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Power Control with Random Delays: Robust Feedback Averaging

Andrew Ward, Daniel Miller, Zhengyuan Zhou, Panayotis Mertikopoulos, and Nicholas Bambos

Abstract— Distributed power control schemes in wireless
networks have been well-examined, but standard methods
rarely consider the effect of potentially random delays, which
occur in almost every real-world network. We present Robust
Feedback Averaging, a novel power control algorithm that is
capable of operating in delay-ridden and noisy environments.
We prove optimal convergence of this algorithm in the presence
of random, time-varying delays, and present numerical simula-
tions that indicate that Robust Feedback Averaging outperforms
the ubiquitous Foschini-Miljanic algorithm in several regimes.

I. INTRODUCTION

Proper management of wireless communication networks
relies on efficient and robust power control strategies. Such
strategies may be broadly categorized into either centralized
or distributed paradigms. While centralized methods may
allow for more globally optimal theoretical results, this is
counterbalanced by an increased communication requirement
for implementation, and a reduction in system robustness
due to the presence of single total failure point. In contrast,
divesting the control into a distributed scheme alleviates
these concerns and opens up the study of both cooperative
and competitive optimal decentralized control strategies [1],
[2]. Such strategies have been well-examined, and solutions
for the fundamental problems have been established.

One foremost power control method in such a distributed
wireless network was developed by Foschini and Miljanic
(FM) [3]. Since its development, the FM algorithm has
proved applicable and stable in far more general envi-
ronments than originally considered [4]. As a clean and
polished control scheme which possesses several strong
and useful convergence properties, the FM algorithm has
heavily inspired subsequent research in the field [5], [6].
Extensive studies have examined the power control problem
from game-theoretic and utility based perspectives, allowing
the consideration of cooperative and competitive network
participants [7], [8]. These control methods generally focus
on “memoryless” implementations, which only consider the
current power signal vector when deciding the optimal power
for a subsequent iteration. This restriction results in well-
known stability issues.

In a 2017 study which addresses these stability issues,
Zhou et al. presented an alternate power control algorithm
known as dual averaging (DA) [9]. This algorithm uses all
past iterates in the decision in a way that prevents the current
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transmitted power from being dominated by any particular
past received signal. Particular care is taken to enforce fully
distributed control and eliminate communication require-
ments. Furthermore, the total historical information is not
stored explicitly. Rather, to reduce memory requirements,
such information is carried forward implicitly and efficiently
in rolling summaries.

A further concern beyond memory requirements is the
delays inherent in any physically realizable system. These
delays can result from either signal propagation time or
from the computational requirements to implement such
power control algorithms in any real-world device. Previous
literature has studied the effect of relatively simple constant
and time-varying delays on the FM algorithm and adaptions
thereof [10], [11], [12], [13]. However, modern mobile and
mesh wireless networks may consist of a wide range of
distinct devices, each attempting to send different types of
information. This may lead to a spread of delays culminating
in either no power signals in a time slot, or multiple signals
being delayed to the same subsequent time slot. Furthermore,
it could also lead to power signals arriving out of order. Since
the presence of delay is so ubiquitous in real-world systems,
any new power control algorithm should be shown to handle
the concerns that delayed information introduces.

Our goal is to present a new power control algorithm
that maintains the desirable properties of the dual averaging
algorithm [9], and is capable of handling arbitrary delays.
We must first address the situation in which multiple power
iterates are delayed such that they arrive within a single
time step. In this case, the control algorithm must either
choose from or combine all available data without prior
knowledge of the order in which the iterates were generated.
We must also allow for the situation in which the delays
cause a power iterate to be considered out of order. These
considerations allow our new algorithm to address a wide
range of both deterministic and random delays, a highly
desirable capability which greatly increases the robustness
of the system.

Delays have been studied in wireless networks in the
context of the FM algorithm [10], [11], [12], [13], though
none have addressed the case in which multiple SINR
measurements arrive simultaneously or the case where SINR
measurements arrive out of order. So far, properties of the DA
algorithm in a network with delays have not been studied.

A. Our Contributions

Our contributions are threefold: we first present Robust
Feedback Averaging (RFA), a novel algorithm which utilizes
the core idea of the dual averaging distributed power control
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algorithm. This new algorithm expands the DA algorithm’s
capabilities, and allows it to address a wide range of delay
types. RFA is a fully asynchronous control algorithm, and
this asynchronicity is central in RFA’s ability to handle
arbitrary delays. This property relaxes the need for update
synchronization, and even allows different links to perform
power updates at different rates. Furthermore, the RFA
algorithm maintains both the constant memory property and
the baseline power convergence guarantee of the original DA
algorithm in this more general environment.

Second, we prove that the RFA algorithm maintains the
original performance guarantees: if the channel is feasible,
the RFA algorithm converges to the optimal power vec-
tor. Furthermore, we prove a new guarantee for the RFA
algorithm: even subject to random delays, the algorithm
converges almost surely to the optimal power vector. These
guarantees are not matched by the FM algorithm, or by
parallel adaptations of such. While the FM algorithm has
been shown to converge under certain time-varying delays, it
may fail to converge when said delays are arbitrarily random.
Additionally, the FM algorithm as it stands cannot address
the situation of multiple iterates within a time slot, and even
if augmented in a manner similar to the RFA algorithm, does
not maintain its convergence guarantee.

Thirdly, we demonstrate the robustness of the RFA algo-
rithm in the presence of both random channels and delays
via a series of numerical simulations. These simulations
demonstrate that the RFA algorithm achieves convergence in
a variety of scenarios, both ones that we prove will converge
and ones where the RFA algorithm is not proven to converge.
We also show that our algorithm empirically outperforms a
corresponding augmentation of the FM algorithm.

II. BACKGROUND, MODEL, MOTIVATION
A. Power Control in Wireless Networks

We consider a typical wireless network model consisting
of N communication links, each comprised of a transmitter
and an intended receiver. The transmitted power vector is
denoted by p = (p1,...,pn) Where p; is the power used
by the transmitter of link ¢. For this paper, we consider only
non-negative real transmission powers, i.e. p € Rf .

The most common service quality measure used in power
control systems is signal to interference and noise ratio
(SINR). Given a power vector p, link i’s SINR r;(p) is
given by the following ratio:

Giipi

ri(p) >z Gijpj + i M

where 7); is the thermal noise associated with the receiver

of link 7 and G;; > 0 is the power gain between transmitter

J and receiver ¢; for i # j, G;; represents the interference

receiver ¢ experiences due to transmitter j per unit transmis-

sion power used. Here, we represent all the power gains G';;

with the gain matrix G and all the thermal noises with the
vector 7).

Additionally, each link ¢ has a threshold 7 > 0, which
denotes the minimum SINR necessary to achieve acceptable

service quality for link . The standard power control prob-
lem [14], [15] is to find a power vector p such that the
quality of service constraints hold:

ri(p) >r;,Vi 2)

where inequality is component-wise.

Finding a solution to this problem assumes that such a

power vector exists; to characterize the existence of such
power vectors, we shall define the notion of channel feasi-
bility.
Definition 1. A channel, given by G, is said to be feasible
with respect to a target SINR vector r* = (rf,...,ry) if
there exists a p satisfying ( 2). The channel is otherwise
said to be infeasible.

We can easily check for channel feasibility by constructing
the re-weighted noise vector ~ and the re-weighted gain
matrix W:

I L 3)
: rL*G—i ENE

Based on [3], we have the following definition.

x T

Yi =T

Definition 2. A channel {G,n} is feasible with respect to

a target SINR vector x* if and only if the largest eigenvalue
Amaz(W) < 1.

This gives us a convenient way to check channel feasibil-
ity.

A standard practical constraint in wireless communications
is to restrict the allowed transmitter powers to lie in a
specified interval [9] [16], effectively bounding the maximum
power for each link by p;**“. The feasible support set, then,
is

N
P = H[O7p;71am] (4)
i=1

We also define the optimal power vector p* € P to be the
smallest component-wise p that satisfies (2) and (4).

B. Foschini-Miljanic Algorithm

The standard algorithm used in distributed power control
systems is the Foschini Miljanic (FM) algorithm [3]. The
FM power update rule, modified slightly to accommodate
the maximum power bounds, is

t+1 : t r;'k max
p; = min (Pi r+(pY) y Di ) (%)

The FM algorithm, as stated in (5), requires a number of
conditions to be satisfied in order to converge to the optimal
power p*:

1) The channel must be feasible w.r.t. r* (2).

2) The optimal power vector must be within the power

bounds (4).
3) The channel G, 7 must be constant and time-invariant'.

'While the existence of a constant, time-invariant channel is required for
convergence to p*, the FM algorithm may still converge to a steady-state
distribution if the channel varies in time.
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4) At time t, the previous SINR measurement 7;(p’~1)
must be available at transmitter i to calculate pt.

If these conditions are satisfied, then the power iterate p’
converges to the optimal power vector p* with the FM update
rule, irrespective of the initial point p°.

C. Dual Averaging Algorithm

A novel alternative update to the FM algorithm is the dual
averaging (DA) power control algorithm [9]. This algorithm
performs updates on a dual power vector, y, and then
transforms these dual power vectors into the transmitted
power vector p by finding the closest p to y that satisfies the
constraints given in (2) and (4). The dual averaging update
equation is:

: 1

t+1 t
Yi t+1

Y; (Giipk =7 (> Gigph+m)), (6
J#i

and these dual power vectors are simply clipped to satisfy

(2) and (4), i.e.

p! = max(0, min(y!, p["**)). )

It is important to note that all of the elements of the second
term in ( 7) can be extracted from the SINR measurement
ri(p?) that is returned by the receiver. This algorithm, like
the FM algorithm, will converge to the optimal power vector
for feasible, time-constant channels with no delay; however,
the DA algorithm has also been proven to converge to
p* in the presence of a stochastic, time-varying channel
environment [9]. Therefore, the third condition required by
the FM algorithm above is not necessary for DA.

D. Delay in Wireless Networks

While both the FM algorithm and the DA algorithm enjoy
optimal convergence properties in a delay-free network, real-
world networks include multiple sources of latency. As they
stand, neither the FM update presented in 5 nor the DA
update shown in 7 is able to accommodate delays; both
of these update equations assume the SINR r;(p'~!) from
the previous iteration, measured at receiver ¢, is immediately
available to the transmitter at time step ¢. Furthermore, the
power updates are assumed to be synchronized across all
links in the system.

We aim to explore the properties of the dual averaging
algorithm in the presence of delayed SINR measurements.
Specifically, we set out to answer the following questions:

o« How can we modify the DA algorithm to allow the

algorithm to operate with general and random delays?

o Is the updated algorithm robust to delays, as well as

time-varying channels?

« Can we obtain performance guarantees for this updated

algorithm?

Before we present our Robust Feedback Averaging algo-
rithm, we must formally introduce the notion of delay in our
model.

We now consider a channel in which, for each time step
and for each link, the SINR signal is delayed by D! € ZT

units. Notice that these delay variables are distinct for every
transmitter ¢ and every time step t. Therefore, if transmitter
1 sends a power vector at time ¢’ (p;?/), that transmitter will
receive the SINR measurement ri(pt,) from receiver 7 at
time ¢’ 4+ D .

This is a more comprehensive model of delay than
those previously considered in the context of the FM al-
gorithm [10], [11], [12], [13]. In these works, the delay
was either constant or varying with respect to time, but not
also varying with respect to each receiver. This conveniently
avoids the aforementioned issues we have highlighted in this
paper: simultaneous SINRs and out-of-order SINRs.

The notation presented here allows for a general model
for delay, and can account for the both of these cases.
Additionally, by making D! a random variable, we can
explore the effect of random delays on our algorithm.

III. ROBUST FEEDBACK AVERAGING WITH DELAYED
AND ASYNCHRONOUS UPDATES

We now discuss the Robust Feedback Averaging algo-
rithm. As discussed, In the traditional formulation of both
the FM algorithm and the DA algorithm, the SINR 7;(p?),
is assumed to be immediately available to the transmitter at
every time step, and updates are assumed to be synchronized
across all links in the system. By adjusting the DA algorithm
for delayed, asynchronous updates, we can relax these two
assumptions.

Algorithm 1 Robust Feedback Averaging Algorithm

1: Each link i arbitrarily chooses an initial 3?.
2. fort=0,1,2,... do
33 fori=1,...,N do

4: P = H;aX(O, min(y}, py***))
5: n:Z]I(t’+Df':t)
6: if n >T) then .
t+1 _ t 1 t’
Y Y T onarn Z (Giipi -
7: t'=0
(S ) (8 -
J#i
8: else
9 it =yl
10: end if
11:  end for
12: end for

The RFA algorithm, shown in Algorithm 1, is able to
accommodate these delayed SINR measurements. Since the
delays D! can all be different, it is possible for a link to
receive no signals at all on a given time step. Conversely,
it is also possible for a link to receive multiple SINR
measurements in a given time step. When no new SINR
signals are received by transmitter ¢, the value of y; (and the
transmitted power p;) do not change. When multiple SINR
measurements are received, the received signals are simply
averaged.
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To perform these two actions, we calculate n, which
represents the number of SINR measurements received by
a transmitter in a given time step. If the transmitter has
received any measurements, then an average is taken and
the dual power vector is updated as shown in Line 7 of
Algorithm 1. Noticeably, the algorithm doesn’t know which
SINRs were received, nor if the SINRs arrive out of order.
Because of the running average implicit in the dual power
vectors y;, the algorithm can dynamically adapt to whatever
SINR measurements it receives, regardless of the order.
This implicit storing of all historical power and update
information is a necessary practical detail in the context of
memory-constrained wireless transmitters.

In addition to the minimal memory requirements, the RFA
algorithm as presented satisfies a fundamental requirement: it
converges to the optimal power vector p* in the presence of
random delays. We now establish this theoretical guarantee
of the RFA algorithm.

We start by designing an energy function that will play an
important role in measuring progress of convergence.

Definition 3. Define the energy function L : P x Y — R:
1 N
E(y) = 5p*l3+>_hi(wi) — (v.p"),
i=1

where I (yi) = maxy, cpoppox{piys — 307} and () de-
notes inner product.

Two important properties of the energy function are (proof
omitted due space limitation):

Lemma 1. Let yt, pt be iterates from Algorithm 1.

1) E(y)>0,¥y € RV,
2) If E(y') — 0, then p* — p*.

Utilizing this energy function, we can then establish the
main convergence result:

Theorem 1. Let pt be the iterates generated by Algorithm 1.
If the random delays are all bounded: D! < co,Vi,t, then
p! — p*,a.s..

Brief Proof Sketch:

There are two main ingredients to the proof, which we
provide a brief sketch here due to space limitation. First,
using the energy function F(y'), we show the recurrence
of the power iterate p‘. Specifically, we consider E(y?!)
and show that unless the iterate p visits p* infinitely often
almost surely, then E(yt) will diverge to —oco. However,
this generates an immediate contradiction because E(y?) is
always positive (one of its important properties).

Second, having established the above recurrence result,
we then perform a fine-grained analysis combining bounded
delays and further properties of the energy function to show
that, path-by-path, for any fixed neighborhood around p*,
after a sufficiently long time, once the iterate p’ enters
into the neighborhood, it will be forever trapped inside the
neighborhood. This trapping property (on a path-by-path

basis), together with the recurrence property establishes the
claim. |
This proof of almost sure convergence to the optimal
vector makes the RFA algorithm a powerful tool in delay-
ridden networks. Furthermore, the only condition required of
the proof is that the delays be finite. In real-world systems,
this is always true, so this is an extremely weak assumption.
And, in the presence of no delay, RFA reduces to the dual
averaging algorithm and enjoys almost sure convergence in
both deterministic and stochastic time-varying channels.

IV. SIMULATION RESULTS

To validate the convergence and performance guarantees
of Robust Feedback Averaging, we provide several numerical
experiments that illustrate the algorithm’s various properties.
We consider two sets of experiments in this section: first, we
introduce two different forms of delay into a deterministic,
time invariant channel; second, we examine the effect of
adding delays in a more complex stochastic and time-varying
channel.

A. Foschini-Miljanic Algorithm with Asynchronous Delay

As an algorithmic comparison, we also alter the Foschini-
Miljanic algorithm to account for transmitter-distinct, time-
varying delays. We further modify the FM update presented
in [10] to allow the FM algorithm to handle delays which
are specific for each link. Our modification is similar to the
modification in Algorithm 1: all of the SINR values returned
in a given time step are averaged, and the average value
is used for the FM update. Our modified FM algorithm is
shown in Algorithm 2.

Algorithm 2 Foschini-Miljanic Algorithm: Random Delays

1: Each link 4 arbitrarily chooses an initial p?.
2: fort =0,1,2,... do
33 fori=1,...,N do

t

4 n=>Y It + D! =t)
t'=0
5: if n > 0 then .
1 ’ r* ’
t4+1 ¢ i / t
6: T = — . It +D; =t
p’L n;(pz T’L’(pt,)) ( + ) )
else
pi =}
: end if
10: pitt = min(ptt!, piner)
11:  end for
12: end for

As expected, our modified FM algorithm reduces to the
original FM algorithm when D! = 0 V i,t. We compare
the performance of this modified FM algorithm and our RFA
algorithm in the following experiments.

B. Deterministic and Time-Invariant Channel

We begin with a deterministic, time-invariant channel with
4 links. The channel properties G,n and optimal power
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vector p* are

31 2 1 0.1 0.079167
o |13 L2 o2 .| 008583
“l2 13 17|03 |P 7| 0104167
1 21 3 0.1 0.077083

For these simulations, we select the target SINR 7 = 0.5
and the maximum power p;*** = 1.0 for all links in the
channel. We chose these parameters to present a relatively
challenging environment for the algorithms; as the G matrix
indicates, each link experiences a lot of interference from
every other link in the system. Due to this challenging
environment, we only require the links to achieve a SINR
of 0.5. The maximum power p;*** = 1.0 was chosen by
considering the optimal power vector p*; any algorithm
which finds the optimal transmitter powers will not be
affected by this upper bound in the long run.

We can calculate the re-weighted gain matrix and re-
weighted noise vector W, +, and verify that \,,q,(W) =
0.67 < 1. Therefore, based on Definition 2, the channel is
stable. This means that, for both the FM algorithm and the
RFA algorithm, the transmitted link powers will converge to
the optimal values in the absence of delay.

We will examine algorithm performance on this channel in
several different delay regimes. For the simulations shown,
all powers p? (FM) and dual powers 3 (RFA) were initial-
ized to zero.

Experiment 1: We first examine the algorithmic perfor-
mance under the regime of constant delay. However, we
make the delay distinct for each channel. For this case, we
set D = [D; Dy D3 Dy4)T = [25 50 75 100]7 Vt. This
is a reasonable experiment, as in a practical setting, each
transmitter-receiver pair could have different computational
capabilities or could be separated by a greater physical
distance, causing the delays for each link to be distinct.
Even this simple scenario is not covered by the works which
studied the FM algorithm in the presence of delay [10], [11],
[12], [13], so the FM algorithm is not guaranteed to converge.
However, as we proved in Theorem 1, RFA will eventually
return the optimal power vector p*.

Figure 1 shows the power for each link with this constant
delay. Specifically, Figure 1(a) shows the transmitted power
for each link plotted against time when using the RFA
algorithm, and Figure 1(b) does so using the modified FM
algorithm. As expected, neither algorithm updates until the
25" time step, when the first SINR is received. At ¢ = 25,
only Link 1 updates, as it is the only one to receive a SINR
measurement; 25 time steps later, Link 2 begins updating,
then Link 3, and finally Link 4.

The FM algorithm exhibits interesting, step-wise behavior
in Figure 1(b). This is due to the fact that the FM algorithm
only depends on the most recent SINR measurement to set
its next transmission power. Because the transmission powers
at time ¢ = [0,25) were all the same, the SINRs received
during t = [25,50) were all the same, so the transmission
powers in that interval remained constant.

1
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Fig. 1: Results of Experiment 1: power marginal con-
vergence behavior of the RFA algorithm (a) and the FM
algorithm (b) with a fixed, constant delay for each channel:
D = [25 50 75 100]7 Vt for channels 1-4, respectively.
Both algorithms converge to the optimal power vector, and
RFA uses less overall power.

Regardless of the stepwise behavior, the power appears
to converge to the optimal values both while using the FM
algorithm and while using the RFA algorithm. however,
the transient behavior is quite different. Noticeably, the FM
algorithm encourages all of the transmitted powers to rise
to the maximum power at the beginning of the simulation.
This is an effect of the FM algorithm only considering the
most recent SINR measurement when performing an update;
at the beginning, all SINRs are below the target values, so
they are increased drastically. It then takes a considerable
amount of time (200 time steps) for the values to eventually
stabilize, and it takes another 400 time steps for all of the
powers to simultaneously decrease to eventually settle on the
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optimal powers.

Meanwhile, the RFA algorithm encourages a more gradual
approach. Because of the role of averaging, when a transmit-
ter receives a SINR measurement that is far below the target
SINR, it slowly increases its transmitted power. With all
transmitters doing this in tandem, this causes the trajectories
of the transmitted powers to approach the optimal power
vector from below, rather than from above. This is significant,
as the area under each curve represents the total power used
by each transmitter. As seen in Figure 1, there is about an
order of magnitude difference in the area under the curves
in Figure 1(a) and Figure 1(b), which represents an order of
magnitude power savings caused by RFA.

Experiment 2: The advantage of RFA is even more
apparent when we allow the delays to be random. In our
second simulation, we sample each delay D! individually
from a uniform distribution over the integers, i.e. Df ~
U(0,100). This is a more challenging environment than in
the previous experiment, because the delay in the previous
experiment, though it varied across channels, was constant
with respect to a single channel. That meant that (after ¢ =
100) every transmitter received a single SINR measurement.
In this experiment, we examine the impact of multiple
SINR measurements per time step, and out-of-order SINR
measurements.

Figure 2 shows the transmission power of each transmitter
vs time. In Figure 2(a), we see a much more noisy con-
vergence curve for the FM algorithm, with frequent spikes
in the transmitted powers. Each spike in the plot after the
initial transient behavior is due to an out-of-order SINR
measurement; here, again, the “memoryless” property of
the FM algorithm hinders its performance. The initial spike
in power, which is similar to the behavior observed in
Experiment 1, is again an unnecessary waste of power.

The RFA algorithm, on the other hand, does not cause
any of the transmitters to send spikes in power when an
out-of-order SINR is received. Similarly to Experiment 1,
it converges from below to the optimal power vector in an
energy-efficient manner.

C. Stochastic and Time-Varying Channel

We now turn to the case of a stochastic, time-varying
channel with delay. We define a stochastic channel as one in
which the gain matrices and noise evolve stochastically over
time: {G'}22,, {n'}:2,. For these experiments, we consider
a stochastic channel that is drawn i.i.d. from a set of 2
deterministic channels, each with equal probability:

(Gt = (G1,m1), w.p. 0.5
7 (G27772)7 w.p. 057

2 5 0.1
Gl_[6 3]”1_{0.2]
5 3 0.15
Gz‘{s 3}’72_{0.05}

Again, we chose these matrices to present a challenging
environment for the algorithms; even though there are only
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(b) Foschini-Miljanic Algorithm

Fig. 2: Results of Experiment 2: Power marginal conver-
gence behavior of the RFA algorithm (a) and FM algorithm
(b) with a uniform random delay of [0, 100] time steps. Due
to the out-of-order nature of the SINR measurements, the FM
algorithm frequently unnecessarily increases the transmission
power. Both algorithms appear to converge.

two channels, the G matrices dictate that the signal in each
link will heavily interfere with the signals from the other
link.

Experiment 3: First, we set v} = 0.5 and ppyq, = 1.0
as before. Using this r}, we check channel feasibility by
constructing Wy, 71, Wy, and 2. We see that A0, (W1) =
1.34 and A\, (W3) = 0.46. This indicates that the channel
G, 13 is feasible (by Definition 2, but the channel G, 7, is
infeasible. This means that, half of the time, the algorithms
will be operating on an infeasible channel; the FM algorithm
will not converge to the optimal power vector in this scenario.

However, the average channel,
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G- [35 4} [0.125}
4.5 3 0.125 |”’
is feasible (with A, (W) = 0.79). So, by the results shown
in [9], the RFA algorithm allows all the link powers in this
channel to converge to their optimal value (with no delay).

Now, we add delay to this stochastic channel. We again
add uniform independent delay for each channel for each
time step, i.e. D} ~ U(0,100). Figure 3 shows the results
of this simulation, with Figures 3(a) and 3(b) illustrating the
performance of RFA and FM, respectively.

We see that, again, the RFA algorithm converges smoothly
to the optimal power vector from below, just as in previous
experiments. However, the FM algorithm, as expected, does
not converge. Since FM only relies on the most recently
returned SINR measurement, whenever the channel is in-
feasible (which occurs in this experiment with probability
0.5), the transmitted powers will diverge. Of course, when
the channel is feasible, the power vector decreases, so the
power will only reach the maximum value if a long sequence
of SINR measurements from the infeasible channel were
returned sequentially, which will only happen with very low
probability.

Experiment 4: For this experiment, we did not examine
the performance of FM, but instead focused on the perfor-
mance of RFA. We use the same stochastic channel as in
Experiment 3, but here we vary 7} between 0.5 and 0.9
(where we always set 7] = 73).

As in Experiment 3, setting ] = 0.5 causes the average
channel, G = [324] 7 = [9132] to be feasible (with
Amaz (W) = 0.79). However, when 7 = 0.9, we reconstruct
W, and ~; and see that A\,q.(W) = 1.31 in this case.
Therefore, the channel is on average infeasible, and we do
not expect the link powers to converge when using RFA.

Figure 4 shows the results of this experiment. Unlike in the
other figures, here Figure 4(a) shows the power transmitted
by Link 1, and Figure 4(b) shows the power transmitted by
Link 2. Each individual trace represents a different target
SINR r}. As we expect, when the convergence condition in
Definition 2 holds, then the power vector converges to the
optimal p*. But, when A, (W) > 1, the powers diverge,
and the powers diverge faster with larger A4, (W).

V. CONCLUSIONS

In this paper, we have presented a novel distributed power
control update algorithm: Robust Feedback Averaging. We
have shown that this algorithm enjoys all of the performance
guarantees of the original dual averaging algorithm, namely
almost sure convergence to the optimal power vector in both
deterministic and stochastic channel environments. Addition-
ally, we have proven that, in the presence of delayed SINR
measurements, the RFA algorithm converges almost surely
to the optimal power vector in all cases in which the delay
is bounded. We have also provided numerical simulations
that demonstrate that RFA is robust in both deterministic and
stochastic scenarios with delay. We have shown that the RFA
algorithm converges in cases where the Foschini-Miljanic
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Fig. 3: Results of Experiment 3: power marginal con-
vergence behavior in the presence of a stochastic, time-
varying channel and uniformly random delay. The delays are
sampled from uniform distribution: D! ~ U(0,100). Again,
RFA (a) converges to the optimal average power, but the
FM algorithm (b) does not converge, since the channel is
infeasible half of the time.

algorithm does not converge, and often uses less total power
than the FM algorithm on the path to convergence.
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