Not attacking (pure
strategy N ). Simultaneously, the fortress (the column player) decides whether to activate
its Defenses (pure strategy D ) or Not (pure strategy N ). Engaging in either action (the
attack or the defense) incurs a preparation cost of c > 0. The army gains as > c if it attacks
an undefended fortress, but suffers a loss of af > 0 if it attacks and encounters defenses
(the subscripts s and f standing respectively for “successful” and “failed”). Conversely, the
fortress benefits by ds > 0 if it is defended against an attack, while it incurs a loss of df > 0
if attacked without defenses; defeating the attacking army is worth the preparation cost for
the fortress, namely ds − c > −df . This scenario is captured by the following payoff matrix,
specialized on the right to the case c = 1, as = 3, af = 2, ds = 2, df = 4:

D N

A (−af − c, ds − c) (as − c, −df )
N (0, −c) (0, 0)

D N

A −3, 1 2,−4
N 0,−1 0, 0

(A.7)

To determine if the game is harmonic, look for a solution of the linear system∑
i∈N

∑
βi∈Ai

µiβi [ui(αi;α−i)− ui(βi;α−i)] = 0 for all α ∈ A , (HG)

subject to the constraints µiαi
> 0 for all i ∈ N , αi ∈ Ai. For a fixed payoff function u, this

is a system of
∏

j∈N Aj linear equations (one for each α ∈ A) in the
∑

j∈N Aj variables
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Prob. player 1 assigns to N in {A, N}

Pr
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. p
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 to
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 in
 {

D,
 N

}

(A,N) : u = (2, -4) (N,N) : u = (0, 0)

(A,D) : u = (-3, 1) (N,D) : u = (0, -1)

Figure 2: Representation of the harmonic payoff structure for the game in Exam-
ple A.1. Each payoff vector v(x) (black arrows) is perpendicular (with respect
to a weighted inner product) to the vector x− q (dotted segment) between the
evaluation point x of the payoff field and the fully mixed Nash equilibrium q (red
point). As a consequence every orbit of FTRL in continuous time (such as the
one represented by the black curve) is Poincaré recurrent (in this low-dimensional
example, even periodic), as detailed in Theorem 2 in the main text. Color shading
and dotted lines represents player 1’s utility level sets, with brighter regions
indicating higher payoffs.

((µiαi
)αi∈Ai

)i∈N , where Ai is the number of pure actions of player i ∈ N . With u given by
(A.7) – left,

µ = λ

[(
c

af + c
,
−c+ df + ds

af + c

)
,

(
as − c
af + c

, 1

)]
(A.8)

is a feasible solution of (HG) for any λ > 0, so the game is harmonic with a 1-dimensional
set of measures. The corresponding strategic center (m, q) with mi =

∑
αi
µiαi

, qi = µi/mi,
i ∈ {1, 2} is

m = λ

(
df + ds
af + c

,
af + as
af + c

)
, q =

[(
c

df + ds
,
−c+ df + ds
df + ds

)
,

(
as − c
af + as

,
af + c

af + as

)]
.

(A.9)
As a sanity check, compute the payoff field and verify that (HG-center) holds true in
the specialized case (A.7) – right. Denoting the mixed strategies of players 1 and 2
respectively by x ∈ ∆({A,N}) and y ∈ ∆({D,N}), the payoff fields are v1(x, y) =
(−3yD + 2yN , 0) , v2(x, y) = (xA − xN ,−4xA) . Choosing λ = 3 the strategic center gives
weights m = (6, 5) and Nash equilibrium q = [(1/6, 5/6) , (2/5, 3/5)]. Condition (HG-center)
boils down to 6 ⟨v1, x − q1⟩ + 5 ⟨v2, y − q2⟩ = 0, which one readily verifies to hold true by
replacing the expressions above and recalling that xA + xN = 1 = yD + yN . Fig. 2 illustrates
the situation: each payoff vector v(x) (black arrows) is perpendicular (with respect to a
weighted inner product) to the vector x− q (dotted segment) between the evaluation point
x of the payoff field and the fully mixed Nash equilibrium q (red point). ♦

A.4. Harmonic and zero-sum games. Candogan et al. [6]’s uniform harmonic games, defined
by Eq. (A.1), are precisely the harmonic games with uniform measure, which makes uniform
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harmonic games a strict subset of the set of HGs. Importantly, HGs include another archetypal
class of perfect-competition games: as we show in this section, two-player zero-sum games
(2ZSGs) with an interior NE x∗ are harmonic with (probability) measure µ = x∗.

To show this, we will need the following definition and lemma:

Definition A.6 (Non-strategic game). A finite normal form game Γ = Γ(N ,A, k) is called
non-strategic if the payoff of each player does not depend on their own choice, viz. if
ki(αi, α−i) = ki(βi, α−i) for all i ∈ N , α ∈ A, βi ∈ Ai.

Lemma A.7. Two finite games Γ(N ,A, u),Γ′(N ,A, u′) are strategically equivalent in the
sense of Eq. (A.4) if and only if their difference is a non-strategic game.

Proof. Let Γ− Γ′ be non-strategic; then k := u′ − u fulfills the condition of Definition A.6,
which shows that u and u′ fulfill Eq. (A.4). Conversely let Γ and Γ′ be strategically equivalent;
set k := u′ − u and rearrange the terms in Eq. (A.4) to immediately conclude that k is a
non-strategic game. ■

Proposition A.8. Let Γµ = Γµ(N ,A, u) be a harmonic game. If the measure µ fulfills
|µi| = |µj | for all i, j ∈ N then Γµ is strategically equivalent to a zero-sum game.

Proof. Recall that |µi| ≡
∑

αi
µiαi

. Under the assumption |µi| = |µj | for all i, j ∈ N , let c :=
|µi| for any i ∈ N . By (HG), the payoff u of Γµ in this case fulfills

∑
i∈N [ui(α)− ki(α)] = 0

for all α ∈ A, with ki(αi;α−i) := c−1
∑

βi
µiβi

ui(βi, α−i). Set u′i := ui − ki. By definition
u′ is a zero-sum game; furthermore, the difference between ui and u′i is non-strategic,
since ki(αi;α−i) does not depend on αi. Thus ui and u′i are strategically equivalent by
Lemma A.7. ■

In particular we have the following:

Corollary A.9. Let Γµ = Γµ(N ,A, u) be a harmonic game. If the measure µ is a probability
measure, then Γµ is strategically equivalent to a zero-sum game.

The converse holds true only in the case of two-player games:

Proposition A.10. Every two-player zero-sum game with an interior Nash equilibrium x∗ is
harmonic, with (probability) measure µ = x∗.

Proof. Let Γ = Γ(N ,A, u) be a two-player zero-sum game with interior Nash equilibrium x∗.
If we show that ∑

i∈N
|x∗i |

〈
vi(x), xi −

x∗i
|x∗i |

〉
= 0 for all x ∈ X , (A.10)

then we can conclude by Lemma A.3 that Γ is harmonic with measure x∗. Eq. (A.10) holds
indeed true: |x∗i | = 1 for all i ∈ N , and it is well known [41, 42] that two-player zero-sum
games with an interior equilibrium x∗ fulfill

∑
i∈N ⟨vi(x), xi − x∗i ⟩ = 0 for all x ∈ X , so we

are done. ■

Harmonic games thus encompass and substantially generalize two prototypical classes of
games with anti-aligned incentives, serving as an ideal complement to the class of potential
games. This is made precise in [1]: building on the work of Candogan et al. [6], Abdou
et al. [1] showed that, for any choice of game measure µ, every finite game can be uniquely
decomposed into the sum of a potential and a µ-harmonic game, up to strategic equivalence.

This establishes harmonic games as the natural complement of potential games from a
strategic perspective; Theorem 2 in the main text shows that this holds true from a dynamic
perspective as well.
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Appendix B. Basic properties of regularizers and the induced choice maps

In this appendix, we collect a number of properties concerning regularizers and the
associated choice maps. To avoid carrying around the player index i ∈ N , we state all our
results for a generic convex subset C of some real vector space V . The desired properties for
FTRL will then be obtained by specializing C to Xi or X and V to RAi or

∏
j RAj , depending

on the context.

B.1. Preliminary definitions. To begin, let V be a d-dimensional normed space with norm
∥·∥. In what follows, we will write Y := V∗ for the dual space of V, ⟨y, x⟩ for the canonical
pairing between x ∈ V and y ∈ V∗, and ∥y∥∗ = max{⟨y, x⟩ : ∥x∥ ≤ 1} for the induced dual
norm on Y. Following standard conventions in convex analysis, functions will be allowed to
take values in the extended real line R ∪ {∞}, and if f : V → R ∪ {∞} is a convex function
on V, we will denote its effective domain as

dom f := {x ∈ V : f(x) <∞} . (B.1)

In addition, assuming dom f ̸= ∅, the subdifferential of f at x is defined as

∂f(x) := {y ∈ Y : f(x′) ≥ f(x) + ⟨y, x′ − x⟩ for all x′ ∈ V} (B.2)

and we denote the domain of subdifferentiability of f as

dom ∂f = {x ∈ V : ∂f(x) ̸= ∅} . (B.3)

Finally, to ease notation, a convex function f : C → R will be identified with the extended-
real-valued function f̄ : V → R ∪ {∞} that agrees with f on C and is identically equal to ∞
on V \ C.

With all this in hand, let C be a closed convex subset of V, and let h : C → R be a
K-strongly convex regularizer on C, that is,

h(tx+ (1− t)x′) ≤ th(x) + (1− t)h(x′)− K

2
t(1− t)∥x′ − x∥2 . (B.4)

By standard arguments in convex analysis, this readily implies that

h(x′) ≥ h(x) + ∂h(x;x′ − x) + K

2
∥x′ − x∥2 for all x, x′ ∈ X , (B.5)

where
∂h(x;x′ − x) = lim

θ→0+
[h(x+ θ(x′ − x))− h(x)]/θ (B.6)

denotes the one-sided directional derivative of h at x along the direction of x′−x. To proceed,
we will need the following basic objects:

(1) The convex conjugate h∗ : Y → R of h:

h∗(y) = max
x∈X
{⟨y, x⟩ − h(x)} for all y ∈ Y. (B.7)

(2) The regularized choice map – or mirror map – Q : Y → X induced by h:

Q(y) = argmax
x∈X

{⟨y, x⟩ − h(x)} for all y ∈ Y (B.8)

(3) The associated Fenchel coupling F : X × Y → R of h:

F (p, y) = h(p) + h∗(y)− ⟨y, p⟩ for all p ∈ X , y ∈ Y. (B.9)

Remark. The terminology “Fenchel coupling” is due to [38, 40], which we follow closely in
terms of notation and conventions.
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The proposition below provides some basic properties concerning the first two objects
above:

Proposition B.1. Let h be a K-strongly convex regularizer on C. Then:

(a) Q is single-valued on Y; in particular, for all x ∈ dom ∂h and all y ∈ Y, we have:

x = Q(y) if and only if y ∈ ∂h(x) . (B.10)

(b) The image imQ of Q satisfies ri C ⊆ imQ = dom ∂h ⊆ C.
(c) The convex conjugate h∗ : Y → R of h is differentiable and

Q(y) = ∇h∗(y) for all y ∈ Y. (B.11)

(d) Q is (1/K)-Lipschitz continuous, that is,

∥Q(y′)−Q(y)∥ ≤ (1/K)∥y′ − y∥∗ for all y, y′ ∈ Y. (B.12)

(e) Fix some y ∈ Y and set x = Q(y). Then, for all x′ ∈ X we have:

∂h(x;x′ − x) ≥ ⟨y, x′ − x⟩ . (B.13)

In particular, if ∂h admits a continuous selection ∇h : dom ∂h→ Y, we have

⟨∇h(x), x′ − x⟩ ≥ ⟨y, x′ − x⟩ for all x ∈ dom ∂h and all x ∈ C, (B.14)

or, equivalently,

∂h(x) = ∇h(x) + PC(x) for all x ∈ dom ∂h, (B.15)

where
PC(x) = {w ∈ Y : ⟨w, x′ − x⟩ ≤ 0 for all x′ ∈ X} (B.16)

denotes the polar cone to C at x.

Proof. These properties are fairly well known (except possibly the last one), so we only
provide a quick proof or a precise pointer to the literature.

(a) The maximum in (B.8) is attained for all y ∈ V∗ and is unique because h is strongly
convex. Furthermore, x solves (B.8) if and only if y − ∂h(x) ∋ 0, i.e., if and only if
y ∈ ∂h(x).

(b) By (B.10), we readily get imQ = dom ∂h. Consequently, the rest of our claim follows
from standard results in convex analysis, see e.g., Rockafellar [52, Chap. 26].

(c) The equality Q = ∇h∗ follows immediately from Danskin’s theorem, see e.g., Bert-
sekas [4, Proposition 5.4.8, Appendix B].

(d) See Rockafellar & Wets [53, Theorem 12.60(b)].
(e) Since y ∈ ∂h(x) by (B.10), we readily get that

h(x+ θ(x′ − x)) ≥ h(x) + θ⟨y, x′ − x⟩ for all θ ∈ [0, 1] . (B.17)

Hence, by rearranging and taking the limit θ → 0+,9 we conclude that

∂h(x;x′ − x) = lim
θ→0+

h(x+ θ(x′ − x))− h(x)
θ

≥ ⟨y, x′ − x⟩ (B.18)

as claimed. Finally, for our last assertion, let z = x′ − x and set

ϕ(θ) = h(x+ θz)− [h(x) + ⟨y, θz⟩] for all θ ∈ [0, 1] (B.19)

9The existence of the limit is guaranteed by standard results, see e.g., Bertsekas [4, Appendix B].
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so ϕ(θ) ≥ Kθ2∥z∥2/2 ≥ 0 for all θ ∈ [0, 1]. By construction, it is straightforward to
verify that the function ψ(θ) = ⟨∇h(x+ θz)− y, z⟩ is a selection of subgradients of
ϕ, i.e.,

ϕ(θ′) ≥ ϕ(θ) + ψ(θ)(θ′ − θ) for all θ, θ′ ∈ [0, 1]. (B.20)

Since ψ is in addition continuous (because ∇h is), it follows that ϕ′(θ) = ψ(θ) for
all θ ∈ [0, 1] by a well-known characterization of the one-sided derivatives of convex
functions, cf. Rockafellar [52, Theorem 24.2]. Hence, with ϕ convex and ϕ(θ) ≥ ϕ(0)
for all θ ∈ [0, 1], we conclude that ⟨∇h(x)− y, z⟩ = ψ(0) = ϕ′(0) ≥ 0, and our proof
is complete. ■

The next proposition collects some basic properties of the Fenchel coupling.

Proposition B.2. Let h be a K-strongly convex regularizer on C. Then, for all p ∈ X and all
y, y′ ∈ Y, we have:

(a) F (p, y) ≥ 0 with equality if and only if p = Q(y). (B.21a)

(b) F (p, y) ≥ 1
2K ∥Q(y)− p∥2. (B.21b)

Proof. These properties are also fairly standard, but we provide a quick proof for complete-
ness.

(a) By the Fenchel–Young inequality, we have h(p) + h∗(y) ≥ ⟨y, p⟩ for all p ∈ X , y ∈ Y ,
with equality if and only if y ∈ ∂h(p). Our claim then follows from (B.10).

(b) Let x = Q(y) so y ∈ ∂h(x) by (B.10). Then, by the definition of F , we have

F (p, y) = h(p) + h∗(y)− ⟨y, p⟩
= h(p) + ⟨y, x⟩ − h(x)− ⟨y, p⟩ % because y ∈ ∂h(x)

≥ h(p)− h(x)− ∂h(x; p− x) % by Proposition B.1

≥ 1
2K∥x− p∥

2 % by (B.4)

and our proof is complete. ■

In view of Proposition B.2, F (p, y) can be seen a “primal-dual” measure of divergence
between p ∈ X and y ∈ Y, and the alternate expression (19) is straightforward. This
observation will play a major role in the sequel.

B.2. Basic lemmas. Moving forward, we note that the various update steps in (FTRL+) can
be written as

y+ = y + w and x+ = Q(y+) (B.22)

for some y, w ∈ Y . With this in mind, we proceed below to state a series of basic lemmas for
the Fenchel coupling before and after an update of the form (B.22). These results are not
new, cf. [31, 40, 42] and references therein; however, the assumptions used to derive them
vary significantly in the literature, so we provide detailed proofs for completeness.

All of the results that follow below are stated for a K-strongly convex regularizer on C.
The first result is a primal-dual version of the so-called “three-point identity” for mirror
descent [7]:

Lemma B.1. Fix some p ∈ X , y ∈ Y, and let x = Q(y). Then, for all y+ ∈ Y, we have:

F (p, y+) = F (p, y) + F (x, y+) + ⟨y+ − y, x− p⟩. (B.23)
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Proof. By definition, we have:

F (p, y+) = h(p) + h∗(y+)− ⟨y+, p⟩ (B.24a)
F (p, y) = h(p) + h∗(y)− ⟨y, p⟩ (B.24b)

F (x, y+) = h(x) + h∗(y+)− ⟨y+, x⟩ (B.24c)

Thus, subtracting (B.24b) and (B.24c) from (B.24a), and rearranging, we get

F (p, y+) = F (p, y) + F (x, y+)− h(x)− h∗(y) + ⟨y+, x⟩ − ⟨y+ − y, p⟩ . (B.25)

Our assertion then follows by recalling that x = Q(y), so h(x) + h∗(y) = ⟨y, x⟩. ■

The next result we present concerns the Fenchel coupling before and after a direct update
step; similar results exist in the literature, but we again provide a proof for completeness.

Lemma B.2. Fix some p ∈ X and y, w ∈ Y. Then, letting x = Q(y), y+ = y + w, and
x+ = Q(y+) as per (B.22), we have:

F (p, y+) = F (p, y) + ⟨w, x+ − p⟩ − F (x+, y) (B.26a)

≤ F (p, x) + ⟨w, x− p⟩+ 1
2K∥w∥

2
∗ . (B.26b)

Proof. By the three-point identity (B.23), we have

F (x, y) = F (x, y+) + F (x+, x) + ⟨y − y+, x+ − p⟩ (B.27)

so our first claim follows by rearranging. For our second claim, simply note that

F (p, y) + ⟨w, x+ − p⟩ − F (x+, y) = F (p, y) + ⟨w, x− p⟩+ ⟨w, x+ − x⟩ − F (p, y)

≤ F (p, y) + ⟨w, x− p⟩+ 1

2K
∥w∥2∗ +

K

2
∥x− p∥2 − F (p, y)

(B.28)

so our claim follows from Proposition B.2. ■

The last result we present here is sometimes referred to as a “four-point lemma”, and
concerns the Fenchel coupling before and after an extrapolation step:

Lemma B.3. Fix some p ∈ X and y, w1, w2 ∈ Y. Then, letting x = Q(y), y+i = y + wi, and
x+i = Q(y+i ), i = 1, 2, as per (B.22), we have:

F (p, y+2 ) = F (p, y) + ⟨w2, x
+
1 − p⟩+

[
⟨w2, x

+
2 − x

+
1 ⟩ − F (x

+
2 , y)

]
(B.29a)

= F (p, y) + ⟨w2, x
+
1 − p⟩+ ⟨w2 − w1, x

+
2 − x

+
1 ⟩ − F (x

+
2 , y

+
1 )− F (x

+
1 , y) (B.29b)

≤ F (p, y) + ⟨w2, x
+
1 − p⟩+

1

2K
∥w2 − w1∥2∗ −

K

2
∥x+1 − x∥2 . (B.29c)

Proof. By Lemma B.2, we have

F (p, y+2 ) = F (p, y) + ⟨w2, x
+
2 − p⟩ − F (x

+
2 , y) (B.30)

so (B.29a) follows by writing ⟨w2, x
+
2 − p⟩ = ⟨w2, x

+
1 − p⟩ + ⟨w2, x

+
2 − x

+
1 ⟩, and (B.29b)

follows from the three-point identity (B.23) for the Fenchel coupling. Finally, for (B.29c),
the Fenchel-Young inequality in Peter-Paul form yields

⟨w2 − w1, x
+
2 − x

+
1 ⟩ ≤

1

2K
∥w2 − w1∥2∗ +

K

2
∥x+2 − x

+
1 ∥2 (B.31)

and our claim follows again by invoking Proposition B.2 to write
K

2
∥x+2 − x

+
1 ∥2 − F (x

+
2 , y

+
1 )− F (x

+
1 , y) ≤ −F (x

+
1 , y) ≤ −

K

2
∥x+1 − x∥2 (B.32)
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and then substituting the result in (B.31) ■

Lemmas B.2 and B.3 will be responsible for most of the heavy lifting to derive a Lyapunov
function for (FTRL+). We discuss the relevant details in Appendix D.

We conclude this section with a variational characterization of the abstract update (B.22)
in the case where ∂h of h admits a continuous selection – or, alternatively, h is smooth in
the sense of (17).

Lemma B.4. Fix some y, y+ ∈ Y, and let x+ = Q(y+). Then, for all p ∈ X , we have

⟨y+ − y, p− x+⟩ ≤ ⟨∇h(x+)− y, p− x+⟩ . (B.33)

Proof. Invoking (B.14) in Proposition B.1 with y ← y+, x← x+, and x′ ← p, we get

⟨y+, p− x+⟩ ≤ ⟨∇h(x+), p− x+⟩ . (B.34)

Our claim then follows by subtracting ⟨y, p− x+⟩ from both sides of the above. ■

Appendix C. Continuous-time analysis

C.1. Dynamical systems notions. To fix notation, we recall here some basics from the theory
of dynamical systems, roughly following [2, 51]. In this section, M is an open subset of a
Euclidean space of dimension d.

We consider a system of ordinary differential equations (ODEs) of the form

ẋ(t) = X(x(t)) , (DS)

where x(t) is a curve inM defined on an open interval I ⊆ R (that without loss of generality
we assume to contain 0), and X :M→ Rd is a smooth function. The function X is called
vector field because it assigns a vector X(x) to each point x in M, and (DS) is called
dynamical system generated by X.

Given x0 ∈M, an orbit with initial condition x0 is a solution x(t) of (DS) with x(0) = x0.
The flow generated by X is the smooth function Θ: I ×M →M such that Θ0(x0) = x0
for all x0 ∈ M and d

dtΘt(x) = X(Θt(x)) for all t ∈ I. In words, Θt(x0) is the orbit x(t)
with initial condition x0; the existence and uniqueness of this function is guaranteed by the
existence and uniqueness theorem of solutions of ordinary differential equations.

A flow Θ is called volume-preserving if vol(Θt(U)) = vol(U) for any (Lebesgue) measurable
subset U ⊆M and all t ∈ I. Liouville’s theorem gives a sufficient condition for a flow to be
volume-preserving based on the divergence of its generating field:10

Theorem (Liouville). If divX ≡ 0 then the flow generated by X is volume-preserving.

Volume-preserving flows are closely related to recurrent dynamical patterns. A point
x ∈ M is said to be recurrent under (DS) if, for every neighborhood U of x ∈ M, there
exists an increasing sequence of time tn ↑ ∞ such that Θtn(x) is defined and falls in U for all
n. Moreover, (DS) is said to be Poincaré recurrent if almost every point x ∈M is recurrent.
The celebrated Poincaré recurrence theorem gives a sufficient condition for a dynamical
system to be Poincaré recurrent:

Theorem (Poincaré). Let X be a smooth vector field on M. If the flow induced by X is
volume-preserving and all the orbits of (DS) are bounded, then (DS) is Poincaré recurrent.

10Recall here that the divergence is a differential operator mapping a vector field X on M to the
real-valued function divX(x) :=

∑d
α=1 ∂αX

α(x), where ∂α is a shorthand for the partial derivative ∂/∂xα



24 LEGACCI, MERTIKOPOULOS, PAPADIMITRIOU, PILIOURAS, AND PRADELSKI

C.2. Basic properties of FTRL. In this section we survey some of the properties of the
follow-the-regularized-leader learning scheme in a continuous-time, multi-agent setting, in
line with the presentations of [16, 38, 41]. For ease of reference we recall here some of the
notions introduced in Appendix B and in Sections 2 and 3 from the main body of the paper.

Let Γ = Γ(N ,A, u) be a finite normal form game, and let v denote its payoff field. The
game’s strategy space is X =

∏
j∈N ∆(Aj) ⊆ V :=

∏
j RAj , and the game’s payoff space

is Y := V∗. The payoff field is a map v : V → Y that evaluated at a strategy x ∈ X acts
linearly on any x′ ∈ X by

⟨v(x), x′⟩ =
∑

i∈N
⟨vi(x), x′i⟩ =

∑
i∈N

∑
αi∈Ai

viαi
(x)x′iαi

=
∑

i∈N
ui(x

′
i, x−i) ∈ R .

(C.1)

Assume now that Γ is played continuously over time. As discussed in Section 3, the main
idea behind the follow-the-regularized-leader learning scheme is that, at any given time
t ≥ 0, each player i ∈ N tracks their cumulative payoff up to time t and plays a “regularized”
best response strategy in light of this information. Concretely, given a cumulative payoff
vector yi(t) ∈ Yi, each player i ∈ N selects this optimal strategy xi(t) ∈ Xi by means of a
regularized best response map Qi : Yi → Xi, a single-valued analogue of the best-response
correspondence yi 7→ argmaxxi∈Xi

⟨yi, xi⟩. A standard way [57] of obtaining such map is to
introduce a regularizer function hi : Xi → R that is (i) continuous on Xi, (ii) smooth on
riXi, the relative interior of Xi, and (iii) strongly convex on Xi (as per Eq. (B.4)); and to
consider the induced choice map Qi : Yi → Xi defined by

Qi(yi) = argmaxxi∈Xi
{⟨yi, xi⟩ − hi(xi)} for all yi ∈ Yi . (6)

By Proposition B.1, Qi is well-defined and Lipschitz continuous, and it coincides with the
differential ∇h∗i of h∗i : Yi → R, the convex conjugate of hi.

In a continuous time setting, this regularized learning scheme translates into the following
implicit equations of motion, which govern the evolution of the cumulative payoff y(t) ∈ Y
and of the mixed strategy profile x(t) ∈ X as the players attempt to maximize their payoff
over time:

yiαi
(t) = yiαi

(0) +

∫ t

0

viαi
(x(τ)) dτ with xi(t) = Qi(yi(t)) , (C.2)

for all i ∈ N , αi ∈ Ai. A straightforward computation shows that this is equivalent to Eq. (5)
from Section 3 in the main text, that governs the evolution of the mixed strategy x(t) ∈ X :

xi(t) = argmax
pi∈Xi

{∫ t

0

ui(pi;x−i(τ)) dτ − hi(pi)
}

= argmax
pi∈Xi

{∫ t

0

⟨vi(x(τ)), pi⟩ dτ − hi(pi)
}
.

(5)
Importantly, Eq. (C.2) can be cast in the form (DS) of a dynamical system in the game’s
payoff space. For each i ∈ N , differentiation with respect to t yields

ẏi(t) = vi(x(t)) xi(t) = Qi(yi(t)) , (FTRL-D)

and by aggregating the player indices we obtain the system of ODEs

ẏ = Y (y) , (C.3)

where Y := v ◦Q : Y → Y is a continuous vector field on Y; cf. Fig. 3.
Existence and uniqueness of a global solution y(t) ∈ Y of Eq. (C.3) for any initial condition

y(0) ∈ Y are guaranteed by standard arguments [38, Prop. 3.1]; in line with the terminology
of the previous section we will refer to such a solution as a dual orbit.
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C.3. Constant of motion for harmonic games. The following result shows that FTRL in
harmonic games admits a constant of motion.

Proposition C.1. Let Γ = Γ(N ,A, u) be a finite game and consider a vector m ∈ RN
++ and a

fully mixed strategy q ∈ X . Then the weighted Fenchel coupling Fm,q : Y → R defined by

Fm,q(y) :=
∑

i
miFi(qi, yi) =

∑
i
mi (hi(qi) + h∗i (yi)− ⟨qi, yi⟩) (C.4)

is a constant of motion under (FTRL-D) if and only if Γ is harmonic with strategic center
(m, q).

Proof. Let y(t) be a dual orbit. Then by chain rule

d

dt
Fm,q(y(t)) =

∑
i
mi

[
⟨∇h∗i (yi), ẏi⟩ − ⟨qi, ẏi⟩

]
=

∑
i
mi ⟨xi(t)− qi, vi(x(t))⟩ (C.5)

where the second equality holds by (FTRL-D) and Eq. (B.11). Then, by the characterization
of harmonic games in terms of a strategic center (HG-center), the time derivative of the
weighted Fenchel coupling vanishes identically along a dual orbit of (FTRL-D) precisely if
the underlying game is harmonic. ■

The existence of this constant of motion is fundamental for proving Theorem 2, i.e., the
Poincaré recurrence of continuous-time FTRL in harmonic games. With this key element
established, the remainder of this appendix closely follows the proof technique described by
[41] for the analogous result in the context of two-player zero-sum games.

C.4. FTRL in the space of payoff differences. For any initial condition y(0) ∈ Y, a dual
orbit of (FTRL-D) induces a curve x(t) = Q(y(t)) in the game’s strategy space X which
solves Eq. (5) for all t ≥ 0; in the following we will refer to such curve as trajectory of play.
Crucially, a trajectory of play is in general not the global solution of a dynamical system
ẋ = X(x) for some vector field X : X → X in the game’s strategy space. The reason for
this is that the map Q : Y → X is not necessarily invertible, so there is in general no way to
identify a unique a vector field X on X that is related to the vector field Y on Y via Q.
Related vector fields and induced dynamical systems. The concept of vector fields related by
a smooth map is standard in differential geometry (e.g., [34, p. 181]). LetM,M′ be open
subsets of Euclidean space: given a vector field Y onM and a smooth map F :M→M′,
a vector field X on M′ is called F -related to Y if, for all y ∈ M, (JacF )y · Y (y) = X(x),
with x = F (y). Here JacF is the Jacobian matrix of F , and · represents matrix-vector
multiplication. If F is invertible then such vector field exists always and is unique; else, it
might exist and not be unique, or not exist at all.

Vector fields that are related via a smooth map are useful inasmuch as they generate
“compatible” dynamical systems:

Lemma C.2. Let F :M→M′ be a smooth map between open subsets of Euclidean spaces,
and let ẏ = Y (y) be a dynamical system on M. Let y(t) be an orbit with initial condition
y0 ∈M, and consider the curve on M′ defined by x(t) := F (y(t)). If there exists a vector
field X onM′ that is F -related to Y , then the curve x(t) is an orbit of the dynamical system
ẋ = X(x) with initial condition x0 = F (y0).

Proof. By chain rule,
d

dt
x(t) =

d

dt
F (y(t)) = (JacF )y(t) · ẏ(t) = (JacF )y(t) · Y (y(t)) = X(x(t)) , (C.6)

where the last equality follows by the assumption that X is F -related to Y . ■
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V =
∏

j RAj Y = V∗ R

X Z

v

Π

F

Q

Q̂

Figure 3: Commutative diagram of the maps discussed in Appendices C.2–C.4;
note in particular that v ◦ Q is a vector field on Y. The notation X ↪→ V is
equivalent to X ⊆ V.

In the following, if F :M→M′ is a smooth function between open subsets of Euclidean
spaces, and Y,X are vector fields fulfilling the assumptions of Lemma C.2, we say that the
dynamical system ẏ = Y (y) on M induces the dynamical system ẋ = X(x) on M′ via F .
FTRL induced in the space of payoff differences. The choice map Q : Y → X is in general not
smooth, and neither injective nor surjective [16, Sec.3], so it generally does not allow to induce
the dynamical system (C.3) from the game’s payoff space Y to the game’s strategy space X .
11 In other words, the learning process (FTRL-D) in a finite game gives rise to a dynamical
system in the game’s payoff space Y, to which the theorems presented in Appendix C.1 can
in principle be applied; however, it can be shown that the orbits of Eq. (C.3) in Y are not
bounded, preventing the application of Poincaré’s theorem. Furthermore, the dual orbits do
not convey direct information on the day-to-day behavior of the players, due to the lack of
invertibility of the choice map.

Conversely, the objects of interest from a dynamical, learning viewpoint – that is, the
trajectories of play in the game’s strategy space X – present technical difficulties and do
not easily fit the dynamical systems framework depicted in Appendix C.1. In the following
we show how these difficulties can be circumvented by analyzing the dynamics induced by
(FTRL-D) in yet a third space Z, that arises by taking the differences between payoffs –
rather than their absolute values – as the objects of study.

To make this precise, given the game Γ = Γ(N ,A, u) fix a benchmark strategy α̂i ∈ Ai for
every player i ∈ N , and consider the hyperplane Zi := {zi ∈ RAi : ziα̂i = 0} ⊂ RAi . Clearly,
Zi
∼= RAi−1. Each player’s strategy space Yi = RAi can be mapped onto Zi by the linear

operator
Πi : Yi → Zi with ziαi

= yiαi
− yiα̂i

(C.7)
for all αi ∈ Ai.

Πi is clearly smooth, and a standard check shows that Πi is surjective and not injective:
kerΠi = {yi : yiαi

= yiβi
for all αi, βi ∈ Ai} is the 1-dimensional linear subspace spanned

by the vector 1i = (1, . . . , 1) ∈ Yi; and Π−1(zi) = zi + kerΠi for any zi ∈ Zi. In particular,
for all yi, y′i ∈ Yi, we have that Πi(yi) = Πi(y

′
i) if and only if yi − y′i is proportional to 1i.

Since every zi ∈ Zi is the image of some payoff yi via Πi, the space Z :=
∏

j Zj is called
the game’s payoff-difference space; we will denote by Π the product map Π ≡

∏
j Πj , i.e., (cf.

Fig. 3)
Π: Y → Z, Π(y) := (Πi(yi))i∈N . (C.8)

Lemma C.3. The choice map Q : Y → X is invariant on the level sets of Π.

11A detailed treatment of the conditions under which a trajectory of play x(t) actually is a solution of
dynamical system in the game’s strategy space X is beyond the scope of this work; we refer the interested
reader to [38, 39] for an in-depth treatment.
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Proof. Let y, y′ ∈ Y . By the discussion above, Π(y) = Π(y′) iff y′i − yi = λ1i for some λ ∈ R.
Then for each i ∈ N ,

Qi(y
′
i) = argmax

xi∈Xi

{⟨y′i, xi⟩ − hi(xi)} = argmax
xi∈Xi

{⟨yi, xi⟩+ λ⟨1i, xi⟩ − hi(xi)} = Qi(yi) . ■

Proposition C.4. The dynamical system (C.3) in the game’s payoff space Y induces a
dynamical system

ż = Z(z) (C.9)

in the game’s payoff-difference space Z via the map (C.8).

Proof. By the discussion in the previous section (and in particular Lemma C.2), if we exhibit
a vector field Z on Z that is Π-related to Y , then our proof is complete. Thus we look for a
vector field Z such that, for all y ∈ Y,

(JacΠ)y · Y (y) = Z(z), (C.10)

with z = Π(y). By Eq. (C.7), (JacΠi)αiβi
= δαiβi

− δα̂iβi
. Since Y = v ◦Q, the sought-after

vector field Z must fulfill, for all y ∈ Y and all αi ∈ Ai,

(viαi − viα̂i) ◦Qi(yi) = Ziαi(zi) , (C.11)

with z = Π(y). For each i ∈ N define now (cf. Fig. 3)

Q̂i : Zi → Xi, Q̂i(zi) = Q(yi) (C.12)

for any yi ∈ Π−1
i (zi), and denote by Q̂ : Z → X the induced product map. Such map exists

since Πi is surjective, and is well-defined by Lemma C.3. It follows that the vector field on
Z defined by

Ziαi
(zi) := (viαi

− viα̂i
) ◦ Q̂i(zi) (C.13)

for all i ∈ N , zi ∈ Zi, αi ∈ Ai fulfills Eq. (C.11), and is hence Π-related to Y . ■

This result shows that, for every dual orbit y(t) of Eq. (C.3) with initial condition y0 ∈ Y ,
the curve z(t) = Π(y(t)) is an orbit of the dynamical system (C.9) in Z with initial condition
Π(y0). To conclude this section we give a result implying that if the weighted Fenchel
coupling (C.4) is a constant of motion constant then the solution orbits of (C.9) in Z are
bounded.

Lemma C.5. For any i ∈ N , let yi,n be a sequence in Yi, and let pi be a point in the relative
interior of Xi. If supn|h∗i (yi,n) − ⟨yi,n, pi⟩| < ∞, then also the score differences remain
bounded, i.e., |yiαi,n − yiβi,n| <∞ for all αi, βi ∈ Ai and all n.

Proof. See [41, Appendix D]. ■

Lemma C.6. If the weighted Fenchel coupling (C.4) is a constant of motion under (FTRL-D)
for some fully mixed p ∈ X then the orbits of ż = Z(z) as in Eq. (C.9) are bounded in Z.

Proof. Assume that Fm,q(y) =
∑

imiFi(pi, yi) =
∑

imi (hi(pi) + h∗i (yi)− ⟨pi, yi⟩) is a con-
stant of motion for (FTRL-D) for some fully mixed p ∈ X and some m ∈ RN

++. Let y(t)
be an orbit of (FTRL-D) in Y, and let yi,n := yi(tn) for any sequence of time tn. Let
furthermore Fi,n := h∗i (yi,n)− ⟨pi, yi,n⟩. Then supn|Fi,n| <∞. By Lemma C.5, this implies
that |ziαi,n| <∞ for all αi ∈ Ai, all i ∈ N , and all n. ■
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C.5. Recurrence of FTRL in harmonic games. We now have all the ingredients to prove
that almost every trajectory of play x(t) of (FTRL-D) in harmonic games returns arbitrarily
close to its starting point infinitely often.

Theorem 2. Suppose Γ is harmonic. Then almost every orbit x(t) of (FTRL-D) returns
arbitrarily close to its starting point infinitely often: specifically, for (Lebesgue) almost every
initial condition x(0) = Q(y(0)) ∈ X , there exists an increasing sequence of times tn ↑ ∞
such that x(tn)→ x(0).

Proof of Theorem 2. The proof relies on the following steps:

(1) the vector field Z defined in Eq. (C.13) has vanishing divergence, so its induced flow
is volume-preserving in Z by Liouville’s theorem;

(2) the orbits of the dynamical system ż = Z(z) of Eq. (C.9) are bounded in Z since the
weighted Fenchel coupling (C.4) is a constant of motion for FTRL in harmonic games;

(3) the dynamical system ż = Z(z) is recurrent in Z by Poincaré theorem;
(4) by continuity of Eq. (C.12), almost every trajectory of play x(t) of (FTRL-D) with

initial condition in the image of Q̂ returns arbitrarily close to its starting point
infinitely often.

Indeed, divZ(z) =
∑

i

∑
αi

∂
∂ziαi

((viαi
− viα̂i

) ◦ Q̂i(zi)). For the first term, by chain rule,

divZ(z) =
∑

i

∑
αi

∂viαi

∂ziαi

(Q̂i(zi)) =
∑

i

∑
αi

∑
j

∑
βj

∂viαi

∂xjβj

(Q̂(z))
∂Q̂jβj

∂ziαi

(z)

=
∑

i

∑
αi

∑
βi

∂viαi

∂xiβi

(Q̂(z))
∂Q̂iβi

∂ziαi

(z) ≡ 0

since ∂viαi

∂xiβi
≡ 0 by multilinearity of the payoff functions. The second term yields identical

result with α̂i ← αi, so we conclude that divZ = 0. By Lemma C.6, the invariance of the
weighted Fenchel coupling under (FTRL-D) implies that the payoff differences ziαi

(t) =
yiαi

(t)− ziα̂i
(t) remain bounded for all t ∈ [0,∞). So, by Poincaré theorem, the dynamical

system ż = Z(z) is Poincaré recurrent, i.e., there exists a sequence of time tn ↑ ∞ such that
limn→∞ z(tn) = z0 for almost every z0 ∈ Z. By continuity of (C.12), almost every trajectory
of play x(t) = Q(y(t)) = Q̂(z(t)) with x0 ∈ im Q̂ fulfills limn→∞ x(tn) = x0, which concludes
our proof by noting that the image of Q̂ is the same as the image of Q. ■

Appendix D. Discrete-time analysis

In this appendix, our aim is to provide the full proofs for the discrete-time guarantees of
(FTRL+), as presented in Section 4. Our analysis hinges on a series of energy functions and
associated template inequalities, which we introduce in the next section.

D.1. Lyapunov functions and template inequalities for (FTRL+). The main building block
of our analysis is a suitable Lyapunov function for the discrete-time algorithmic template
(FTRL+). Motivated by the continuous-time analysis of Appendix C, we begin by considering
the player-specific Fenchel couplings

Fi(pi, yi) = hi(pi) + h∗i (yi)− ⟨yi, pi⟩ for pi ∈ Xi, yi ∈ Yi (D.1)

induced by the regularizer hi of player i ∈ N .
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Suppose now that the game is harmonic relative to some measure µ = (µ1, . . . , µN ), let
mi =

∑
αi∈Ai

µiαi
denote the mass of µi, and assume further that each player is running

(FTRL+) with learning rate ηi > 0. Our analysis will hinge on the energy function

E(p, y) =
∑
i∈N

mi

ηi
Fi(pi, yi) p ∈ X , y ∈ Y, (18)

which, as we show below, satisfies the following template inequality:

Proposition D.1. Suppose that each player is running (FTRL+) with learning rate ηi > 0 in
a harmonic game as above. Then, for all pi ∈ Xi, i ∈ N , and all n = 1, 2, . . . , the algorithm’s
energy En := E(p, yn) enjoys the iterative bound:

En+1 ≤ En +
∑
i∈N

mi⟨vi(xn+1/2), xi,n+1/2 − pi⟩

+
∑
i∈N

mi⟨vi(xn+1/2)− vi(xn), xi,n+1 − xi,n+1/2⟩

+
∑
i∈N

mi(1− λi)⟨vi(xn)− vi(xn−1/2), xi,n+1 − xi,n+1/2⟩

−
∑
i∈N

mi

ηi
Fi(xi,n+1, yi,n+1/2)

−
∑
i∈N

mi

ηi
Fi(xi,n+1/2, yi,n) . (D.2)

Proof. We begin by applying the bound (B.29b) of Lemma B.3 with the array of substitutions
(1) p← pi
(2) w1 ← ηiv̂i,n = ηiλi vi(xn) + ηi(1− λi) vi(xn−1/2)
(3) w2 ← ηiv̂i,n+1/2 = ηivi(xn+1/2)
(4) y ← yi,n so x← Qi(yi,n) = xi,n
(5) y+1 ← yi,n+1/2

so x+1 ← xi,n+1/2

(6) y+2 ← yi,n+1 so x+2 ← xi,n+1

We then get

⟨w2 − w1, x
+
2 − x

+
1 ⟩ = ηi⟨vi(xn+1/2)− λi vi(xn)− (1− λi) vi(xn−1/2), xi,n+1 − xi,n+1/2⟩

= ηi⟨vi(xn+1/2)− vi(xn), xi,n+1 − xi,n+1/2⟩
+ ηi(1− λi)⟨vi(xn)− vi(xn−1/2), xi,n+1 − xi,n+1/2⟩ (D.3)

and hence, by (B.29b):

Fi(pi, yi,n+1) ≤ Fi(pi, yi,n) + ηi⟨vi(xn+1/2), xi,n+1/2 − pi⟩
+ ηi⟨vi(xn+1/2)− vi(xn), xi,n+1 − xi,n+1/2⟩
+ ηi(1− λi)⟨vi(xn)− vi(xn−1/2), xi,n+1 − xi,n+1/2⟩
− Fi(xi,n+1, yi,n+1/2)

− Fi(xi,n+1/2, yi,n) . (D.4)

Accordingly, with En = E(p, yn), the bound (D.2) follows by multiplying both sides by mi/ηi
and summing over i ∈ N . ■

Thanks to Proposition D.1, we are now in a position to state and prove the following
summability guarantee for (FTRL+).
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Proposition D.2. Suppose that each player in a harmonic game Γ with harmonic measure µ
is following (FTRL+) with learning rate ηi ≤ miKi[2(N + 2)maxj mjGj ]

−1. Then, for all
T , we have:

T∑
n=1

∥xn+1/2 − xn∥2 +
T∑

n=2

∥xn − xn−1/2∥2 ≤
2E1

(N + 2)maximiGi
. (D.5)

In particular, the sequences An := ∥xn+1/2 − xn∥2 and Bn := ∥xn+1 − xn+1/2∥2 are both
summable.

Proof. By reshuffling the terms of the template inequality (D.2), we get∑
i∈N

mi⟨vi(xn+1/2), pi − xi,n+1/2⟩

≤ En − En+1

+
∑
i∈N

mi⟨vi(xn+1/2)− vi(xn), xi,n+1 − xi,n+1/2⟩ (D.6a)

+
∑
i∈N

mi(1− λi)⟨vi(xn)− vi(xn−1/2), xi,n+1 − xi,n+1/2⟩ (D.6b)

−
∑
i∈N

mi

ηi
Fi(xi,n+1, yi,n+1/2)−

∑
i∈N

mi

ηi
Fi(xi,n+1/2, yi,n) . (D.6c)

We now proceed to bound each term of (D.6) individually, paying no heed to make the
resulting bounds as tight as possible.
Bounding (D.6a). By the Fenchel-Young inequality, we have:

(D.6a) ≤
∑
i∈N

mi

2Gi
∥vi(xn+1/2)− vi(xn)∥2∗ +

∑
i∈N

miGi

2
∥xi,n+1 − xi,n+1/2∥2

≤
∑
i∈N

miGi

2
∥xn+1/2 − xn∥2 +

∑
i∈N

miGi

2
∥xi,n+1 − xi,n+1/2∥2 % vi(x) is Gi-Lipschitz

≤ 1
2N maximiGi · ∥xn+1/2 − xn∥2 + 1

2 maximiGi · ∥xn+1 − xn+1/2∥2 (D.7)

Bounding (D.6b). Again, by the Fenchel-Young inequality, we obtain:

(D.6b) ≤
∑
i∈N

mi(1− λi)
2Gi

∥vi(xn)− vi(xn−1/2)∥2∗ +
∑
i∈N

mi(1− λi)Gi

2
∥xi,n+1 − xi,n+1/2∥2

≤
∑
i∈N

mi(1− λi)Gi

2
∥xn − xn−1/2∥2 +

∑
i∈N

mi(1− λi)Gi

2
∥xi,n+1 − xi,n+1/2∥2

% vi(x) is Gi-Lipschitz

≤ 1
2N maximiGi · ∥xn − xn−1/2∥2 + 1

2 maximiGi · ∥xn+1 − xn+1/2∥2 (D.8)

Bounding (D.6c). Finally, by the lower bound on the Fenchel coupling of Proposition B.2,
we get:

−
∑
i∈N

mi

ηi
Fi(xi,n+1, yi,n+1/2)−

∑
i∈N

mi

ηi
Fi(xi,n+1/2, yi,n)

≤ −
∑
i∈N

miKi

2ηi
∥xi,n+1 − xi,n+1/2∥2 −

∑
i∈N

miKi

2ηi
∥xi,n+1/2 − xi,n∥2 % by (B.21b)

≤ −mini
miKi

2ηi
· [∥xn+1 − xn+1/2∥2 + ∥xn+1/2 − xn∥2] (D.9)
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Thus, by folding Eqs. (D.7)–(D.9) back into (D.6), we obtain the bound∑
i∈N

mi⟨vi(xn+1/2), pi − xi,n+1/2⟩

≤ En − En+1

+
1

2

(
N maximiGi −mini

miKi

ηi

)
∥xn+1/2 − xn∥2

+
1

2

(
2maximiGi −mini

miKi

ηi

)
∥xn+1 − xn+1/2∥2

+
1

2
N maximiGi · ∥xn − xn−1/2∥2 . (D.10)

Now, if we instantiate (D.10) to p ← q where q is the strategic center of Γ, its left-hand
side (LHS) will vanish by (HG-center). Hence, summing over all n = 1, 2, . . . , T , (D.10)
ultimately yields

0 ≤ E1 +
1

2

(
N maximiGi −mini

miKi

ηi

) T∑
n=1

∥xn+1/2 − xn∥2

+
1

2

(
(N + 2)maximiGi −mini

miKi

ηi

) T∑
n=2

∥xn − xn−1/2∥2

+
1

2

(
2maximiGi −mini

miKi

ηi

)
∥xT+1 − xT+1/2∥2

+
1

2
N maximiGi · ∥x1 − x1/2∥2 . (D.11)

Now, by our step-size assumption, we readily obtain

(N + 2)maximiGi ≤
1

2
mini

miKi

ηi
(D.12)

so (D.11) becomes

0 ≤ E1 −
1

4
mini

miKi

ηi

T∑
n=1

∥xn+1/2 − xn∥2 −
1

4
mini

miKi

ηi

T∑
n=2

∥xn − xn−1/2∥2 (D.13)

where we used our initialization convention x1 = x1/2 and the fact that the third line of
(D.11) is negative. We thus get

T∑
n=1

∥xn+1/2 − xn∥2 +
T∑

n=2

∥xn − xn−1/2∥2 ≤
4E1

minimiKi/ηi
(D.14)

from which our assertion follows immediately. ■

D.2. Proof of Theorem 3. We are now in a position to prove the regret guarantees of
(FTRL+), which we restate below for convenience.

Theorem 3. Suppose that each player in a harmonic game Γ is following (FTRL+) with
learning rate ηi ≤ miKi[2(N + 2)maxj mjGj ]

−1 and payoff models as per (13a) and (15).
Then the individual regret of each player i ∈ N is bounded as

Regi(T ) := max
pi∈Xi

T∑
n=1

[ui(pi;x−i,n)− ui(xn)] ≤
Hi

ηi
+

2Gi

N + 2

∑
j∈N

Hj

ηjGj
(16)

where Hi = maxhi −minhi, and Gi is the Lipschitz modulus of vi.
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Proof. By a minor reshuffling of terms in (D.4), we readily get

⟨vi(xn+1/2), pi − xi,n+1/2⟩ ≤
1

ηi
[Fi(pi, yi,n)− Fi(pi, yi,n+1)]

+ ⟨vi(xn+1/2)− vi(xn), xi,n+1 − xi,n+1/2⟩

+ (1− λi)⟨vi(xn)− vi(xn−1/2), xi,n+1 − xi,n+1/2⟩

− 1

ηi
Fi(xi,n+1, yi,n+1/2)−

1

ηi
Fi(xi,n+1/2, yi,n) (D.15)

and hence, by a repeated application of the Fenchel-Young inequality in its Peter-Paul form:

⟨vi(xn+1/2), pi − xi,n+1/2⟩ ≤
1

ηi
[Fi(pi, yi,n)− Fi(pi, yi,n+1)]

+
1

2Gi
∥vi(xn+1/2)− vi(xn)∥2∗ +

Gi

2
∥xi,n+1 − xi,n+1/2∥2

+
1− λi
2Gi

∥vi(xn)− vi(xn−1/2)∥2∗ +
(1− λi)Gi

2
∥xi,n+1 − xi,n+1/2∥2

− Ki

2ηi

[
∥xi,n+1 − xi,n+1/2∥2 + ∥xi,n+1/2 − xi,n∥2

]
. (D.16)

Hence, by using the Lipschitz continuity of vi, we finally get

⟨vi(xn+1/2), pi − xi,n+1/2⟩ ≤
1

ηi
[Fi(pi, yi,n)− Fi(pi, yi,n+1)]

+
Gi

2
∥xn+1/2 − xn∥2 +

Gi

2
∥xi,n+1 − xi,n+1/2∥2

+
Gi

2
∥xn − xn−1/2∥2 +

Gi

2
∥xi,n+1 − xi,n+1/2∥2

− Ki

2ηi

[
∥xi,n+1 − xi,n+1/2∥2 + ∥xi,n+1/2 − xi,n∥2

]
(D.17)

Thus, summing over n = 1, 2, . . . , T , and keeping in mind that our assumptions for ηi also
give Gi < Ki/(2ηi), we finally get

T∑
n=1

⟨vi(xn+1/2), pi−xi,n+1/2⟩ ≤
Hi

ηi
+
Gi

2

[
T∑

n=1

∥xn+1/2 − xn∥2 +
T∑

n=2

∥xn − xn−1/2∥2
]

(D.18)

where we used the fact that Fi(pi, 0) = h(p)−minhi ≤ maxhi −minhi =: Hi. Our result
then follows by invoking (D.5) and using the fact that miGi ≤ maxj mjGj for all i ∈ N . ■

D.3. Proof of Theorem 4. With all this in hand, we are finally in a position to prove our
main equilibrium convergence result for (FTRL+). For convenience, we restate the relevant
theorem below.

Theorem 4. Suppose that each player in a harmonic game Γ follows (FTRL+) with learning
rate ηi ≤ miKi[2(N + 2)maxj mjGj ]

−1 and payoff models as per (13a) and (15). Then xn
converges to the set of Nash equilibria of Γ.

Proof. Our proof proceeds in a series of steps, as detailed below.

Step 1: Convergence of energy levels. We begin by showing that the energy En ≡ E(q, yn)
of (FTRL+) relative to the game’s harmonic center converges to some finite value E∞. That
this is so follows from a well-known property of quasi-Fejér sequences [10, Lemma 3.1], whose
proof we reproduce below for completeness.
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Indeed, by Eq. (D.10) and Proposition D.2, we have

En+1 ≤ En + εn (D.19)

with εn, n = 1, 2, . . . summable. Letting E′
n = En +

∑∞
k=n εk, we further get

E′
n+1 = En+1 +

∞∑
k=n+1

εk ≤ En +

∞∑
k=n

εk = E′
n (D.20)

by (D.19), so E′
n converges. Since εn is summable, it follows that En also converges, as

claimed. ♦

Step 2: Boundedness of score differences. We now proceed to show that the normalized
score differences zn = Π(yn) where Π is the normalization operator (C.8) are bounded.
Indeed, by the definition of En = E(q, yn) =

∑
i∈N (mi/ηi)Fi(qi, yi,n), it follows that

supn Fi(qi, yi,n) <∞ for all i ∈ N . Thus, by Lemma C.5, we conclude that each component
of zn is bounded, so z is itself bounded. ♦

Step 3: Convergent subsequences of (FTRL+). We now observe that (FTRL+) enjoys
the following series of properties:

(1) The sequence zn = Π(yn) admits a subsequence znk
that converges to some limit

point z∞ ∈ Z (a consequence of the fact that zn is bounded, see above).

(2) In turn, this implies that the subsequence xnk
= Q(ynk

) = Q̂(znk
) converges to some

x∞ ∈ X .
(3) Since the sequences An = ∥xn+1/2 − xn∥2 and Bn = ∥xn+1 − xn+1/2∥2 are both

summable (by Proposition D.2), we further have limk→∞ xnk+1/2 = x∞ and, more
generally, by a straightforward induction:

lim
k→∞

xnk+r = x∞ for any (fixed) r = 1/2, 1, 3/2, . . . (D.21)

(4) Likewise, for the sequence of payoff signals v̂n, we have

v̂i,nk
= λi vi(xnk

) + (1− λi) vi(xnk−1/2) −−−−→
k→∞

λivi(x∞) + (1− λi)vi(x∞) = vi(x∞) (D.22)

so limk→∞ v(xnk
) = v(x∞). ♦

Step 4: Variational characterization of limit points. We now proceed to show that
v∞ := v(x∞) belongs to the polar cone PC(x∞) = {w ∈ Y : ⟨w, x− x∞⟩ ≤ 0 for all x ∈ X}
to X at x∞. To do so, suppose that (FTRL+) performs r steps from nk so

ynk+r = ynk
+ η

r∑
j=1

v̂nk+1/2 (D.23)

where, to ease notation, we have made the simplifying assumption that ηi = η for all i ∈ N .12

Then, by invoking Lemma B.4 with y ← ynk
and y+ ← ynk+r, we obtain〈

η

r∑
j=1

v̂nk+1/2, p− xnk+r

〉
≤ ⟨∇h(xnk+r)− ynk

, p− xnk+r⟩

= ⟨∇h(xnk+r)− znk
, p− xnk+r⟩ (D.24)

12This assumption does not affect the core of our arguments, but it greatly streamlines the presentation.
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where, in the second line, we have used the fact that ⟨y, x′ − x⟩ = ⟨Π(y), x′ − x⟩ for all
x, x′ ∈ X and all y ∈ Y . Thus, letting k →∞, we get from Step 3 and the continuity of ∇h
that

ηr⟨v(x∞), x− x∞⟩ ≤ ⟨∇h(x∞)− z∞, x− x∞⟩ (D.25)
for all r = 1, 2, . . . and all x ∈ X .13 Since r can be chosen arbitrarily, we must have
⟨v(x∞), x− x∞⟩ ≤ 0 for all x ∈ X . Hence, by the variational characterization (VI) of Nash
equilibria, we conclude that x∞ must be itself a Nash equilibrium of Γ, and our proof is
complete. ■
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