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Abstract. Motivated by the success of Nesterov’s accelerated gradient algorithm for
convex minimization problems, we examine whether it is possible to achieve similar
performance gains in the context of online learning in games. To that end, we introduce
a family of accelerated learning methods, which we call “follow the accelerated leader”
(FTXL), and which incorporates the use of momentum within the general framework of
regularized learning – and, in particular, the exponential / multiplicative weights algorithm
and its variants. Drawing inspiration and techniques from the continuous-time analysis
of Nesterov’s algorithm, we show that FTXL converges locally to strict Nash equilibria at
a superlinear rate, achieving in this way an exponential speed-up over vanilla regularized
learning methods (which, by comparison, converge to strict equilibria at a geometric,
linear rate). Importantly, FTXL maintains its superlinear convergence rate in a broad
range of feedback structures, from deterministic, full information models to stochastic,
realization-based ones, and even when run with bandit, payoff-based information, where
players are only able to observe their individual realized payoffs.

1. Introduction

One of the most important milestones in convex optimization was Nesterov’s accelerated
gradient (NAG) algorithm, as proposed by Nesterov [38] in 1983. The groundbreaking
achievement of Nesterov’s algorithm was that it attained an O(1/T 2) rate of convergence in
Lipschitz smooth convex minimization problems, thus bridging a decades-old gap between
the O(1/T ) convergence rate of ordinary gradient descent and the corresponding Ω(1/T 2)
lower bound for said class [37]. In this way, Nesterov’s accelerated gradient algorithm opened
the door to acceleration in optimization, leading in turn to a wide range of other, likewise
influential schemes – such as FISTA and its variants [3] – and jumpstarting a vigorous field
of research that remains extremely active to this day.

Somewhat peculiarly, despite the great success that NAG has enjoyed in all fields where
optimization plays a major role – and, in particular, machine learning and data science –
its use has not percolated to the adjoining field of game theory as a suitable algorithm for
learning Nash equilibria. Historically, the reasons for this are easy to explain: despite intense
scrutiny by the community and an extensive corpus of literature dedicated to deconstructing
the algorithm’s guarantees, NAG’s update structure remains quite opaque – and, to a certain
extent, mysterious. Because of this, Nesterov’s algorithm could not be considered as a
plausible learning scheme that could be employed by boundedly rational human agents
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involved in a repeated game. Given that this was the predominant tenet in economic thought
at the time, the use of Nesterov’s algorithm in a game-theoretic context has not been
extensively explored, to the best of our knowledge.

On the other hand, as far as applications to machine learning and artificial intelligence
are concerned, the focus on human agents is no longer a limiting factor. In most current
and emerging applications of game-theoretic learning – from multi-agent reinforcement
learning to adversarial models in machine learning – the learning agents are algorithms whose
computational capacity is only limited by the device on which they are deployed. In view of
this, our paper seeks to answer the following question:

Can Nesterov’s accelerated gradient scheme be deployed in a game-theoretic setting?
And, if so, is it possible to achieve similar performance gains as in convex optimization?

Our contributions in the context of related work. The answer to the above questions is
not easy to guess. On the one hand, given that game theory and convex optimization are
fundamentally different fields, a reasonable guess would be “no” – after all, finding a Nash
equilibrium is a PPAD-complete problem [9], whereas convex minimization problems are
solvable in polynomial time [7]. On the other, since in the context of online learning each
player would have every incentive to use the most efficient unilateral optimization algorithm
at their disposal, the use of NAG methods cannot be easily discarded from an algorithmic
viewpoint.

Our paper examines if it is possible to obtain even a partially positive answer to the
above question concerning the application of Nesterov’s accelerated gradients techniques to
learning in games. We focus throughout on the class of finite N -person games where, due
to the individual concavity of the players’ payoff functions, the convergence landscape of
online learning in games is relatively well-understood – at least, compared to non-concave
games. In particular, it is known that regularized learning algorithms – such as “follow the
regularized leader” (FTRL) and its variants – converge locally to strict Nash equilibria at
a geometric rate [18], and strict equilibria are the only locally stable and attracting limit
points of regularized learning in the presence of randomness and/or uncertainty [11, 17, 23].
In this regard, we pose the question of (i) whether regularized learning schemes like FTRL
can be accelerated; and (ii) whether the above properties are enhanced by this upgrade.

We answer both questions in the positive. First, we introduce an accelerated regularized
scheme, in both continuous and discrete time, which we call “follow the accelerated leader”
(FTXL). In continuous time, our scheme can be seen as a fusion of the continuous-time
analogue of NAG proposed by Su, Boyd, and Candès [41] and the dynamics of regularized
learning studied by Mertikopoulos & Sandholm [31] – see also [5, 6, 19, 24, 29, 32–36, 42]
and references therein. We show that the resulting dynamics exhibit the same qualitative
equilibrium convergence properties as the replicator dynamics of Taylor & Jonker [43] (the
most widely studied instance of FTRL in continuous time). However, whereas the replicator
dynamics converge to strict Nash equilibria at a linear rate, the FTXL dynamics converge
superlinearly.

In discrete time, we likewise propose an algorithmic implementation of FTXL which
can be applied in various information context: (i) full information, that is, when players
observe their entire mixed payoff vector; (ii) realization-based feedback, i.e., when players
get to learn the “what-if” payoff of actions that they did not choose; and (iii) bandit,
payoff-based feedback, where players only observe their realized, in-game payoff, and must
rely on statistical estimation techniques to reconstruct their payoff vectors. In all cases,
we show that FTXL maintains the exponential speedup described above, and converges to
strict Nash equilibria at a superlinear rate (though the subleading term in the algorithm’s
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convergence rate becomes increasingly worse as less information is available). We find this
feature of FTXL particularly intriguing as superlinear convergence rates are often associated
to methods that are second-order in space, not time; the fact that this is achieved even with
bandit feedback is quite surprising in this context.

Closest to our work is the continuous-time, second-order replicator equation studied by
Laraki & Mertikopoulos [25] in the context of evolutionary game theory, and derived through
a model of pairwise proportional imitation of “long-term success”. The dynamics of [25]
correspond to the undamped, continuous-time version of FTXL with entropic regularization,
and the equilibrium convergence rate obtained by [25] agrees with our analysis. Other than
that, the dynamics of Flåm & Morgan [12] also attempted to exploit a Newtonian structure,
but they do not yield favorable convergence properties in a general setting. The inertial
dynamics proposed in [26] likewise sought to leverage an inertial structure combined with the
Hessian–Riemannian underpinnings of the replicator dynamics, but the resulting replicator
equation was not even well-posed (in the sense that its solutions exploded in finite time).

More recently, Gao & Pavel [15, 16] considered a second-order, inertial version of the
dynamics of mirror descent in continuous games, and examined their convergence in the
context of variational stability [34]. Albeit related at a high level to our work (given the link
between mirror descent and regularized learning), the dynamics of Gao & Pavel [15, 16] are
actually incomparable to our own, and there is no overlap in our techniques or results. Other
than that, second-order dynamics in games have also been studied in continuous time within
the context of control-theoretic passivity, yielding promising results in circumventing the
impossibility results of Hart & Mas-Colell [21], cf. Gao & Pavel [13, 14], Mabrok & Shamma
[30], Toonsi & Shamma [44], and references therein. However, the resulting dynamics are
also different, and we do not see a way of obtaining comparable rates in our setting.

2. Preliminaries

In this section, we outline some notions and definitions required for our analysis. Specifi-
cally, we introduce the framework of finite N -player games, we discuss the solution concept
of a Nash equilibrium, and we present the main ideas of regularized learning in games.

2.1. Finite games. In this work, we focus exclusively with finite games in normal form. Such
games consist of a finite set of players N = {1, . . . , N}, each of whom has a finite set of
actions – or pure strategies – αi ∈ Ai and a payoff function ui : A → R, where A :=

∏
i∈N Ai

denotes the set of all possible action profiles α = (α1, . . . , αN ). To keep track of all this, a
finite game with the above primitives will be denoted as Γ ≡ Γ(N ,A, u).

In addition to pure strategies, players may also randomize their choices by employing
mixed strategies, that is, by choosing probability distributions xi ∈ Xi := ∆(Ai) over
their pure strategies, where ∆(Ai) denotes the probability simplex over Ai. Now, given
a strategy profile x = (x1, . . . , xN ) ∈ X :=

∏
i∈N Xi, we will use the standard shorthand

x = (xi;x−i) to highlight the mixed strategy xi of player i against the mixed strategy profile
x−i ∈ X−i :=

∏
j ̸=i Xj of all other players. We also define:

(1) The mixed payoff of player i under x as

ui(x) = ui(xi;x−i) =
∑

α1∈A1

· · ·
∑

αN∈AN

x1α1
. . . xNαN

ui(α1, . . . , αN ) (1)

(2) The mixed payoff vector of player i under x as

vi(x) = ∇xi
ui(x) = (ui(αi;x−i))αi∈Ai

(2)
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In words, vi(x) collects the expected rewards viαi(x) := ui(αi;x−i) of each action αi ∈ Ai of
player i ∈ N against the mixed strategy profile x−i of all other players. Finally, we write
v(x) = (v1(x), . . . , vN (x)) for the concatenation of the players’ mixed payoff vectors.

In terms of solution concepts, we will say that x∗ is a Nash equilibrium (NE) if no player
can benefit by unilaterally deviating from their strategy, that is

ui(x
∗) ≥ ui(xi;x

∗
−i) for all xi ∈ Xi and all i ∈ N . (NE)

Moreover, we say that x∗ is a strict Nash equilibrium if (NE) holds as a strict inequality for
all xi ̸= x∗

i , i ∈ N , i.e., if any deviation from x∗
i results in a strictly worse payoff for the

deviating player i ∈ N . It is straightforward to verify that a strict equilibrium x∗ ∈ X is also
pure in the sense that each player assigns positive probability only to a single pure strategy
α∗
i ∈ Ai. Finally, we denote the support of a strategy x as the set of actions with non-zero

probability mass, i.e., supp(x) = {α ∈ A : xα > 0}.

2.2. Regularized learning in games. In the general context of finite games, the most widely
used learning scheme is the family of algorithms and dynamics known as “follow the regularized
leader” (FTRL). In a nutshell, the main idea behind FTRL is that each player i ∈ N plays a
“regularized” best response to their cumulative payoff over time, leading to the continuous-time
dynamics

ẏi(t) = vi(x(t)) xi(t) = Qi(yi(t)) (FTRL-D)
where

Qi(yi) = argmaxxi∈Xi
{⟨yi, xi⟩ − hi(xi)} (3)

denotes the regularized best response – or mirror – map of player i ∈ N , and hi : Xi → R is
a strongly convex function known as the method’s regularizer. Accordingly, in discrete time,
this leads to the algorithm

yi,n+1 = yi,n + γv̂i,n xi,n = Qi(yi,n) (FTRL)

where γ > 0 is a hyperparameter known as the algorithm’s learning rate (or step-size) and
v̂i,n is a black-box “payoff signal” that carries information about vi(xn). In the simplest case,
when players have full information about the game being played and the actions taken by
their opponents, we have v̂i,n = vi(xn); in more information-depleted environments (such
as learning with payoff-based, bandit feedback), v̂i,n is a reconstruction of vi(xn) based on
whatever information is at hand.

For concreteness, we close this section with the prototypical example of FTRL methods,
the exponential /multiplicative weights (EW) algorithm. Going back to [2, 28, 45], this
method is generated by the negentropy regularizer hi(xi) =

∑
αi∈Ai

xiαi
log xiαi

, which
yields the EW update rule

yi,n+1 = yi,n + γv̂i,n xi,n = Λi(yi,n) :=
exp(yi,n)

∥exp(yi,n)∥1
(EW)

and, in the continuous-time limit γ → 0, the exponential weights dynamics

ẏi(t) = vi(x(t)) xi(t) = Λi(yi(t)) . (EWD)

In the above, Λi denotes the regularized best response induced by the method’s entropic
regularizer, which is known colloquially as a logit best response – or, even more simply, as
the logit map. To make the notation more compact in the sequel, we will write Q = (Qi)i∈N
and Λ = (Λi)i∈N for the ensemble of the players’ regularized / logit best response maps.

Remark 1. To streamline our presentation, in the main part of the paper, quantitative results
will be stated for the special case of the EW setup above. In Appendix A, we discuss more
general decomposable regularizers of the form hi(xi) =

∑
αi∈Ai

θi(xi) where θi : [0, 1]→ R is
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continuous on [0, 1], and has θ′′(x) > 0 for all x ∈ (0, 1] and limx→0+ θ′(x) = −∞. Although
this set of assumptions can be relaxed, it leads to the clearest presentation of our results, so
it will suffice for us.

Remark 2. Throughout the paper, we will interchangeably use ġ(t) and dg/dt to denote
the time derivative of g(t). This dual notation allows us to adopt whichever form is most
convenient in the given context. Moreover, for a process g, we will use the notation g(t) for
t ≥ 0 if it evolves in continuous time, and gn for n ∈ N if it evolves in discrete time steps,
omitting the time-index when it is clear from context.

3. Combining acceleration with regularization: First insights and results

In this section, we proceed to illustrate how Nesterov’s accelerated gradient (NAG)
method can be combined with FTRL. To keep things as simple as possible, we focus on the
continuous-time limit, so we do not have to worry about the choice of hyperparameters, the
construction of black-box models for the players’ payoff vectors, etc.

3.1. Nesterov’s accelerated gradient algorithm. We begin by discussing Nesterov’s accel-
erated gradient algorithm as presented in Nesterov’s seminal paper [38] in the context of
unconstrained smooth convex minimization. Specifically, given a Lipschitz smooth convex
function f : Rd → R, the algorithm unfolds iteratively as

xn+1 = wn − γ∇f(wn)

wn+1 = xn+1 +
n

n+ 3
(xn+1 − xn)

(NAG)

where w1 = x1 is initialized arbitrarily and γ > 0 is a step-size parameter (typically chosen as
γ ← 1/L where L is the Lipschitz smoothness modulus of f). The specific iterative structure
of (NAG) – and, in particular the “3” in the denominator – can appear quite mysterious;
nevertheless, (NAG) otherwise offers remarkable perfomance gains, improving in particular
the rate of convergence of gradient methods from O(1/T ) to O(1/T 2) [38], and matching
in this way the corresponding Ω(1/T 2) lower bound for the minimization of smooth convex
functions [37].1

This groundbreaking result has since become the cornerstone of a vast and diverse literature
expanding on the properties of (NAG) and trying to gain a deeper understanding of the “how”
and “why” of its update structure. One perspective that has gained significant traction in
this regard is the continuous-time approach of Su et al. [40, 41]; combining the two equations
in (NAG) into

xn+1 − 2xn + xn−1√
γ

= −√γ∇f(wn)−
3

n+ 2

xn − xn−1√
γ

, (4)

they modeled (NAG) as a heavy ball with vanishing friction system of the form

d2x

dt2
= −∇f(x)− 3

t

dx

dt
(HBVF)

The choice of terminology alludes to the fact that (HBVF) describes the dynamics of a heavy
ball descending the landscape of f under the potential field F (x) = −∇f(x) with a vanishing
kinetic friction coefficient (the 3/t factor in front of the momentum term dx/dt). In this
interpretation, the mass of the ball accelerates the system, the friction term dissipates energy
to enable convergence, and the vanishing friction coefficient quenches the impact of friction

1There are, of course, many other approaches to acceleration, that we cannot cover here; for a discussion
of the popular “linear coupling” approach of Allen-Zhu & Orecchia [1], cf. Appendix F.
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over time in order to avoid decelerating the system too much (so the system is, in a sense,
“critically underdamped”).

As was shown by Su et al. [41], an explicit Euler discretization of (HBVF) yields (NAG)
with exactly the right momentum coefficient n/(n+ 3); moreover, the rate of convergence of
the continuous-time dynamics (HBVF) is the same as that of the discrete-time algorithm
(NAG), and the energy function and Lyapunov analysis used to derive the former can also
be used to derive the latter. For all these reasons, (HBVF) is universally considered as the
de facto continuous-time analogue of (NAG), and we will treat it as such in the sequel.

3.2. NAG meets FTRL. To move from unconstrained convex minimization problems to finite
N -person games – a constrained, non-convex, multi-agent, multi-objective setting – it will be
more transparent to start with the continuous-time formulation (HBVF). Indeed, applying
the logic behind (HBVF) to the (unconstrained) state variables y of (FTRL-D), we obtain
the “follow the accelerated leader” dynamics

d2y

dt2
= v(Q(y))− r

t

dy

dt
(FTXL-D)

where the dynamics’ driving force F (y) = v(Q(y)) is now given by the payoff field of the
game, and the factor r/t, r ≥ 0, plays again the role of a vanishing friction coefficient. To
avoid confusion, we highlight that in the case of regularized learning, the algorithm’s variable
that determines the evolution of the system in an autonomous way is the “score variable”
y, not the “strategy variable” x (which is an ancillary variable obtained from y via the
regularized choice map Q).

In contrast to (EWD), the accelerated dynamics (FTXL-D) are second-order in time, a
fact with fundamental ramifications, not only from a conceptual, but also from an operational
viewpoint. Focusing on the latter, we first note that (FTXL-D) requires two sets of initial
conditions, y(0) and ẏ(0), the latter having no analogue in the first-order setting of (FTRL-D).
In general, the evolution of the system depends on both y(0) and ẏ(0), but since this would
introduce an artificial bias toward a certain direction, we will take ẏ(0) = 0, in tune with
standard practice for (NAG) [41].

We also note that (FTXL-D) can be mapped to an equivalent autonomous first-order
system with double the variables: specifically, letting p = ẏ denote the players’ (payoff )
momentum, (FTXL-D) can be rewritten as

dy

dt
= p

dp

dt
= v(Q(y))− r

t
p (5)

with y(0) initialized arbitrarily and p(0) = ẏ(0). In turn, (5) yields p(t) = t−r
∫ t

0
trv(Q(y(τ)))dτ ,

so p(t) can be seen as a weighted aggregate of the players’ payoffs up to time t: if r = 0
(the undamped regime), all information enters p(t) with the same weight; if r > 0, past
information is discounted relative to more recent observations; and, in the overdamped
limit r →∞, all weight is assigned to the current point in time, emulating in this way the
first-order system (FTRL-D).

3.3. First insights and results. From an operational standpoint, the main question of interest
is to specify the equilibrium convergence properties of (FTXL-D) – and, later in the paper,
its discrete-time analogue. To establish a baseline, the principal equilibrium properties
of its first-order counterpart can be summarized as follows: (i) strict Nash equilibria are
locally stable and attracting under (FTRL-D) [23, 31];2 (ii) the dynamics do not admit any

2Recall here that x∗ ∈ X is said to be (i) Lyapunov stable (or simply stable) if every orbit x(t) of
the dynamics that starts close enough to x∗ remains close enough to x∗ for all t ≥ 0; (ii) attracting if
limt→∞ x(t) = x∗ for every orbit x(t) that starts close enough to x∗; and (iii) asymptotically stable if it is
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other such points (that is, stable and attracting) [11]; and (iii) quantitively, in the case of
(EWD), the dynamics converge locally to strict Nash equilibria at a geometric rate of the
form ∥x(t)− x∗∥ = O(exp(−ct)) for some c > 0 [31].

Our first result below shows that the accelerated dynamics (FTXL-D) exhibit an exponen-
tial speed-up relative to (FTRL-D), and the players’ orbits converge to strict Nash equilibria
at a superlinear rate:

Theorem 1. Let x∗ be a strict Nash equilibrium of Γ, and let x(t) = Q(y(t)) be a solution
orbit of (FTXL-D). If x(0) is sufficiently close to x∗, then x(t) converges to x∗; in particular,
if (FTXL-D) is run with logit best responses (that is, Q← Λ), we have

∥x(t)− x∗∥∞ ≤ exp

(
C − ct2

2(r + 1)

)
(6)

where C > 0 is a constant that depends only on the initialization of (FTXL-D) and

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)] > 0 (7)

is the minimum payoff difference at equilibrium.

Theorem 1 (which we prove in Appendix B) is representative of the analysis to come, so
some remarks are in order. First, we should note that the explicit rate estimate (6) is derived
for the special case of logit best responses, which underlie all exponential /multiplicative
weights algorithms. To the best of our knowledge, the only comparable result in the literature
is the similar rate provided in [25] for the case r = 0. In the case of a general regularizer, an
analogous speed-up is observed, but the exact expressions are more involved, so we defer
them to Appendix B. A second important point concerns whether the rate estimate (6) is
tight or not. Finally, the neighborhood of initial conditions around x∗ is determined by the
minimum payoff difference at equilibrium and is roughly O(c) in diameter; we defer the
relevant details of this discussion to Appendix B.

To answer this question – and, at the same time get a glimpse of the proof strategy for
Theorem 1 – it will be instructive to consider a single-player game with two actions. Albeit
simple, this toy example is not simplistic, as it provides an incisive look into the problem,
and will be used to motivate our design choices in the sequel.

Example 3.1. Consider a single-player game Γ with actions A and B such that u(A)−u(B) = 1,
so the (dominant) strategy x∗ = (1, 0) is a strict Nash equilibrium. Then, letting z = yA− yB,
(FTXL-D) readily yields

d2z

dt2
=

d2yA
dt2
− d2yB

dt2
= u(A)− u(B)− r

t

[
dyA
dt
− dyB

dt

]
= 1− r

t

dz

dt
. (8)

As we show in Appendix B, this non-autonomous differential equation can be solved exactly
to yield z(t) = z(0) + t2/[2(r + 1)], and hence

∥x(t)− x∗∥∞ =
1

1 + exp(z(t))
∼ exp

(
−z(0)− t2

2(r + 1)

)
. (9)

Since c = u(A)− u(B) = 1, the rate (9) coincides with that of Theorem 1 up to a factor of
1/2. This factor is an artifact of the analysis and, in fact, it can be tightened to (1− ε) for
arbitrarily small ε > 0; we did not provide this more precise expression to lighten notation.
By contrast, the factor 2(r + 1) in (6) cannot be lifted; this has important ramifications
which we discuss below. ♦

both stable and attracting. For an introduction to the theory of dynamical systems, cf. Shub [39] and Hirsch
et al. [22].
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The first conclusion that can be drawn from Example 3.1 is that the rate estimate of
Theorem 1 is tight and cannot be improved in general. In addition, and in stark contrast to
(NAG), Example 3.1 shows that the optimal value for the friction parameter is r = 0 (at
least from a min-max viewpoint, as this value yields the best possible lower bound for the
rate). Of course, this raises the question as to whether this is due to the continuous-time
character of the policy;3 however, as we show in detail in Appendix C, this is not the case:
the direct handover of (NAG) to Example 3.1 yields the exact same rate (though the proof
relies on a significantly more opaque generating function calculation).

In view of all this, it becomes apparent that friction only hinders the equilibrium con-
vergence properties of accelerated FTRL schemes in our game-theoretic setting. On that
account, we will continue our analysis in the undamped regime r = 0.

4. Accelerated learning: Analysis and results

4.1. The algorithm. To obtain a bona fide, algorithmic implementation of the continuous-
time dynamics (FTXL-D), we will proceed with the same explicit, finite-difference scheme
leading to the discrete-time algorithm (NAG) from the continuous-time dynamics (HBVF)
of Su et al. [41]. Specifically, taking a discretization step γ > 0 in (FTXL-D) and setting
the scheme’s friction parameter r to zero (which, as we discussed at length in the previous
section, is the optimal choice in our setting), a straightforward derivation yields the basic
update rule

[yi,n+1 − 2yi,n + yi,n−1]/γ
2 = v̂i,n for all i ∈ N and all n = 1, 2, . . . (10)

In the above, just as in the case of (FTRL), v̂i,n ∈ RAi denotes a black-box “payoff signal”
that carries information about the mixed payoff vector vi(xn) of player i at the current
strategy profile xn (we provide more details on this below).

Alternatively, to obtain an equivalent first-order iterative rule (which is easier to handle
and discuss), it will be convenient to introduce the momentum variables pn = (yn − yn−1)/γ.
Doing just that, a simple rearrangement of (10) yields the “follow the accelerated leader”
scheme

yi,n+1 = yi,n + γpi,n+1 pi,n+1 = pi,n + γv̂i,n xi,n = Qi(yi,n) . (FTXL)

The algorithm (FTXL) will be our main object of study in the sequel, and we will examine
its convergence properties under three differerent models for v̂n:

(1) Full information, i.e., players get to access their full, mixed payoff vectors:

v̂i,n = vi(xn) for all i ∈ N , n = 1, 2, . . . (11a)

(2) Realization-based feedback, i.e., after choosing an action profile αn ∼ xn, each player
i ∈ N observes (or otherwise calculates) the vector of their counterfactual, “what-if”
rewards, namely

v̂i,n = vi(αn) for all i ∈ N , n = 1, 2, . . . (11b)

(3) Bandit /Payoff-based feedback, i.e., each player only observes their current reward,
and must rely on statistical estimation techniques to reconstruct an estimate of vi(xn).
For concreteness, we will consider the case where players employ a version of the
so-called importance-weighted estimator

v̂i,n = IWE(xi,n;αi,n) for all i ∈ N , n = 1, 2, . . . (11c)

3The reader might also wonder if the use of a non-vanishing friction coefficient – rẏ instead of (r/t)ẏ –
could be beneficial to the convergence rate of (FTXL-D). As we show in Appendices B and C, this leads to
significantly worse convergence rates of the form ∥x(t)− x∗∥∞ ∼ exp(−Θ(t)) for all r > 0.



ACCELERATED LEARNING IN GAMES 9

which we describe in detail later in this section.
Of course, this list of information models is not exhaustive, but it is a faithful representation
of most scenarios that arise in practice, so it will suffice for our purposes.

Now before moving forward with the analysis, it will be useful to keep some high-level
remarks in mind. The first is that (FTXL) shares many similarities with (FTRL), but
also several notable differences. At the most basic level, (FTRL) and (FTXL) are both
“stimulus-response” schemes in the spirit of Erev & Roth [10], that is, players “respond” with
a strategy xi,n = Qi(yi,n) to a “stimulus” yi,n generated by the observed payoff signals v̂i,n.
In this regard, both methods adhere to the online learning setting (and, in particular, to the
regularized learning paradigm).

However, unlike (FTRL), where players respond to the aggregate of their payoff signals
– the process yn in (FTRL) – the accelerated algorithm (FTXL) introduces an additional
aggregation layer, which expresses how players “build momentum” based on the same payoff
signals – the process pn in (FTXL). Intuitively, we can think of these two processes as the
“position” and “momentum” variables of a classical inertial system, not unlike the heavy-ball
dynamics of Su et al. [41]. The only conceptual difference is that, instead of rolling along
the landscape of a (convex) function, the players now track the “mirrored” payoff field
v̂(y) := v(Q(y)).

In the rest of this section, we proceed to examine in detail the equilibrium convergence
properties of (FTXL) under each of the three models detailed in Eqs. (11a)–(11c) in order.

4.2. Accelerated learning with full information. We begin with the full information model
(11a). This is the most straightforward model (due to the absence of randomness and
uncertainty) but, admittedly, also the least realistic one. Nevertheless, it will serve as a
useful benchmark for the rest, and it will allow us to introduce several important notions.

Before we state our result, it is important to note that a finite game can have multiple
strict Nash equilibria, so global convergence results are, in general, unattainable; for this
reason, we analyze the algorithm’s local convergence landscape. In this regard, Theorem 2
below shows that (FTXL) with full information achieves a superlinear local convergence rate
to strict Nash equilibria:

Theorem 2. Let x∗ be a strict Nash equilibrium of Γ, and let xn = Q(yn) be the sequence
of play generated by (FTXL) with full information feedback of the form (11a). If x1 is
initialized sufficiently close to x∗, then xn converges to x∗; in particular, if (FTXL) is run
with logit best responses (that is, Q← Λ), we have

∥xT − x∗∥∞ ≤ exp

(
C − cγ2T (T − 1)

2

)
= exp

(
−Θ(T 2)

)
(12)

where C > 0 is a constant that depends only on the initialization of (FTXL) and

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)] > 0 (13)

is the minimum payoff difference at equilibrium.

To maintain the flow of our discussion, we defer the proof of Theorem 2 to Appendix C.
Instead, we only note here that, just as in the case of (HBVF) and (NAG), Theorem 2 provides
essentially the same rate of convergence as its continuous-time counterpart, Theorem 1,
modulo a subleading term which has an exponentially small impact on the rate of convergence.
In particular, we should stress that the superlinear convergence rate of (FTXL) exhibits
an exponential speedup relative to (FTRL), which is known to converge at a geometric
rate ∥xT − x∗∥∞ = exp(−Θ(T )). This is in direct correspondence to what we observe in
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(a) Zero-sum game: Realization-based feedback
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(b) Zero-sum game: Bandit feedback
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(c) Congestion game: Realization-based feedback
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Figure 1: Performance evaluation of (FTXL) in a zero-sum and a congestion game
under realization-based and bandit feedback. Solid lines represent average values,
while shaded regions enclose ±1 standard deviation. The plots are in logarithmic
scale.

continuous time, showing in particular that the continuous-time dynamics (FTXL-D) are a
faithful representation of (FTXL).

We should also stress here that superlinear convergence rates are typically associated
with methods that are second-order in space, in the sense that they employ Hessian-like
information – like Newton’s algorithm – not second-order in time – like (NAG) and (FTXL).
We find this observation particularly intriguing as it suggests that accelerated rates can be
observed in the context of learning in games without having to pay the excessively high
compute cost of second-order methods in optimization.

4.3. Accelerated learning with realization-based feedback. We now turn to the realization-
based model (11b), where players can only assess the rewards of their pure actions in response
to the realized actions of all other players. In words, v̂i,n = vi(αn) collects the payoffs that
player i ∈ N would have obtained by playing each of their pure actions αi ∈ Ai against the
action profile α−i,n adopted by the rest of the players.

In contrast to the full information model (11a), the realization-based model is stochastic
in nature, so our convergence results will likewise be stochastic. Nevertheless, despite the
added layer of uncertainty, we show that (FTXL) with realization-based feedback maintains
a superlinear convergence rate with high probability:
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Theorem 3. Let x∗ be a strict Nash equilibrium of Γ, fix some confidence level δ > 0, and let
xn = Q(yn) be the sequence of play generated by (FTXL) with realization-based feedback as
per (11b) and a sufficiently small step-size γ > 0. Then there exists a neighborhood U of x∗

such that
P(xn → x∗ as n→∞) ≥ 1− δ if x1 ∈ U . (14)

In particular, if (FTXL) is run with logit best responses (that is, Q← Λ), there exist positive
constants C, c > 0 as in Theorem 2 such that on the event {xn → x∗ as n→∞}:

∥xT − x∗∥∞ ≤ exp

(
C − cγ2T (T − 1)

2
+

3

5
cγ5/3T 5/3

)
= exp

(
−Θ(T 2)

)
. (15)

What is particularly surprising in Theorem 3 is that, (FTXL) maintains the accelerated
superlinear rate of Theorem 2 – and, likewise, the exponential speedup relative to (FTRL) –
despite the randomness and uncertainty involved in the realization-based model (11b). The
salient point enabling this feature of (FTXL) is that v̂n can be expressed as

v̂n = v(xn) + Un (16)

where Un ∈
∏

i RAi is an almost surely bounded conditionally zero-mean stochastic pertur-
bation, that is, E[Un | Fn] = 0, where Fn := σ(x1, . . . , xn) denotes the history of play up to
(and including) time n. Thanks to the boundedness of (16), we are able to derive a series
of probabilistic estimates showing that, with high probability (and, in particular, greater
than 1− δ), the contribution of the noise in the algorithm’s rate becomes subleading, thus
allowing the superlinear rate of Theorem 2 to emerge. As in the case of Theorem 2, we defer
the proof of Theorem 3 to the appendix.

4.4. Bandit feedback. The last framework we consider is the bandit model where players
only observe their realized rewards, a scalar from which they must reconstruct their entire
payoff vector. To do so, a standard technique from the multi-armed bandit literature is the
so-called importance weighted estimator (IWE) [8, 27], defined in our setting as

v̂iαi,n =
1{αi,n = αi}

x̂iαi,n

ui(αi;α−i,n) (IWE)

where x̂i,n = (1− εn)xi,n + εn unifAi
is a mixture of xi,n and the uniform distribution on Ai

(a mechanism known in the literature as explicit exploration). Importantly, this estimator is
unbiased relative to the perturbed strategy x̂xn

, which thus incurs an O(εn) non-zero-sum
error to the estimation of vi(xn). This error can be made arbitrarily small by taking εn → 0
but, in doing so, the variance of v̂i,n diverges, leading to a bias-variance trade-off that is
difficult to tame.

Despite these added difficulties, we show below that (FTXL) maintains its superlinear
convergence rate even with bandit, payoff-based feedback:

Theorem 4. Let x∗ be a strict Nash equilibrium of Γ, fix some confidence level δ > 0, and let
xn = Q(yn) be the sequence of play generated by (FTXL) with bandit feedback of the form
(11c), an IWE exploration parameter εn ∝ 1/nℓε for some ℓε ∈ (0, 1/2), and a sufficiently
small step-size γ > 0. Then there exists a neighborhood U of x∗ in X such that

P(xn → x∗ as n→∞) ≥ 1− δ if x1 ∈ U . (17)

In particular, if (FTXL) is run with logit best responses (that is, Q← Λ), there exist positive
constants C, c > 0 as in Theorem 2 such that on the event {xn → x∗ as n→∞}

∥xT − x∗∥∞ ≤ exp

(
C − cγ2T (T − 1)

2
+

5

9
cγ9/5T 9/5

)
= exp

(
−Θ(T 2)

)
. (18)
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Theorem 4 (which we prove in Appendix D shows that, despite the degradation of the
subleading term, (FTXL) retains its superlinear convergence rate even with bandit, payoff-
based feedback (for a numerical demonstration, see Fig. 1 above). We find this feature
of (FTXL) particularly important as it shows that the algorithm remains exceptionally
robust in the face of randomness and uncertainty, even as we move toward increasingly
information-starved environments – from full information, to realization-based observations
and, ultimately, to bandit feedback. This has important ramifications from an operational
standpoint, which we intend to examine further in future work.

4.5. Numerical Experiments. We conclude this section with a series of numerical simulations
to validate the performance of (FTXL). To this end, we consider two game paradigms, (i) a
2-player zero-sum game, and (ii) a congestion game.
Zero-sum Games. First, we consider a 2-player zero-sum game with actions {α1, α2, α3} and
{β1, β2, β3}, and payoff matrix

P =

(2,−2) (1,−1) (2,−2)
(−2, 2) (−1, 1) (−2, 2)
(−2, 2) (−1, 1) (−2, 2)


Here, the rows of P correspond to the actions of player A and the columns to the actions
of player B, while the first item of each entry of P corresponds to the payoff of A, and the
second one to the payoff of B. Clearly, the action profile (α1, β2) is a strict Nash equilibrium.
Congestion Games. As a second example, we consider a congestion game with N = 100
and 2 roads, r1 and r2, with costs c1 = 1.1 and c2 = d/N where d is the number of drivers
on r2. In words, r1 has a fixed delay equal to 1.1, while r2 has a delay proportional to the
drivers using it. Note, that the strategy profile where all players are using r2 is a strict Nash
equilibrium.

In Fig. 1, we assess the convergence of (FTXL) with logit best responses, under realization-
based and bandit feedback, and compare it to the standard (EW) with the same level of
information. The figures verify that (FTXL) outperforms (EW) regarding the convergence
to a strict Nash equilibrium both for the realization-based and the bandit feedback, as
expected from the theoretical findings. Specifically, they validate the faster convergence
rate of (FTXL) compared to that of the (EW) algorithm. Moreover, we observe that both
algorithms perform worse under bandit feedback than under realization-based feedback. This
behavior is expected as less information becomes available. More details can be found in
Appendix E.
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Appendix

In Appendix A below, we discuss how our findings can be extended to general regularizers.
Subsequently, Appendices B and C contain the technical proofs for the continuous and
discrete time algorithms, respectively. Following this, Appendix D provides the convergence
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results of (FTXL) under partial information, specifically under realization-based and bandit
feedback. Finally, in Appendix E, we present the details of the numerical experiments.

Appendix A. Auxiliary results for general regularizers

In this appendix, we briefly discuss how to obtain the convergence of (FTXL) for mirror
maps Q beyond the logit map Λ. Namely, we consider regularizers that are decomposable, i.e.,
hi(xi) =

∑
αi∈Ai

θi(xαi
) such that θi : [0, 1]→ R is continuous on [0, 1], twice differentiable

on (0, 1] and strongly convex with θ′i(0
+) = −∞.

Lemma A.1. Suppose that xn = Q(yn) and for all α ∈ A, α ̸= α∗, it holds that yα,n−yα∗,n →
−∞ as n → ∞. Then, xn converges to x∗, where x∗ is a point mass at α∗. Moreover, it
holds that:

∥xn − x∗∥∞ ≤
∑
α̸=α∗

(θ′)−1(θ′(1) + yα,n − yα∗,n) (A.1)

Proof. First, note that for x = Q(y), we have that x is the solution of the following
optimization problem

Q(y) = argmax

{∑
α∈A

yαxα − h(x) :
∑
α∈A

xα = 1 and ∀α ∈ A : xα ≥ 0

}
By solving the Karush–Kuhn–Tucker (KKT) conditions to this optimization problem we
readily get that x lies in the interior of X , since θ(0+) = −∞, and thus we obtain that at
the solution, it holds yα = θ′(xα) + λ for λ ∈ R. Therefore, we have:

yα,n − yα∗,n = θ′(xα,n)− θ′(xα∗,n) (A.2)

or equivalently:

θ′(xα,n) = θ′(xα∗,n) + yα,n − yα∗,n ≤ θ′(1) + yα,n − yα∗,n (A.3)

Now, assume that there exists α ∈ A such that xα,n does not converge to 0, that is,
lim supn xα,n > ε for some ε > 0. Then, since θ is strongly convex, θ′ is strictly increasing,
and thus θ′(xα,n) ≥ θ′(ε) infinitely often. However, by taking n → ∞ in (A.3), it implies
that θ′(xα,n)→ −∞, which is a contradiction. Therefore, we conclude that for all α ̸= α∗, it
holds that limn→∞ xα,n = 0, and the convergence result follows.

Finally, note that since θ′ is strictly increasing, it is invertible and its inverse is strictly
increasing as well. Thus, for each α ̸= α∗ we have:

xα,n ≤ (θ′)−1(θ′(1) + yα,n − yα∗,n) (A.4)

Therefore,

∥xn − x∗∥∞ = 1− xα∗,n =
∑
α ̸=α∗

xα,n ≤
∑
α̸=α∗

(θ′)−1(θ′(1) + yα,n − yα∗,n) (A.5)

and our proof is complete. ■

Appendix B. Proofs for Continuous Time Algorithms

In this appendix, we provide the proof of Theorem 1 and discuss the convergence of
(FTXL-D) under a non-vanishing friction coefficient – that is, rẏ instead of (r/t)ẏ. First,
we provide a lemma that is necessary for our analysis.



14 K. LOTIDIS, A. GIANNOU, P. MERTIKOPOULOS, AND N. BAMBOS

Lemma B.1. Let x∗ = (α∗
1, . . . , α

∗
N ) ∈ X be a strict Nash equilibrium of Γ, and let d denote

the minimum payoff difference at equilibrium, i.e.,

d := min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)] . (B.1)

Then, for any c ∈ (0, d), there exists M > 0 such that if yiα∗
i
−yiαi

> M for all αi ̸= α∗
i ∈ Ai

and i ∈ N , then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . (B.2)

Proof. Since x∗ is a strict Nash equilibrium, the minimum payoff difference d at x∗ is bounded
away from zero. Then, by continuity of the function x 7→ v(x), there exists a neighborhood
U∗ of x∗ such that for any x ∈ U∗, it holds

viα∗
i
(x)− viαi

(x) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N (B.3)

Finally, by Giannou et al. [18, Lemma C.2.], there exists M > 0, such that Q(y) ∈ U∗ for
all y ∈ V∗ with

yiα∗
i
− yiαi

> M for all αi ̸= α∗
i ∈ Ai, and i ∈ N (B.4)

Therefore, we readily get that if y ∈ V∗ satisfies the above relation, then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . ■

We are now in a position to prove Theorem 1, which we restate below for convenience.

Theorem 1. Let x∗ be a strict Nash equilibrium of Γ, and let x(t) = Q(y(t)) be a solution
orbit of (FTXL-D). If x(0) is sufficiently close to x∗, then x(t) converges to x∗; in particular,
if (FTXL-D) is run with logit best responses (that is, Q← Λ), we have

∥x(t)− x∗∥∞ ≤ exp

(
C − ct2

2(r + 1)

)
(6)

where C > 0 is a constant that depends only on the initialization of (FTXL-D) and

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)] > 0 (7)

is the minimum payoff difference at equilibrium.

Proof. First of all, since x∗ is a strict Nash equilibrium, by Lemma B.1 for

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)]

there exists M > 0 such that if yiα∗
i
− yiαi

> M for all αi ̸= α∗
i ∈ Ai and i ∈ N , then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . (B.5)

From now on, for notational convenience, we focus on player i ∈ N and drop the player-
specific indices altogether. Then, for α ̸= α∗ ∈ A, we let zα(t) := yα(t)−y∗α(t), which evolves
as:

z̈(t) = vα(x(t))− vα∗(x(t))− r

t
żα(t) (B.6)

Let y(0) such that zα(0) = −M − ε, for all α ̸= α∗ ∈ A, where ε > 0 small. We will,
first, show that z(t) < −M for all t ≥ 0. For the sake of contradiction, and denoting
T0 := inf{t ≥ 0 : z(t) ≥ −M}, suppose that T0 <∞. Then, we readily get that for all t < T0,
it holds

vα(x(t))− vα∗(x(t)) < −c (B.7)
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and therefore, for all t ≤ T0:

z̈α(t)t
r + rtr−1żα(t) = tr[vα(x)− vα∗(x)] ≤ −ctr (B.8)

which can be rewritten as:
d

dt
(żα(t)t

r) ≤ −ctr (B.9)

Integrating over t < T0, we obtain żα(t)t
r ≤ −ctr+1/(r + 1), which readily implies:

zα(t) ≤ zα(0)−
c

2(r + 1)
t2

< −M − c

2(r + 1)
t2 (B.10)

By sending t→ T0, we arrive at a contradiction. Therefore zα(t) < −M for all t ≥ 0, and
the previous equation implies that for all t ≥ 0 :

zα(t) ≤ zα(0)−
c

2(r + 1)
t2 (B.11)

and invoking Lemma A.1, we get the convergence result. Finally, translating the score-
differences to the primal space X , we get:

∥x(t)− x∗∥∞ = max
i∈N

{
1− xiα∗

i
(t)
}

(B.12)

For the case of logit best responses, i.e., when Q← Λ, and assuming that the maximum
above is attained for player i ∈ N , we obtain

∥x(t)− x∗∥∞ =

∑
αi ̸=α∗

i
exp(zαi

(t))

1 +
∑

αi ̸=α∗
i
exp(zαi(t))

≤
∑

αi ̸=α∗
i

exp(zαi
(t))

≤ |Ai| exp
(
zαi(0)−

c

2(r + 1)
t2
)

≤ exp

(
C − c

2(r + 1)
t2
)

(B.13)

for C = log|Ai|+ zαi
(0). ■

Now, moving to the case where we use a constant friction coefficient – rẏ instead of (r/t)ẏ,
(FTXL-D) becomes:

d2y

dt2
= v(Q(y))− r

dy

dt
(B.14)

Under, (B.14), we obtain the following convergence result.

Theorem B.1. Let x∗ be a strict Nash equilibrium of Γ, and let x(t) = Q(y(t)) be a solution
orbit of (B.14). If x(0) is sufficiently close to x∗, then x(t) converges to x∗; in particular, if
(B.14) is run with logit best responses (that is, Q← Λ), we have

∥x(t)− x∗∥∞ ≤ exp
(
C − c

r
t− c

r2
e−rt +

c

r2

)
(B.15)

where C > 0 is a constant that depends on the initialization of (B.14) and

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)] > 0 (B.16)

is the minimum payoff difference at equilibrium.
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Proof. The initial steps of proof of Theorem B.1 are similar to the proof of Theorem 1, which
we include for the sake of completeness.

Specifically, by Lemma B.1 there exists M > 0 such that if yiα∗
i
− yiαi

> M for all
αi ̸= α∗

i ∈ Ai and i ∈ N , then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . (B.17)

Now, for notational convenience, we focus on player i ∈ N and drop the player-specific
indices altogether. Then, for α ̸= α∗ ∈ A, we let zα(t) := yα(t)− y∗α(t), which evolves as:

z̈(t) = vα(x(t))− vα∗(x(t))− rżα(t) (B.18)

Let y(0) such that zα(0) = −M − ε, for all α ̸= α∗ ∈ A, where ε > 0 small. As in the
proof of Theorem 1, we will, first, show that z(t) < −M for all t ≥ 0. For the sake of
contradiction, and denoting T0 := inf{t ≥ 0 : z(t) ≥ −M}, suppose that T0 <∞. Then, we
readily get that for all t < T0, it holds

vα(x(t))− vα∗(x(t)) < −c (B.19)

and therefore, for all t ≤ T0:

z̈α(t)e
rt + rertżα(t) = ert[vα(x)− vα∗(x)] ≤ −cert (B.20)

which can be rewritten as:
d

dt

(
żα(t)e

rt
)
≤ −cert (B.21)

Integrating over t < T0, and using that żα(0) = 0, we obtain żα(t) ≤ −c/r + ce−rt/r, which
implies:

zα(t) ≤ zα(0)−
c

r
t− c

r2
e−rt +

c

r2

= zα(0)−
c

r2
(
rt+ e−rt − 1

)
< zα(0)

< −M (B.22)

where we used the fact that x+ e−x − 1 ≥ 0 for all x ∈ R with equality if and only if x = 0.
By sending t→ T0, we arrive at a contradiction. Therefore zα(t) < −M for all t ≥ 0, and
the previous equation implies that for all t ≥ 0 :

zα(t) ≤ zα(0)−
c

r
t− c

r2
e−rt +

c

r2
(B.23)

and invoking Lemma A.1 for θ(x) = x log x, we get the convergence result. ■

Appendix C. Proofs for discrete-time algorithms with full information

In this section, we provide the results for the (FTXL) algorithm with full-information
feedback. First, we discuss the rates obtained by the direct discretization of (FTXL-D) with
both vanishing and non-vanishing friction, and then provide the proof of Theorem 2, our
main result, for the full-information case.
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C.1. FTXL with vanishing friction. First, we provide the rate of convergence for the discrete
version of (FTXL-D) with vanishing friction:

pi,n+1 = pi,n

(
1− γr

n

)
+ γv̂i,n

yi,n+1 = yi,n + γpi,n+1

(C.1)

To streamline our presentation, we consider the setup of Example 3.1 that provides a lower
bound for the algorithm.

Proposition C.1. Consider the single-player game Γ with actions A and B such that u(A)−
u(B) = 1 of Example 3.1, and let xn = Λ(yn) be the sequence of play generated by (C.1).
Then, denoting by x∗ = (1, 0) the strict Nash equilibrium, we have:

∥xT − x∗∥∞ ∼ exp

(
C − γ2T 2

2(γr + 1)

)
. (C.2)

where C > 0 is a constant that depends only on the initialization of the algorithm.

Proof. We first define the score-difference

wn := pB,n − pA,n (C.3)

with initial condition w1 = 0. Then, unfolding according to the sequence of play, we obtain:

wn+1 = wn

(
1− γr

n

)
+ γ(u(B)− u(A))

= wn

(
1− γr

n

)
− γ

= −γ
n−1∑
k=1

k−1∏
ℓ=0

(
1− γr

n− ℓ

)
− γ (C.4)

We next define for n ∈ N the difference zn := yB,n − yA,n. Thus, unfolding it, we obtain:

zn+1 = zn + γwn+1

= zn − γ2

(
1 +

n−1∑
k=1

k−1∏
ℓ=0

(
1− γr

n− ℓ

))

= z1 − γ2
n∑

m=1

(
1 +

m−1∑
k=1

k−1∏
ℓ=0

(
1− γr

m− ℓ

))
(C.5)

Now, using Lemma C.1, which we provide after this proof, we obtain that

zn+1 = z1 − γ2
n∑

m=1

(
1 +

m− γr

1 + γr
− 1

1 + γr

m∏
ℓ=1

(
1− γr

ℓ

))

= z1 − γ2 n(n+ 1)

2(1 + γr)
− γ2n

(
1− γr

1 + γr

)
+

γ2

1 + γr

n∑
m=1

m∏
ℓ=1

(
1− γr

ℓ

)
= z1 −

γ2n2

2(1 + γr)
+ Θ(n) (C.6)

and invoking Lemma A.1 for θ(x) = x log x, we get the result. ■

The following lemma is a necessary tool for obtaining the exact convergence rate in
Proposition C.2.
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Lemma C.1. For any m ∈ N and a > 0, we have that

m−1∑
k=1

k−1∏
ℓ=0

(1− a

m− ℓ
) =

m− a

1 + a
− 1

1 + a

m∏
ℓ=1

(
1− a

ℓ

)
(C.7)

Proof. First, by expanding the inner product, we can rewrite the expression as

m−1∑
k=1

k−1∏
ℓ=0

(1− a

m− ℓ
) =

m−1∑
k=1

k−1∏
ℓ=0

(
m− ℓ− a

m− ℓ
)

m−1∑
k=1

(m− a) . . . (m− k + 1− a)

m. . . (m− k + 1)

=
m−1∑
k=1

(m− a)!(m− k)!

(m− k − a)!m!

=
(m− a)!

m!

m−1∑
k=1

(m− k)!

(m− k − a)!
(C.8)

where with a slight abuse of notation we use the factorial notation (m− a)! to denote the
Gamma function evaluated at m− a+ 1, i.e., Γ(m− a+ 1).

Now, defining the quantity

Fm :=
(m− a)!

m!

m∑
k=1

(m− k)!

(m− k − a)!

the difference of two consecutive terms evolves as:

Fm+1 − Fm =
(m+ 1− a)!

(m+ 1)!

m+1∑
k=1

(m+ 1− k)!

(m+ 1− k − a)!
− (m− a)!

m!

m∑
k=1

(m− k)!

(m− k − a)!

=
m+ 1− a

m+ 1
+

(m+ 1− a)!

(m+ 1)!

m+1∑
k=2

(m+ 1− k)!

(m+ 1− k − a)!
− (m− a)!

m!

m∑
k=1

(m− k)!

(m− k − a)!

=
m+ 1− a

m+ 1
+

(m+ 1− a)!

(m+ 1)!

m+1∑
k=2

(m+ 1− k)!

(m+ 1− k − a)!
− (m− a)!

m!

m+1∑
k=2

(m− k + 1)!

(m− k + 1− a)!

=
m+ 1− a

m+ 1
+

m+1∑
k=2

(m+ 1− a)!(m+ 1− k)!− (m+ 1)(m− a)!(m− k + 1)!

(m+ 1)!(m+ 1− a− k)!

=
m+ 1− a

m+ 1
+

m+1∑
k=2

(m− a)!(m+ 1− k)!(m+ 1− a−m− 1)

(m+ 1)!(m+ 1− a− k)!

=
m+ 1− a

m+ 1
− a

m+1∑
k=2

(m− a)!(m+ 1− k)!

(m+ 1)!(m+ 1− a− k)!

=
m+ 1− a

m+ 1
− a

m+ 1− a

[
m+1∑
k=1

(m+ 1− k)!(m+ 1− a)!

(m+ 1)!(m+ 1− a− k)!
− m+ 1− a

m+ 1

]
= 1− a

m+ 1− a
Fm+1 (C.9)
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Thus, we readily obtain the recurrence relation
m+ 1

m+ 1− a
Fm+1 = Fm + 1 . (C.10)

We continue the proof by induction. To this end, we will show that

Fm =
m− a

1 + a
+

a

1 + a

m∏
ℓ=1

ℓ− a

ℓ
. (C.11)

For the base case, note that

F1 = (1− a) =
1− a

1 + a
+

a

1 + a
(1− a) (C.12)

For the inductive step, suppose that (C.11) holds for m ∈ N. Then, we have:

m+ 1

m+ 1− a
Fm+1 =

m− a

1 + a
+

a

1 + a

m∏
ℓ=1

(
ℓ− a

ℓ

)
+ 1

=
m+ 1

1 + a
+

a

1 + a

m∏
ℓ=1

ℓ− a

ℓ
(C.13)

which implies the inductive step

Fm+1 =
m+ 1− a

1 + a
+

a

1 + a

m+1∏
ℓ=1

ℓ− a

ℓ
(C.14)

and thus (C.11) holds for all m ∈ N. Finally, to complete the proof notice that
m−1∑
k=1

k−1∏
ℓ=0

(1− a

m− ℓ
) =

(m− a)!

m!

m−1∑
k=1

(m− k)!

(m− k − a)!

= Fm −
m−1∏
ℓ=0

(
1− a

m− ℓ

)

=
m− a

1 + a
+

a

1 + a

m∏
ℓ=1

ℓ− a

ℓ
−

m∏
ℓ=1

(
1− a

ℓ

)
=

m− a

1 + a
− 1

1 + a

m∏
ℓ=1

(
1− a

ℓ

)
(C.15)

as was to be shown. ■

Next, we discuss the cases of non-vanishing and zero friction.

C.2. FTXL with non-vanishing friction. We continue this section by considering the case of
non-vanishing friction in analogy to the continuous-time case, as per Appendix B. Specifically,
we consider the discrete version of (FTXL-D) with non-vanishing friction, as follows:

pi,n+1 = pi,n(1− γr) + γv̂i,n

yi,n+1 = yi,n + γpi,n+1
(C.16)

with γr < 1. Below, we provide the rate of convergence for the setup of Example 3.1, as
we did before. Namely, we obtain a linear convergence rate, as the following proposition
suggests.
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Proposition C.2. Consider the single-player game Γ with actions A and B such that u(A)−
u(B) = 1 of Example 3.1, and let xn = Λ(yn) be the sequence of play generated by (C.16).
Then, denoting by x∗ = (1, 0) the strict Nash equilibrium, we have:

∥xn − x∗∥∞ ∼ exp
(
C − γ

r
n
)
. (C.17)

where C > 0 is a constant that depends on the initialization of the algorithm.

Proof. We first define the score-difference

wn := pB,n − pA,n (C.18)

with initial condition w1 = 0. Then, unfolding according to the sequence of play, we obtain:

wn+1 = wn(1− γr) + γ(u(B)− u(A))

= wn(1− γr)− γ

= . . .

= −γ
n−1∑
k=0

(1− γr)
k

= −1− (1− γr)n

r
(C.19)

We next define for n ∈ N the difference zn := yB,n − yA,n. Thus, unfolding it, we obtain:

zn+1 = zn + γwn+1

= zn − γ
1− (1− γr)n

r

= z1 − γ

n∑
m=1

1− (1− γr)m

r

= z1 −
γ

r

(
n− (1− γr)

1− (1− γr)n

γr

)
= z1 −

γ

r
n+O(1) (C.20)

and invoking Lemma A.1 for θ(x) = x log x, we get the result. ■

C.3. FTXL with zero friction. Moving forward to the case of r = 0 as presented in Section 4,
we provide the proof of Theorem 2, which we restate below for convenience.

Theorem 2. Let x∗ be a strict Nash equilibrium of Γ, and let xn = Q(yn) be the sequence
of play generated by (FTXL) with full information feedback of the form (11a). If x1 is
initialized sufficiently close to x∗, then xn converges to x∗; in particular, if (FTXL) is run
with logit best responses (that is, Q← Λ), we have

∥xT − x∗∥∞ ≤ exp

(
C − cγ2T (T − 1)

2

)
= exp

(
−Θ(T 2)

)
(12)

where C > 0 is a constant that depends only on the initialization of (FTXL) and

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)] > 0 (13)

is the minimum payoff difference at equilibrium.
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Proof. First of all, since x∗ is a strict Nash equilibrium, by Lemma B.1 for

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)]

there exists M > 0 such that if yiα∗
i
− yiαi

> M for all αi ̸= α∗
i ∈ Ai and i ∈ N , then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . (C.21)

For notational convenience, we focus on player i and drop the player-specific indices altogether.
Let α ̸= α∗ ∈ A, and define for n ∈ N the quantities wα,n and zα,n as

wα,n := ⟨pn, eα − e∗α⟩, zα,n := ⟨yn, eα − e∗α⟩ (C.22)

where eα, e
∗
α are the standard basis vectors corresponding to α, α∗ ∈ A.

Let initial conditions y1 such that yα,1− yα∗,1 = −M − ε, for all α ≠ α∗ ∈ A, where ε > 0
small, and p1 = 0. We will first show by induction that zα,n < −M for all n ∈ N. To this
end, unfolding the recursion, we obtain:

wα,n+1 = wα,n + γ⟨v̂n, eα − e∗α⟩
= wα,n + γ⟨v(xn), eα − e∗α⟩

= γ

n∑
k=1

⟨v(xk), eα − e∗α⟩ (C.23)

where we used that w1 = 0. Now, for the sake of induction, suppose that

zα,k < −M for all k = 1, . . . , n (C.24)

which implies that ⟨v(xk), eα−e∗α⟩ < −c. With this in hand, we will prove that zα,n+1 < −M ,
as well. Specifically, we have:

zα,n+1 = zα,n + γwα,n+1 = zα,n + γ2
n∑

k=1

⟨v(xk), eα − e∗α⟩

≤ zα,n − cγ2n

≤ zα,1 − cγ2
n∑

ℓ=1

ℓ

< −M (C.25)

where we used the inductive hypothesis and the initial condition. Therefore, we conclude by
induction that zα,n < −M for all n ∈ N. Thus, we readily obtain that after T time-step:

zT ≤ zα,1 − cγ2
T−1∑
ℓ=1

ℓ ≤ zα,1 − cγ2T (T − 1)

2
(C.26)

and invoking Lemma A.1 for θ(x) = x log x, we get the result. ■

Appendix D. Proofs for discrete-time algorithms with partial information

In this appendix, we provide the proofs of Theorem 3 and Theorem 4 that correspond to
the convergence of (FTXL) with realization-based and bandit feedback, respectively. For
this, we need the following lemma, which provides a maximal bound on a martingale process.
Namely, we have:
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Lemma D.1. Let Mn :=
∑n

k=1 γkξk be a martingale with respect to (Fn)n∈N with E[∥ξn∥q∗] ≤
σq
n for some q > 2. Then, for µ ∈ (0, 1) and n ∈ N:

P

(
sup
k≤n
|Mk| > c

(
n∑

k=1

γk

)µ)
≤ Aq

∑n
k=1 γ

q/2+1
k σq

k

(
∑n

k=1 γk)
1+q(µ−1/2)

(D.1)

where Aq is a constant depending only on c and q.

Proof. Fix some µ ∈ (0, 1). By Doob’s maximal inequality [20, Corollary 2.1], we have:

P

(
sup
k≤n
|Mk| > c

(
n∑

k=1

γk

)µ)
≤ E[|Mn|q]

cq(
∑n

k=1 γk)
qµ (D.2)

Now, applying the Burkholder–Davis–Gundy inequality [20, Theorem 2.10], we get that

E[|Mn|q] ≤ Aq E

( n∑
k=1

γ2
k∥ξk∥2∗

)q/2
 (D.3)

where Aq is a constant depending only on c and q. Now, we will invoke the generalized
Hölder’s inequality [4], we have:(

n∑
k=1

akbk

)ρ

≤
(

n∑
k=1

a
λρ
ρ−1

k

)ρ−1 n∑
k=1

a
(1−λ)ρ
k bρk (D.4)

for ak, bk ≥ 0, ρ > 1 and λ ∈ [0, 1). Thus, setting ak = γ2
k, bk = ∥ξk∥2∗, ρ = q/2 and

λ = 1/2− 1/q, (D.2), combined with (D.3), becomes:

P

(
sup
k≤n
|Mk| > c

(
n∑

k=1

γk

)µ)
≤ Aq

(
∑n

k=1 γk)
q/2−1∑n

k=1 γ
q/2+1
k E[∥ξk∥q∗]

(
∑n

k=1 γk)
qµ

≤ Aq

∑n
k=1 γ

q/2+1
k σq

k

(
∑n

k=1 γk)
1+q(µ−1/2)

(D.5)

and our proof is complete. ■

With this tool in hand, we proceed to prove the convergence of (FTXL) under realization-
based feedback. For convenience, we restate the relevant result below.

Theorem 3. Let x∗ be a strict Nash equilibrium of Γ, fix some confidence level δ > 0, and let
xn = Q(yn) be the sequence of play generated by (FTXL) with realization-based feedback as
per (11b) and a sufficiently small step-size γ > 0. Then there exists a neighborhood U of x∗

such that
P(xn → x∗ as n→∞) ≥ 1− δ if x1 ∈ U . (14)

In particular, if (FTXL) is run with logit best responses (that is, Q← Λ), there exist positive
constants C, c > 0 as in Theorem 2 such that on the event {xn → x∗ as n→∞}:

∥xT − x∗∥∞ ≤ exp

(
C − cγ2T (T − 1)

2
+

3

5
cγ5/3T 5/3

)
= exp

(
−Θ(T 2)

)
. (15)

Proof. First of all, since x∗ is a strict Nash equilibrium, by Lemma B.1 for

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)]

there exists M > 0 such that if yiα∗
i
− yiαi > M for all αi ̸= α∗

i ∈ Ai and i ∈ N , then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . (D.6)
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For notational convenience, we focus on player i and drop the player-specific indices altogether.
Let α ̸= α∗ ∈ A, and define for n ∈ N the quantities wα,n and zα,n as

wα,n := ⟨pn, eα − e∗α⟩, zα,n := ⟨yn, eα − e∗α⟩ (D.7)

where eα, e
∗
α are the standard basis vectors corresponding to α, α∗ ∈ A.

Then, unfolding the recursion, we obtain:

wα,n+1 = wα,n + γ⟨v̂n, eα − e∗α⟩ = wα,n + γ⟨v(xn), eα − e∗α⟩+ γ⟨Un, eα − e∗α⟩

= γ

n∑
k=1

⟨v(xk), eα − e∗α⟩+ γ

n∑
k=1

⟨Uk, eα − e∗α⟩ (D.8)

where we used that w1 = 0. Now, define the stochastic process {Mn}n∈N as

Mn := γ

n∑
k=1

⟨Uk, eα − e∗α⟩ (D.9)

which is a martingale, since E[Un | Fn] = 0. Moreover, note that

∥Un∥∗ = ∥v(αn)− v(xn)∥∗ ≤ 2max
α∈A
∥v(α)∥∗ (D.10)

and, thus, we readily obtain that E[∥Un∥q∗ | Fn] ≤ σq for σ = 2maxα∈A∥v(α)∥∗ and all
q ∈ [1,∞].

By Lemma D.1 for γn = γ, σn = σ, ξn = ⟨Un, eα − e∗α⟩, c as in Theorem 2, and
µ ∈ (0, 1), q > 2 whose values will be determined next, there exists Aq > 0 such that:

δn := P
(
sup
k≤n
|Mk| > c(γn)µ

)
≤ Aqσ

q nγq/2+1

(γn)1+q(µ−1/2)

≤ Aqσ
q γq(1−µ)

nq(µ−1/2)
(D.11)

Now, we need to guarantee that there exist µ ∈ (0, 1), q > 2, such that
∞∑

n=1

δn <∞ (D.12)

For this, we simply need q(µ− 1/2) > 1, or equivalently, µ > 1/2 + 1/q, which implies that
µ ∈ (1/2, 1).

Therefore, for γ small enough, we get
∑∞

n=1 δn < δ, and therefore:

P

( ∞⋂
n=1

{
sup
k≤n
|Mk| ≤ c(γn)µ

})
= 1− P

( ∞⋃
n=1

{
sup
k≤n
|Mk| > c(γn)µ

})

≥ 1−
∞∑

n=1

δn

≥ 1− δ (D.13)

From now on, we denote the good event
⋂∞

n=1

{
supk≤n|Mk| ≤ c(γn)µ

}
by E. Then, with

probability at least 1− δ:

wα,n+1 ≤ γ

n∑
k=1

⟨v(xk), eα − e∗α⟩+ c(γn)µ for all n ∈ N. (D.14)
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Furthermore, we have that for n > N0 := ⌈1/γ⌉, we readily get that γn > (γn)µ. Therefore,
setting

R := cγ

N0−1∑
k=1

((γk)µ − γk) (D.15)

we obtain:

−cγ
n∑

k=1

(γk − (γk)µ) ≤ R (D.16)

for all n ∈ N. Then, initializing y1 such that zα,1 < −M −R, we will show that zα,n < −M
for all n ∈ N with probability at least 1− δ. For this, suppose that E is realized, and assume
that

zα,k < −M for all k = 1, . . . , n (D.17)

We will show that zα,n+1 < −M , as well. For this, we have:

zα,n+1 = zα,n + γwα,n+1

≤ zα,n + γ

(
γ

n∑
k=1

⟨v(xk), eα − e∗α⟩+ c(γn)µ

)
≤ zα,n − cγ(γn− (γn)µ)

≤ zα,1 − cγ

n∑
k=1

(γk − (γk)µ)

≤ −M −R− cγ

n∑
k=1

(γk − (γk)µ)

< −M (D.18)

Therefore, we conclude by induction that zα,n < −M for all n ∈ N. Thus, we readily
obtain that with probability at least 1− δ it holds:

zα,T ≤ zα,1 − cγ

T−1∑
k=1

(γk − (γk)µ)

≤ zα,1 − cγ2T (T − 1)

2
+ cγ1+µ

∫ T

0

tµdt

≤ zα,1 − cγ2T (T − 1)

2
+ cγ1+µ T

µ+1

µ+ 1
(D.19)

for all T ∈ N. Setting µ = 2/3 and invoking Lemma A.1 for θ(x) = x log x, we get the
result. ■

Finally, we prove the convergence of (FTXL) with bandit feedback. Again, for convenience,
we restate the relevant result below.

Theorem 4. Let x∗ be a strict Nash equilibrium of Γ, fix some confidence level δ > 0, and let
xn = Q(yn) be the sequence of play generated by (FTXL) with bandit feedback of the form
(11c), an IWE exploration parameter εn ∝ 1/nℓε for some ℓε ∈ (0, 1/2), and a sufficiently
small step-size γ > 0. Then there exists a neighborhood U of x∗ in X such that

P(xn → x∗ as n→∞) ≥ 1− δ if x1 ∈ U . (17)
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In particular, if (FTXL) is run with logit best responses (that is, Q← Λ), there exist positive
constants C, c > 0 as in Theorem 2 such that on the event {xn → x∗ as n→∞}

∥xT − x∗∥∞ ≤ exp

(
C − cγ2T (T − 1)

2
+

5

9
cγ9/5T 9/5

)
= exp

(
−Θ(T 2)

)
. (18)

Proof. First of all, since x∗ is a strict Nash equilibrium, by Lemma B.1 for

c =
1

2
min
i∈N

min
βi /∈supp(x∗

i )
[ui(x

∗
i ;x

∗
−i)− ui(βi;x

∗
−i)]

there exists M > 0 such that if yiα∗
i
− yiαi

> M for all αi ̸= α∗
i ∈ Ai and i ∈ N , then

viα∗
i
(Q(y))− viαi

(Q(y)) > c for all αi ̸= α∗
i ∈ Ai, and i ∈ N . (D.20)

For notational convenience, we focus on player i and drop the player-specific indices altogether.
Let α ̸= α∗ ∈ A, and define for n ∈ N the quantities wα,n and zα,n as

wα,n := ⟨pn, eα − e∗α⟩, zα,n := ⟨yn, eα − e∗α⟩ (D.21)

where eα, e
∗
α are the standard basis vectors corresponding to α, α∗ ∈ A. For notational

convenience, we focus on player i and drop the player-specific indices altogether. Now,
decomposing the IWE v̂n, we obtain

v̂n = v(xn) + Un + bn (D.22)

where Un := v̂n − vi(x̂n) is a zero-mean noise, and bi,n := vi(x̂n)− vi(xn).
Then, unfolding the recursion, we obtain:

wα,n+1 = wα,n + γ⟨v̂n, eα − e∗α⟩
= wα,n + γ⟨v(xn), eα − e∗α⟩+ γ⟨Un, eα − e∗α⟩+ γ⟨bn, eα − e∗α⟩
≤ wα,n + γ⟨v(xn), eα − e∗α⟩+ γ⟨Un, eα − e∗α⟩+ 2γ∥bn∥∗

≤ γ

n∑
k=1

⟨v(xk), eα − e∗α⟩+ γ

n∑
k=1

⟨Uk, eα − e∗α⟩+ 2γ

n∑
k=1

∥bk∥∗

≤ γ

n∑
k=1

⟨v(xk), eα − e∗α⟩+ γ

n∑
k=1

⟨Uk, eα − e∗α⟩+ 2γB

n∑
k=1

εk (D.23)

where we used that ∥bn∥∗ = Θ(εn) for all n ∈ N. Now, define the process {Mn}n∈N as

Mn := γ

n∑
k=1

⟨Uk, eα − e∗α⟩ (D.24)

which is a martingale, since E[Un | Fn] = 0. Moreover, note that

∥Un∥∗ = ∥v̂n − v(x̂n)∥∗ ≤ ∥v̂n∥∗ + ∥v(x̂n)∥∗ (D.25)

i.e., ∥Un∥∗ = Θ(1/εn). Thus, we readily obtain that E[∥Un∥q∗ | Fn] ≤ σq
n for σn = Θ(1/εn)

and all q ∈ [1,∞]. So, by Lemma D.1 for γn = γ, σn = σ, c as in Theorem 2, and
µ ∈ (0, 1), q > 2 whose values will be determined next, there exists Aq > 0 such that:

δn := P
(
sup
k≤n
|Mk| >

c

2
(γn)µ

)
≤ Aq

γq/2+1
∑n

k=1 σ
q
k

(γn)1+q(µ−1/2)

≤ Aq
γq(1−µ)

∑n
k=1 σ

q
k

n1+q(µ−1/2)
(D.26)
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Now, note that for εn = ε/nℓε , and since σn = Θ(1/εn), we get that there exists M > 0 such
that

n∑
k=1

σq
k ≤Mε−q

n∑
k=1

kqℓε (D.27)

with
∑n

k=1 k
qℓε = Θ(n1+qℓε). Therefore,

δn ≤ A′
q

γq(1−µ)ε−qn1+qℓε

n1+q(µ−1/2)

≤ A′
q

γq(1−µ)ε−q

nq(µ−1/2−ℓε)
(D.28)

Now, we need to guarantee that there exist µ ∈ (0, 1), q > 2, such that
∞∑

n=1

δn <∞ (D.29)

For this, we need to ensure that q(µ− 1/2− ℓε) > 1, or, equivalently,

ℓε < µ− 1/2− 1/q (D.30)

which we will do later. Then, we will get for γ small enough:

P

( ∞⋂
n=1

{
sup
k≤n
|Mk| ≤

c

2
(γn)µ

})
= 1− P

( ∞⋃
n=1

{
sup
k≤n
|Mk| >

c

2
(γn)µ

})

≥ 1−
∞∑

n=1

δn

≥ 1− δ (D.31)

Regarding the term 2γB
∑n

k=1 εk in (D.23), we have that:

2γB

n∑
k=1

εk = 2Bγε

n∑
k=1

k−ℓε ≤ B′γεn1−ℓε (D.32)

where we used that
∑n

k=1 k
−ℓε = Θ(n1−ℓε). Thus, for

1− ℓε < µ (D.33)

we have for ε, γ > 0 small enough:

2γB

n∑
k=1

εk ≤ B′γεn1−ℓε ≤ B′γεnµ ≤ c

2
(γn)µ (D.34)

for all n ∈ N. Hence, by (D.30), (D.33) we need the following two conditions to be satisfied:

1− ℓε < µ and ℓε < µ− 1

2
− 1

q
(D.35)

for which we get that for ℓε ∈ (0, 1/2), there exists always µ ∈ (3/4, 1) and q large that
satisfy (D.35). Thus, combining (D.34) and (D.31), we get by (D.23) that with probability
at least 1− δ:

wα,n+1 ≤
n∑

k=1

γk⟨v(xk), eα − e∗α⟩+ c(γn)µ for all n ∈ N. (D.36)
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Thus, following similar steps as in the proof Theorem 3 after (D.14), we readily obtain
that with probability at least 1− δ, we have:

zα,T ≤ zα,1 − cγ

T−1∑
k=1

(γk − (γk)µ)

≤ zα,1 − cγ2T (T − 1)

2
+ cγ1+µ

∫ T

0

tµdt (D.37)

≤ zα,1 − cγ2T (T − 1)

2
+ cγ1+µ T

µ+1

µ+ 1

(D.38)

for all T ∈ N. Setting µ = 4/5 and invoking Lemma A.1 for θ(x) = x log x, our claim
follows. ■

Appendix E. Numerical experiments

In this section, we provide numerical simulations to validate and explore the performance
of (FTXL). To this end, we consider two game paradigms, (i) a zero-sum game, and (ii) a
congestion game.

Zero-sum Game. First, we consider a 2-player zero-sum game with actions {α1, α2, α3} and
{β1, β2, β3}, and payoff matrix

P =

(2,−2) (1,−1) (2,−2)
(−2, 2) (−1, 1) (−2, 2)
(−2, 2) (−1, 1) (−2, 2)


Here, the rows of P correspond to the actions of player A and the columns to the actions
of player B, while the first item of each entry of P corresponds to the payoff of A, and the
second one to the payoff of B. Clearly, the action profile (α1, β2) is a strict Nash equilibrium.

Congestion Game. As a second example, we consider a congestion game with N = 100 and
2 roads, r1 and r2, with costs c1 = 1.1 and c2 = d/N where d is the number of drivers on
r2. In words, r1 has a fixed delay equal to 1.1, while r2 has a delay proportional to the
drivers using it. Note, that the strategy profile where all players are using r2 is a strict Nash
equilibrium.

In Fig. 1, we assess the convergence of (FTXL) with logit best responses, under realization-
based and bandit feedback, and compare it to the standard (EW) with the same level of
information. For each feedback mode, we conducted 100 separate trials, each with T = 103

steps, and calculated the average norm ∥xn − x∗∥1 as a function of the iteration counter
n = 1, 2, ..., T . The solid lines represent the average distance from equilibrium for each
method, while the shaded areas enclose the range of ±1 standard deviation from the mean
across the different trials. All the plots are displayed in logarithmic scale. For the zero-sum
game, all runs were initialized with y1 = 0, and we used constant step-size γ = 10−2, and
exploration parameter ε = 10−1, where applicable. For the congestion game, the initial state
y1 for each run was drawn uniformly at random in [−1, 1]2, and we used constant step-size
γ = 10−2, and exploration parameter εn = 1/n1/4, where applicable.

The experiments have been implemented using Python 3.11.5 on a M1 MacBook Air with
16GB of RAM.
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Appendix F. Connection with other acceleration mechanisms

In this appendix, we discuss the connection between (FTXL) and the “linear coupling”
method of Allen-Zhu & Orecchia [1]. Because [1] is not taking a momentum-based approach,
it is difficult to accurately translate the coupling approach of [1] to our setting and provide a
direct comparison between the two methods. One of the main reasons for this is that [1] is
essentially using two step-sizes: the first is taken equal to the inverse Lipschitz modulus of the
function being minimized and is used to take a gradient step; the second step-size sequence
is much more aggressive, and it is used to generate an ancillary, exploration sequence which
“scouts ahead”. These two sequences are then “coupled” with a mixing coefficient which plays
a role “similar” – but not equivalent – to the friction coefficient in the (HBVF) formulation
of (NAG) by Su et al. [40].

The above is the best high-level description and analogy we can make between the coupling
approach of [1] and the momentum-driven analysis of Su et al. [40] and/or momentum analysis
in Nesterov’s 2004 textbook. At a low level (and omitting certain technical details and
distinctions that are not central to this discussion), the linear coupling approach of [1] applied
to our setting would correspond to the update scheme:

xn = Q(yn)

wn = λnzn + (1− λn)xn

yn+1 = yn + (1− λn)ηnv̂n

zn+1 = λnzn + (1− λn)xn+1

with v̂n obtained by querying a first-order oracle at wn - that is, v̂n is an estimate, possibly
imperfect, of v(wn). The first and third lines of this update scheme are similar to the
corresponding update structure of (FTXL). However, whereas (FTXL) builds momentum
by the aggregation of gradient information via the momentum variables pn, the linear
coupling method above achieves acceleration through the coupling of the sequences wn, zn
and xn, and by taking an increasing step-size sequence ηn that grows roughly as Θ(n), and
a mixing coefficient λn that evolves as λn = 1− 1/(Lηn), where L is the Lipschitz modulus
of v(·). Beyond this comparison, we cannot provide a term-by-term correspondence between
the momentum-based and coupling-based approaches, because the two methods are not
equivalent (even though they give the same value convergence rates in convex minimization
problems). In particular, we do not see a way of linking the parameters ηn and λn of the
coupling approach to the friction and step-size parameters of the momentum approach.

In the context of convex minimization problems, the coupling-based approach of [1] is
more amenable to a regret-based analysis – this is the “unification” aspect of [1] – while the
momentum-based approach of Su et al. [40] facilitates a Lyapunov-based analysis. From a
game-theoretic standpoint, the momentum-based approach seems to be more fruitful and
easier to implement, but studying the linear coupling approach of [1] could also be very
relevant.
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