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Abstract—In this paper, we study the long-run behavior of
learning in strongly monotone games with stochastic, gradient-
based feedback. For concreteness, we focus on the stochastic
projected gradient (SPG) algorithm, and we examine the asymp-
totic distribution of its iterates when the method is run with
constant step-size updates (the de facto choice for practical
deployments of the algorithm). In contrast to variants of the
method with a vanishing step-size case, SPG with a constant
step-size does not converge: instead, it reaches a neighborhood
of the game’s Nash equilibrium at an exponential rate, and
then, due to persistent noise, it fluctuates in its vicinity without
converging (occasionally moving away on rare occasions). We
provide a theoretical quantification of this behavior by analyzing
the Markovian structure of the process. Namely, we show that,
regardless of the algorithm’s initialization, the distribution of
its iterates converges at a geometric rate to a unique invariant
measure which is concentrated in a neighborhood of the game’s
Nash equilibrium. More explicitly, we quantify the degree of this
concentration and the rate of convergence of the algorithm’s
empirical frequency of play to the invariant measure of the
process in Wasserstein distance, and we provide explicit bounds in
terms of the method’s step-size, the variance of the noise entering
the process, and the geometric features of the game’s payoff
landscape.

I. INTRODUCTION

Owing to its simplicity and empirical successes, stochastic
gradient descent (SGD) has become the de facto method for
solving large-scale optimization problems and training a wide
range of machine learning (ML) models and architectures. This
is especially the case in multi-agent models and applications —
from adversarial machine learning [1] and generative models
[2], [3], to multi-agent reinforcement learning [4] and power
control [5], [6] — where the co-existence and interference
of multiple interacting agents precludes the use of more
sophisticated methods (like Newton or LBFGS-type updates).

The standard paradigm for learning in multi-agent environ-
ments is the framework of online learning in games [7]—[9]
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which roughly unfolds as follows:

1) At each stage of a repeated multi-agent decision process,
every participating player selects an action.

2) Each player receives a reward determined by the action
they chose and the actions chosen by all other players.

3) Based on their payoffs and any other feedback, the players
update their actions, and the process repeats.

In this general context, the multi-agent incarnation of SGD
boils down to stochastic projected gradient (SPG) updates of
the form

Xn+1 = (X + vn Vi) (SPG)

where, deferring a detailed presentation for later, n = 1,2, . ..
denotes the running index of the process, X,, is the players’
action profile at time n, V,, is the players’ stochastic gradient
feedback, vy, is the algorithm’s step-size parameter, and I1 is a
projection operator.

In a multi-agent setting as above, the convergence and stability
analysis of the algorithm becomes significantly more intricate
than the vanilla, single-agent case. Indeed, unlike single-agent
convex optimization problems, multi-agent learning dynamics
may exhibit complex behaviors such as cycles, divergence,
or recurrence [10]-[12] — and this, even when the game is
monotone (the multi-agent analogue of convexity). For this
reason, a standard case study for analyzing the properties of
(SPG) from a theoretical standpoint is that of strongly mono-
tone games (the multi-agent analogue of strong convexity),
which have a range of desirable features: @) when the players’
action sets are compact, strongly monotone games admit a
unique Nash equilibrium [13]; b) this Nash equilibrium can
be characterized as the unique solution of a suitable (strongly
monotone) variational inequality [13]; and ¢) under certain
hypotheses, it is possible to show that gradient-based methods
lead to a contraction principle, which can then be exploited to
yield convergence in a wide range of learning settings.

In the case of (SPG) applied to strongly monotone games — or,
more generally, to strongly monotone variational inequalities
(VIs) — the sequence of play X, is known to converge almost
surely [9], [14]-[16] under a diminishing step-size sequence
v, 0 =1,2,..., satisfying the so-called Robbins—Monro (or
“L? — L) summability conditions

Slyn=00, Dlya<oo (1
n=0 n=0

In practical applications and deployments of (SPG), it is
common to adopt a constant step-size implementation for
several reasons. First, constant step-sizes are simpler to deploy
and maintain, since the tuning process is easier and more
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robust. From a practical standpoint, gradient methods with
a vanishing step-size typically suffer from long warm-up
periods and slow convergence to a neighborhood of the
equilibrium point. By contrast, constant step-size methods in
machine learning settings reach the vicinity of a solution much
faster, often within 0.1% accuracy [34]. Many state-of-the-
art architectures, including transformers and large language
models, employ step-size schedules that remain effectively
constant over billions, or even trillions of samples [?].

At the same time, the use of a constant step-size does not
come without its disadvantages: Unlike their diminishing-
step-size counterparts, constant step-size implementations do
not converge to a Nash equilibrium (or, more generally, the
solution of the associated VI), but instead end up fluctuating
in its vicinity due to the effects of persistent stochastic
noise.! In such settings, without more stringent assumptions
in place (like interpolation or vanishing noise), it is more
appropriate to replace questions of convergence with questions
of concentration —namely, asking where the iterates tend to
spend most of their time and how sharply they concentrate
around particular the game’s equilibrium regions.

This raises the natural question:

What is the long-run behavior of stochastic gradient-based
learning with a constant step-size, and what structure,
if any, governs its asymptotic properties?

To answer this, a central object of our paper is the invariant
measure of the Markov process induced by (SPG). Specifically,
the invariant measure captures the long-run statistical behavior
of the algorithm, as it describes the distribution toward which
the iterates stabilize in a probabilistic sense, even when they fail
to converge in a pathwise manner. Thus, rather than focusing
on pointwise convergence, we study the invariant measure as
a principled tool for characterizing the stationary behavior of
constant step-size gradient-based learning methods in strongly
monotone games, allowing us to quantify how the iterates
concentrate around the attractor of the dynamics.

Our contributions and related work: A broad line of work
studies the computation of Nash equilibria in monotone games
through the lens of VI. Classical results provide convergence
guarantees for monotone and strongly monotone problems
under various projection and extragradient methods [17]-[19].
In the stochastic regime, convergence in expectation, high-
probability bounds and last-iterate almost sure convergence
are established under diminishing step-size schedules [9],
[14], [15], [20]-[30]. More relevant to our work is the recent
paper of [31] on weak quasi strongly monotone VIs, which
studies the ergodic properties of the constant step-size vari-
ants of the stochastic extra-gradient and stochastic gradient
desscent-ascent algorithms, under the assumption that the
noise possesses a density component that is uniformly positive.
This condition enables the use of classical ergodic results for
Harris recurrent and positive recurrent Markov chains, ensuring

'In the absence of noise however, convergence is assured as long as the
method’s step-size is less than the game’s inverse smoothness modulus.

irreducibility and geometric convergence in total variation
[32, Theorem 15.0.1]. In contrast, we do not impose any
density assumptions on the noise to establish the uniqueness of
the invariant measure via ergodicity or recurrence properties.
Instead, we leverage the strong monotonicity of the problem
to construct a stochastic contraction argument. This approach
allows us to establish the uniqueness of the invariant measure
and further yields geometric convergence of the iterates to this
measure in Wasserstein distance.

Furthermore, [33] study the ergodic properties of constant step-
size SGD in the minimization of a non-smooth non-convex
objective function, under similar density assumptions to [31],
while [?], [?] analyze the long-run and global convergence time
of SGD in non-convex problems. In the convex regime, [34]
studies constant step-size SGD for strongly convex and smooth
functions, showing convergence to the unique stationary distri-
bution and providing an explicit asymptotic expansion of the
moments of the averaged SGD iterates. Finally, several results
in the optimization literature have established the asymptotic
normality of the averaged iterates of SGD [35]-[37]. However,
in the game-theoretic regime, we do not adopt a computational
viewpoint; instead, the primary focus is on the convergence
of the actual sequence of play, rather than on its weighted
averages. To our knowledge, the only study of the invariant
distribution of gradient-based learning in games has focused
on continuous-time models, cf. [?], [?], [?], [?] and references
therein.

Paper outline: Our paper is organized as follows. In Section II
we introduce some notions of game-theoretic learning and
Markov processes required for our results, while in Section III
we present our learning dynamics. In Section IV, present our
main results regarding the uniqueness of an invariant measure
and the convergence to it. Finally, in Section V we provide
numerical simulations to illustrate the behavior of the invariant
measure with respect to changes in the step-size and the level
of uncertainty.

II. PRELIMINARIES

We start by briefly reviewing some basics of continuous games
and Markov processes, introducing the necessary context for
our results.

Continuous games: A continuous game consists of the
following primitives:

1) A finite set of playersi e N' = {1,...,N}.

2) Each player i € N has access to a compact convex set X;
of a finite dimensional vector space V;, describing the set of
actions available to the player. We will write X := []; &; for
the space of all ensembles x = (xp, ...,xy) of actions x; € X;
that are independently chosen by each player i € . We will
write x = (x;;x_;) to emphasize the action of playeri € N
against the action collection x_; = (x;) % of the rest.

3) The players’ rewards are determined by their individual
payoff functions u;: X — R, which are assumed to be
continuously differentiable in x;. Moreover, we will denote
the individual gradient vector of player i € A/ by

vi(x) = Vyu;(xi3x_;) )



and the collection v(x) = (v;(x),...,vn(x)) thereof.

A continuous game is then defined as a tuple G = G(N, X, u)
with players NV, actions X, and payoff functions u = (u;);enr
as described above.

Nash equilibrium: The classical solution concept of a Nash
equilibrium (NE) characterizes the actions x* € X from which
no player has incentive to unilaterally deviate. More rigorously,
x* e XisaNEif

ui(x*) > u;(x;;x%;) forallx; € Xy, i e N. (NE)

Monotone games: A continuous game § is called monotone
if the following monotonicity condition holds

w(x) —v(x"),x—x") <0 forallx,x" € X. 3)

Setting x_; = x’, for each i € N, we readily obtain that
the individual payoff function u; of each player i € N is
concave in its actions, i.e., the function x; +— u;(x;;x_;).
Standard arguments of convex analysis [38] show that the Nash
equilibria of a monotone game G are precisely the solutions of
the variational inequality

Wx"),x—x") <0 forallx e X (VD)

s0, the existence of a NE point follows from standard results.
We will use this equivalence freely in the sequel. Finally, a
game G is called A-strongly monotone if there exists 4 > 0
such that

((x) —v(x'),x —x'y < =Alx = x|} forallx,x’ € X. (4)

It is well known [18] that a strongly monotone game G has a
unique NE point x* € X.

Wasserstein distance & Markov processes: We close this
section by introducing the Wasserstein-p distance and some
notions on Markov processes. In what follows, we denote by
P(X) the set of probability measures on (X, B(X)), where
B(X) is the Borel o--algebra on X'.

Specifically, a Markov kernel P : X x B(X) — [0,1]
is a function such that (i) for any A € B(X) the map
x — P(x,A) is B(X)-measurable, and (ii) for any x € X,
the map A — P(x, A) is a probability measure on (X, B(X)).
A random process (Xj),en on X is a time-homogeneous
Markov chain with kernel P if for all A € B(X), P(X,+1 €
Al Xp,...,X,) =P(X,4 € A| X,)) = P(X,,A). Moreover,
for a random process (X},),en, we will denote the law of X
given Xp = x as P,(Ck i.e.,

PR (A) =P(Xy € A|Xo=x) forany A€ B(X). (5)

To introduce the concept of the invariant measure, we begin by
defining the action of a kernel on a probability measure. Given
u € P(X) and a Markov kernel P, the probability measure
uP € P(X) is defined as

uP(A) = /y(dx)P(x,A) forany A € B(X) (6)

and captures the probability that the next state lies in A if
the current is sampled from p. With this definition in hand,
u € P(X) will be called an invariant measure on X if u = uP.
Note, that if u is an invariant measure for a Markov kernel
P, and Xy ~ u, then X,, ~ u for all n, as well. Intuitively, a
probability measure over X is invariant if it stays the same
under the underlying dynamics.

Furthermore, for two probability measures u, v € P(X) and
p > 1, the Wasserstein-p distance [39] is defined as

1/p
Wp(u,v) = ﬂe%r(l;f, V)(/le - yllydn(x, y)) @)

where I'(u, v) denotes the set of probability measures (known
also as couplings) on X x X with marginals u,v € P(X).
Additionally, for compact spaces, the Wasserstein-p distance
metrizes the weak convergence of probability measures [39],
meaning that W), (i, u) — 0 if and only if 4, = u, where
‘=’ stands for the weak convergence of probability measures.

We are now ready to present the main learning dynamics
studied in this paper.

III. LEARNING DYNAMICS

One of the most widely used algorithm in continuous games
is the so-called stochastic projected gradient (SPG) algorithm
which, in our notation, unfolds as

Xine1 =i (Xin +yViy) forallie NyneN (SPG)

where y > 0 is the step-size hyperparameter. The operator
I; : X; — A is the Euclidean projection operator, defined as
I1; (x) = argmin,, ¢ y, [lx — x’ |2, and which is a non-expansive
operator [40], i.e.,

ITT; (%) = T (x) [l2 < [lx = X[l ®)

We further make the following two blanket assumptions, which
we adopt for the remainder of the paper.

Assumption 1: We consider a A-strongly monotone game
G(N, X, u), which implies the uniqueness of a NE x* € X,

Assumption 2: At every time step n, each playeri € N has
access to a stochastic first-order oracle (SFO), observing a
noisy version of their individual gradient vector

Vi,n = Vi(Xn’wn) (9)

where {w, }neN are sampled independently from a probability
space (Q, F,P), and independent from the initial state Xj.
Moreover, the functions x +— V;(x,w) are assumed to be
continuous, with the following statistical properties:

(i) Conditionally unbiased: E[V;(X,, w) | F,] = v:(Xy)
(i) Bounded in mean square: E[||V;(Xn, )13 | Fu] < 02
(iii) Lipschitz in the mean:

E[[IVi(x,0) = Vi(x', ) [5] < Lllx = x|l Vx,x" € X

where (F,),en is the natural filtration associated to (X},),eN,
i.e., Fn = O’(X(), N ,Xn).



Finally, denoting the ensemble of projections as Il(x) =
(ITy (x1), ..., In(xn)), we will write (SPG) as X, =
I1(X,, + yV,) in the sequel.

Markovian structure of (SPG): To conclude this section, we
note that the sequence of play (X,),en generated by the (SPG)
dynamics is a Markov chain on X'. For this, let the function
F: X xQ — X be defined as

F(x,w) =(x + yV(x,w)) (10)

Then, the (SPG) dynamics can be described by the time-
homogeneous equation of the form

Xn1 = F(an wp) = H(Xn + ’yV(Xn» wn)) (1)

with w,, sampled from IP independent for each n, verifying that
(X)nen is a time-homogeneous Markov chain [41].

In the sequel, we exploit the Markovian structure of the
iterates (X, ),en from (SPG) to derive our main results on
the existence, uniqueness, and convergence properties of the
invariant measure.

IV. ANALYSIS AND MAIN RESULTS

In this section, we establish the existence and uniqueness of
the invariant measure, as well as the convergence to it.

A. Existence and uniqueness of the invariant measure

In order to meaningfully discuss the long-run behavior of
the dynamics, it is essential to show the existence of an
invariant measure, as it forms the foundation for describing
their stationary properties. Specifically, we have:

Theorem 1. The Markov process (X,)neN generated by the
(SPG) admits an invariant probability measure u in X.

The proof of Theorem 1 relies on the, rather technical, (weak)
Feller property of Markov processes. Specifically, a Markov
process (X, )nen on X with kernel P is (weak) Feller if for
any bounded and continuous function g : X — R, the function
X fP(x, dy)g(y) is bounded and continuous [42]. It is
a topological condition that essentially ensures a form of
regularity in how the process evolves. In simple words, if the
process is initialized from nearby points, the expected future
value under bounded continuous functions remain close.

In the next proposition, we show that the (SPG) iterates satisfy
the (weak) Feller property.

Proposition 1. The random process (X,),en generated by the
dynamics (SPG) is a (weak) Feller Markov chain in X.

Proof. First, note that the function x +— F(x,w) defined in
(10) is continuous in X for all w € Q, since for any x € X and
any sequence {xy }xen € X with x; — x, it holds:

klim F(xp,w) = F(x,w) (12)

invoking the non-expansiveness property of the projection
operator (8), and the continuity of x — V(x, w).

Now, let g : X — R be a continuous and bounded function.
Our goal is to show that the function

(13)

is continuous and bounded, where X; = F(x,w;). For this,
let x € X and let any sequence {xx}ren € X with x;z — x.
Since F(-,w;) is continuous for all w; € Q, as we showed
previously, and g is assumed to be continuous, we obtain:

x = Ex[g(X1)]

Jim g(F(xe, 1)) = g(F(x,01))  P-as. (14)

Finally, since g is bounded, by the dominated convergence
theorem, we obtain:

Jim By, [(X))]

Jim E[g(F (xx, 1))] (15)

= jim [ g(F G0 PEw) 0

/ o(F(x, 1) P(don) (17)

=Ex[g(X1)]

which proves the continuity of x — E[g(X)]. The bounded-
ness of the function follows by the boundedness of f, and our
proof is complete. u

(18)

Having established the (weak) Feller property of the (SPG)
iterates, we are ready to proceed to the proof of Theorem 1.

Proof of Theorem 1. Since (X,,),en is a (weak) Feller Markov
chain and X is compact, the result follows from the
Krylov—Bogolyubov theorem [44], which states that if the
sequence of the probability laws (P,(("))nE]N is tight for some
initial state x € X, then (X,,),en admits at least one invariant
measure. Thus, since any family of probability measures
on a compact space is tight, and X' is compact, the result
follows. [

The next result shows that the sequence of play (X,)nen
admits a unique invariant measure for appropriate choices
of the step-size, enabling a well-defined description of the
system’s stationary behavior.

Theorem 2. The Markov process (X,,)nen generated by the
(SPG) dynamics for y < 2A/NL admits a unique invariant
probability measure u € P(X).

Proof. The idea of this proof relies on a stochastic contraction
argument. More specifically, according to [45, Theorem 4.25],
a Markov process defined via the time-homogeneous dynamics
equation (11) can have at most one invariant probability
measure if there exists a € (0, 1) with

E[l|F(x,w) = F(y,w)|l2] < a|lx —yll2 forallx,y € X.

(19)

Specifically, in our case, for x,y € X, and using (8), we have:

IF(x,w) = F(y.0)[13 < (x + YV (x,w) = (y + ¥V (g, )3
= llx =yl + Y IV(x,0) = V(g 03



+ 27<V(-x’ 0.)) - V(y’ w)’x - y>
(20)

Taking expectation with respec to w, and using Assumption
2(iii) and the A-strong monotonicity, we get
E[||IF (x,0) = F(y, 0)II3] < (1 =2y2)|lx - ylI3
+7 E[IV(x, 0) - V(g )3]
< (1=2yA+y*NL)|Ix - yli3
21

Note that the Lipschitz in the mean condition [Assumption
2(iii)] along with Jensen’s inequality and the A-strong mono-
tonicity, guarantee that A2 < NL, and, thus, (1—2y/l+y2NL) >
0. Using Jensen’s inequality, we obtain:

E[|F(x,w) - F(y,w)2] < \/IE[IIF(x,w) - F(y, w)|3]

<V1 =2y +92NL|x - y|2

(22)
Finally, for y < 24/NL, we have 41 —2yd +y2NL € (0,1)
which proves (19). [

B. Convergence to the invariant measure

After establishing the existence and uniqueness of the invariant
measure, we turn to studying the system’s long-term behavior
and convergence. In view of this, a central object in the study
of ergodic systems is the mean occupation measure, A —
Hn(x, A), defined as

nz_‘: 1{Xy € A}

k=0

1
Hn(x,A) = = Ex
n

n—1
- LS 0y @3
n 120

for any x € A, which plays a key role in quantifying
the long-run behavior of the process. In particular, ergodic
theorems guarantee that time averages, such as those captured
by u,, converge to space averages under the invariant measure,
forgetting the initial state x € X’ and revealing how empirical
behavior reflects the system’s stationary properties. More
concretely, we have:

Theorem 3. Let the Markov process (X,)neN generated by the
(SPG) for v < 2A/NL. Then, the mean occupation measure
converges strongly, to the invariant measure u for y-a.e x € X,
i.e., forall A € B(X)

lim u,(x,A) = u(A) foru-aexeX (24)
n—oo

Moreover, for any 6§ > 0 and y < min{24/NL,216%>/No?}
the probability mass of p around the ball Bs =
{x eX:|x-x*2 < 6}, is bounded by:
)/Na'2

Bs)>1-
u(Bs) 15

(25)

Proof. Let some arbitrary A € B(X). For the first part
of the theorem, we will invoke the Birkhoff’s individual
ergodic theorem [41, Theorem 2.3.4], according to which the
expectation of the indicator function 1 4 under the probability
measure (i, (x, -) converges for u-a.e. initial condition x € X’.

Under the special case of a unique invariant measure, the limit
is constant for p-a.e. initial condition x € & and equal to
the expectation of the function (i.e., 14) with respect to the
invariant measure, f 14 du = pu(A) [41, Proposition 2.4.2].

Thus, we readily get that

lim u,(x,A) = u(A) pu-ae. (26)

for all A € B(X), and the strong convergence of the mean
occupation measure is established.

Now, regarding the second part of the theorem, for the running
distance || X,, — x*||2, we obtain
X1 = 27113 = (X, + V) = ()3
< I Xn +yVa _X*”%
<X = X115 + Y2 IVall3 + 27 Vi, X = x7)
Conditioning on X,,, the above inequality becomes:
E[ X041 = x*13] Xa] < X0 = 2113 + 7 E[IIVall3 | Xa]
+ 27<U(Xn)a Xn - X*>
<1 Xn =[5 + ¥’ No?

— 29| X, — x*||3 27)

Thus, taking expectation conditional on Xy = x in both sides
and iterating over n time steps, we obtain

Ex[I1X, = x*II3] < llx = x*|13 + ¥*No*n
n—1

- 2yAE, Zuxk—x*uﬁl (28)
k=0

Now, for u-a.e. x € X', we have

E, [0 1{Xx ¢ Bs}]

_E [Zroo 11Xk —x*113]
- né?
No?
< L x|F+ L 29
< Hame M Tt @)

Thus, taking n — oo, and using the strong convergence of
the mean occupation measure, established before, we readily

2
obtain that u(B$) < 721:{; and our claim follows. [

One important remark is that the strong convergence of the
mean occupation measure (23) holds for u-a.e. x € X'. Without
further assumptions on the structure of the noise, it is difficult
to infer the support of the invariant measure u. For instance,
it can be shown [46, Lemma 2.2] that if the noise has density
with full support, every state x € X is accessible, and,
subsequently, the support of u consists of the whole space X.
However, we can show that both the law of the Markov process
{Xn},en- and the mean occupation measure (23), converge in
Wasserstein distance for any initial state x € X. Formally, we
have the following results.

Theorem 4. Let the Markov process (X,)neN generated by
(SPG) with y < 2A/NL. Then, the law P;Cn) of the process



given X = x, converges geometrically to the invariant measure
u in Wasserstein-1 distance, i.e.,

WP, @) = O (p"7?)
forp = (1-2yd+y>NL) € (0,1).

(30)

Proof. Let any vx, vy probability measures on X'. Then, there
exist random variables Xy, Yy independent of {w;, },en With

Wi(vx, vy) = EllIXo - Yolla] < E[1Xo - Yol]'* < o0
(€29
where the inequality follows from Holder’s inequality. Then,
for X = F(Xp,w) and Y; = F(Yy,w) that share the same
randomness w, we have by (20) that

E[I1X1 = Y1113 | X0, Y] < (1 =2y2 +y*NL)||Xo - YolI3
(32)

Integrating (34) with respect to the law of (Xo, Yp) given in
(33), we get that

E[IIX: - "1113] < (1 -2y2+y*NL) E[lIXo - Yoll3] (33)

Now, by the definition of the Wasserstein distance and invoking
Holder’s inequality and (35), we have that

Wi (vxP,vyP) < E[|IX1 - Yi[2]* < E[||X, - ni[3]
< (1-2y+y°NL) E[lIX - Yoll3] (34)
Therefore, using induction, we get for any k > 1
Wi (rxPY, vy PE) <EB[I1Xe - Y]
< (1-2y2+¥’NL)* E[||1Xo - Yol3]
(35)
Now, setting vx = dy, i.e., the Dirac measure at state x, and

vy = W, i.e., the unique invariant measure y, and noting that
u = uP™ due to the invariance property of u, (37) gives

W2(PE, 1) < (1= 2ya + ¥’ NL)* E[|IX0 - Yol}]  (36)

We thus get
1/2
WP ) < (1-2y2+ ¥’ NL)* E[[1 X0 - Yol13]
37
and the result follows. [ ]

Now, building on the convergence of the law of the process
{Xn},en> We can show the convergence of the mean occupa-
tion measure at rate O(1/n). Specifically, we have:

Theorem 5. Let the Markov process (X,,)neN generated by the
(SPG) for y < 2A/NL, and x € X. Then, the mean occupation
measure i, (x,-) per (23), converges to the invariant measure
W at a rate

Wi(pn(x,-), 1) = O(1/n). (38)
Proof. Let m; © X x X — [0, 1] be the optimal coupling

(k) .

between P, ’ and y, i.e.,

Wi (PO ) = / - ylhdmi(ry)  (39)

Then, setting IT,, = ZZ;& 7 /n, it is easy to see that I, is a
coupling between u, (x, -) and u, since for any A € B(X)

1n—1 ln—l
M(AX X) =~ > m(Ax X) = ~ 3 P (A) = pn(x. 4)
k=0 k=0

(40)
and

1 n—1 1 n-1
I, (X X A) = = D m(X X A) = = 37 u(A) = u(A) (41)
=0 o
Thus, for p = (1 =2y + y>NL) € (0, 1), we readily get:

Wi (st (. ). 1) < / it = ylladIT (x, )

ln—l )
- ZWI (PX ,,U)
=0

1Y 4p 271/2
< ;ZP E[l1X0 - Yoll3]
oy
1 a1z 1
< —-E|||Xo - Y D — 42
<- [11X0 - Yoll5] v (42)

where the first inequality holds due to the definition of the
Wasserstein-1 distance and the second one due to Theorem 4.
Thus, the result follows. [ |

The difference in the convergence rates of the law P)(C") and the
mean occupation measure y,, (x, -) is rather natural. While P)(C")
converges geometrically to u, the Cesaro average ZZ;& P)(Ck) /n
accumulates early “transient” terms, so their overall impact
shrinks only on the order of 1/n, introducing additional
randomness and variability. In particular, the contribution
from initial steps is spread out but not rapidly suppressed,
leading to the slower 1/n convergence rate for the mean
occupation measure. Moreover, it is important to highlight
the following trade-off: decreasing the step-size y increases
the concentration of iterates within the ball Bs , but results in
slower convergence, as indicated by the constant p.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical simulations to illustrate
and explore our theoretical findings. To this end, we consider a
simple, yet illustrative, strongly monotone two-player min-max
game defined by f : [0, 1] X [0, 1] — R with

flxp,x2) = x% - x% + X1x2 (43)

To be more precise, the payoff functions of the two players are
given by u; (x1,x2) = f(x1,x2) = —u2(x1,x2), and x* = (0,0)
is the unique Nash equilibrium point.

Fig. 1 demonstrates the behavior of (SPG) under varying
step sizes and noise levels for the min-max game defined by
the function f(x,x2). Specifically, we consider step-sizes
v € {0.1, 0.2, 0.5}, and stochastic feedback of the form
V(x,w) = v(x) + cw, where w ~ N(0,I) for oo € {0.5, 1}.
For each (y,o) configuration, we conducted 10° separate
trials, each for 103 steps, where the initial state for each run
was drawn uniformly at random in [—1, 1]%. Each surface
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(a) o =0.5and y = 0.1 (left), y = 0.2 (middle), y = 0.5 (right)

(b) oo =1and y = 0.1 (left), ¥ = 0.2 (middle), y = 0.5 (right)

Fig. 1: Visualization of the long-run occupancy measure of (SPG) on the min-max game with loss-gain function f(x1,x) = x% - x% +x1x2. In
each plot, 10° instances of (SPG) were run for 103 iterations, and the heatmap represents the empirical frequency of observing the last iterate
of (SPG) at a certain point, overlain with the loss-gain landscape of the game.

represents the landscape of f, while the color overlay visual-
izes the empirical density of the final iterates across the 10°
different trials. Warmer (bright/yellow) regions indicate higher
concentration of final iterates, whereas cooler (purple/blue)
regions correspond to lower probability of ending in those
regions, as the colorbar on the side suggests. The first row
corresponds to o = 0.5, while the second to o = 1; the three
columns in each row correspond to (i) y = 0.1, (ii) y = 0.2,
and (iii) y = 0.5.

We observe that smaller step-size and noise parameters lead
to tighter concentration around x* = (0,0), whereas, as the
noise increases, the final distribution becomes more spread out.
This is expected since the level of the noise directly affects the
variability of the iterates, reflecting the growing influence of
stochastic perturbations on the dynamics. Additionally, in each
column, we can see that the heatmap on the bottom is broader
and less peaked than the corresponding heatmap on the top,
due to the extra randomness that increases the spread in the
final distribution of points. To conclude, a larger step-size and
larger noise level each promote greater variance in the final
positions reached by (SPG), whereas a smaller step-size and
smaller noise lead to a tighter concentration of the distribution
around the equilibrium.

VI. CONCLUDING REMARKS

In this work, we studied the long-run behavior of the stochastic
projected gradient (SPG) iterates in strongly monotone games
with constant step-size. Specifically, we showed that the

induced Markov process (X,),eN admits a unique invariant
distribution, to which both the law of the process and the mean
occupation measure converge in Wasserstein distance, irrespec-
tive of the initial state. Finally, our experiments illustrate how
the concentration of the limiting distribution depends on the
step-size and noise level.
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