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Multi-agent online learning revolves around multiple interacting agents that make sequential decisions online, each

concerned with maximizing their individual rewards (which, a priori, typically depend on the actions of all other players).

In this paper, we consider a model of multi-agent online learning where the game is not known in advance, and the agents’

feedback is subject to both noise and delays. Motivated by its strong no-regret properties, we first focus on a class of

learning algorithms known as online mirror descent (OMD), and we show that, even in the presence of noise, the induced

sequence of play converges to Nash equilibria in a wide class of continuous games, provided that the feedback delays faced

by the agents are synchronous and bounded. Subsequently, to tackle fully decentralized, asynchronous environments with

unbounded feedback delays, we propose a variant of OMD which we call delayed mirror descent (DMD), and which relies

on the repeated leveraging of past information. With this modification, the algorithm converges to Nash equilibria almost

surely, even in noisy environments with no feedback synchronicity assumptions, and with feedback delays growing at a

superlinear rate relative to the game’s horizon.
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1. Introduction Online learning is a broad and powerful theoretical framework with widespread

applications in machine learning, data science and operations research [6, 45, 3, 19]. In its most basic form,

the prototypical online learning setting may be described as follows: At each round t = 0,1, . . . , an agent

selects an action xt from a set of possible actions X , and obtains a reward ut (xt ) based on some a priori

unknown and (possibly) time-varying reward function ut (·). Subsequently, the player receives some feedback

(e.g., the past history of the reward functions or some restricted information thereof), and selects a new action

xt+1 with the goal of maximizing the obtained reward. Aggregating over the stages of this online decision

process, this is usually quantified by asking that the player’s regret Reg(T) ≡maxx∈X
∑T

t=1
[
ut (x) − ut (xt )

]
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grow sublinearly with the horizon of play T , a property known as “no regret”.

One of the most widely used algorithmic schemes for learning in this context is the class of online mirror

descent (OMD) algorithms [44]. Tracing its origins to convex optimization [34, 35], OMD proceeds by

taking a gradient step in a dual space (where gradients live) and projecting back to the primal (decision)

space via a suitably chosen mirror map. In particular, OMD and its variants includes as special cases

several seminal learning algorithms, such as Zinkevich’s online gradient descent (OGD) scheme [52], the

exponentia/multiplicative weights algorithm [26, 1], matrix regularization schemes [21], and many more.1

When each ut is concave,2 OMD enjoys a sublinear O(
√

T) regret bound which is known to be universally

tight. Further, the desirable property of OMD still holds even in the presence of delays. For instance, the

authors of [39] recently considered a general delay model on the feedback, where the gradient at round t

is only available at round t + dt − 1, with dt being the delay associated with the agent’s action at round t.

[39] then considered a natural extension of OMD under delays: updating the set of gradients as they are

received. If the total delay after time T is D(T) =
∑T

t=1 dt , then OMD enjoys anO(D(T)1/2) regret bound [39].

This natural extension has several strengths: no assumption is made on how the gradients are received (the

delayed gradients can be received out-of-order); further, as pointed out in [39], a gradient does not need to be

timestamped by the round from which it originates – in contrast to the earlier pooling strategies of [20, 13].

As such, OMD provides a broad and powerful algorithmic framework to make sequential online decisions in

model-agnostic regimes, where the underlying environment is rapidly changing or adversarial.

The above concerns single-agent settings, where a sole decision maker interacts with an unknown and

arbitrarily changing environment. Albeit powerful, this black-box abstraction cannot capture finer structures

and details that arise in multi-agent environments where several optimizing players are engaged in a concurrent

decision process, with the actions of one player affecting the rewards of another [9, 47, 8, 17]. In many

cases of practical interest, the agents’ reward structure can be modeled as a continuous game [15], where

each agent’s reward is determined by the joint action of all the agents via a fixed (but potentially unknown)

mechanism – the stage game. In this case, from a unilateral viewpoint, the reward function of any given

player varies with time as the game’s players change their actions from one stage to the next. Since the regret

bounds of OMD raise high expectations in terms of performance guarantees, it is natural to assume that

agents adopt some variant of OMD when faced with such online decision processes.

As a result, several natural questions arise: If each agent adopts an OMD policy to minimize their individual

regret, what is the resulting evolution of the players’ joint action profile? Does it converge? And, if so,

1 Several variants of this class also exist and, perhaps unsurprisingly, they occur with a variety of different names – such as
“Follow-the-Regularized-Leader" [22], dual averaging [35, 50], and so on.

2Usually, the term “descent” refers to the long-standing tradition of objective function minimization in optimization; in such cases,
the benchmark assumption is convex. In a slight abuse of terminology, we are using the term “descent” for the maximization of
concave functions, to avoid introducing unwieldy new algorithmic names.



under what assumptions would the agents’ long-term behavior be represented by a Nash equilibrium of the

underlying game?

1.1. Related Work Despite the fact that multi-agent/game-theoretic learning has received significant

scrutiny in the literature, the questions raised above are still open for several reasons.

First, in general, joint convergence of no-regret learning does not hold. In fact, even in (mixed extensions

of) finite games, a class of games where each agent has a finite number of actions and the rewards for agents

are specified by a matrix that records the reward for each agent under each joint action, OMD (and no-regret

learning in general) can fail to converge [29]. Even worse, in general, no-regret learning does not necessarily

eliminate dominated strategies: there exist games whose Hannan set (the limit set of no-regret learning

policies) contains strategies that assign weight only to strictly dominated strategies [48]. In such cases, an

agent applying the no-regret learning algorithm will select a strictly inferior action in equilibrium regardless

of the other agents’ actions. More generally, even in the absence of dominated strategies, if a Nash equilibrium

is not reached, an agent can always obtain larger rewards by deviating from its current action. Consequently,

establishing convergence to Nash equilibrium under no-regret learning algorithms for a broad and meaningful

class of games has attracted considerable interest in the literature – for both finite and continuous games.

Much of the existing literature on this issue has focused on studying convergence in (mixed extensions

of) finite games [47, 48, 5, 33]. More specifically, earlier work of game-theoretic learning (see [16] for a

comprehensive review) has mainly focused on learning in finite games with dynamics that are not necessarily

regret-less. The primary focus of [9] is convergence to coarser equilibrium notions (such as correlated or

coarse correlated equilibria), where a fairly complete characterization is given. That being said, as pointed out

in [9], convergence to Nash is a much more difficult problem: recent results of [49] have clearly highlighted

the gap between (coarse) correlated equilibria obtained by no-regret learning processes and Nash equilibria,

and more recent works have explored in depth the non-convergent behaviors that can emerge in this setting

[27, 37, 30]. More positive results can be obtained in the class of potential games where, in a recent paper,

the authors of [12] established the convergence of multiplicative weights and other regularized strategies in

potential games with only payoff-based, bandit feedback.

However, much less is known beyond mixed extensions of finite games – i.e., in the case of continuous

games. In the context of mixing in games with continuous action spaces, the authors of [38] provide a

convergence analysis for a perturbed version of the multiplicative weights algorithm in potential games. In a

pure-strategy setting, the network games considered in [28] belong to the much broader class of games known

as concave games: each agent’s reward function is individually concave. Therein, the dynamics investigated

may lead to positive regret in the limit. Note that mixed extensions of finite games belong to the class of



linear games (i.e. each agent’s reward is individually linear in its own action), which belong to the class of

concave games, which in turn belong to the class of continuous games. Another recent paper [2] studied a

two-player continuous zero-sum game, and showed that if both players adopt a no-regret learning algorithm,

then the empirical time-average of the joint action converges to Nash equilibria. However, barring a few recent

exceptions, the territory of no-regret learning on concave games is not well understood (let alone in general

games with continuous action sets). An exception to this is the recent paper [24] where the authors establish

the convergence of mirror descent in concave potential games with perfect information and synchronous user

updates – a result later extended to learning in monotone games [31].

Second, the convergence mode that is commonly adopted in the existing literature is that of ergodic

convergence – i.e., convergence in the sense of time averages [9, 7, 10, 25]), rather than the convergence of the

actual sequence of play (i.e. xt ). The former is convergence of the empirical frequency of play, while the latter

is convergence of actual play: the latter implies the former, but not the other way round. In a game-theoretic

context, convergence of the actual sequence of play is crucial for several reasons: a) convergence in the sense

of time averages does not preclude that players might play subpar (e.g., strictly dominated) strategies infinitely

often; b) the players’ rewards are determined by their actions, not their time-averages, so ergodic convergence

diminishes in predictive value if it is not accompanied by similar conclusions for the players’ realized actions;

and c) because there is no inherent averaging, the analysis of the actual sequence of play provides a much

finer understanding of the evolution of the joint action. In fact, the difference between these two convergence

modes was highlighted in [29], where it is shown that even though the time-average of continuous-time

OMD converges to Nash equilibrium in bilinear zero-sum games, actual play orbits interior Nash equilibria

in perpetuity. Some recent positive results in specific games do exist: [24, 25] studied nonatomic routing

games (a special class of concave potential games) and established that multiplicative weights converge to

Nash equilibria, while the authors of [37] established the convergence of the multiplicative weights algorithm

to Nash equilibria under certain conditions in atomic non-splittable congestion games.

A third important point is that many of the works discussed above concern multi-agent online learning

models with perfect information – in the sense that there are no errors or other corruption factors in the

feedback that each agent receives at each round. However, due to the massive growth in scale in many of

the operations systems captured by multi-agent models, a new set of challenges arises: i) Feedback may

arrive with a significant delay (as agents might be spread across different geographical locations); ii) such

feedback delays will inevitably be asynchronous due to the sheer number of agents; iii) the received feedback

is susceptible to noise, measurement errors and information transmission losses; and iv) to make decisions

online, a learning algorithm must collect and act on only minimal information from a high-dimensional space

(e.g., joint action of all agents). This means that imperfect information, including both delays and noise (and



possibly many other types of feedback impediments), is rapidly becoming the rule rather than the exception;

however, this crucial feature has not been sufficiently addressed in the literature so far.

1.2. Our Contributions In this paper, we focus on the noise and delay/asynchronicity aspects of the

challenges mentioned above. To begin with, we identify a broad class of (not necessarily concave) continuous

games, which we call λ-variationally stable, and which contain several important classes of continuous

games that arise in the literature. Within this class, we are able to treat convergence questions without having

to consider highly structured frameworks, such as concave potential games (though our analysis also covers

such games). For completeness, we also discuss several practical examples of games that are variationally

stable in Sections 2 and 3.

In terms of learning, we focus on the widely used OMD family of learning algorithms, and we examine in

depth its convergence properties in the presence of delays/asynchronicities and noise. This is accomplished by

means of a tailor-made Lyapunov function, the so-called λ-Fenchel coupling, which serves as a “primal-dual”

divergence measure between (dual) gradient steps and (primal) decision variables. In particular, we show that

the sequence of play induced by OMD converges to the game’s set of Nash equilibria in all stable games,

provided that the delays of all players are synchronous and bounded (see Theorems 4.1 and 4.2). As an

important feature of this result, it should be noted that players may be receiving gradients out-of-order and do

not need to keep track of the stages from which a given bit of feedback originates from. Proceeding in a

piecemeal fashion, we then consider additional feedback impediments in the form of noisy measurements and

observation errors. In this case, we show that the sequence of play induced by OMD, now a stochastic process,

converges to a Nash equilibrium with probability 1, under synchronous and bounded delays (Theorem 4.5).

Finally, to lift the requirement of synchronous delays, we introduce a modification of vanilla OMD, which

we call delayed mirror descent (DMD), and which leverages past information repeatedly, even in rounds where

players receive no feedback. Thanks to this modification, we show that, in stable games, the sequence of play

induced by DMD converges to Nash equilibria almost surely, even when delays are not synchronized between

players, and might even be unbounded relative to the horizon of the game (Theorem 5.1 and Lemma 5.1).

Importantly, this result remains robust in the presence of noise: as shown in Theorem 5.2 the sequence of

play induced by DMD converges to a Nash equilibrium as long as there is no systematic bias in the errors

affecting the players’ feedback process.

Our analysis draws tools from variational analysis, stochastic approximation, dynamical systems and

martingale limit theory, and provides a flexible toolbox for examining the convergence of both OMD and

DMD under a unified framework.

2. Problem Setup We formalize the multi-agent online learning under imperfect information framework.



2.1. Multi-Agent Reward Structure: Continuous Games We start with the definition of a continuous

game, which provides a reward function for each player in an online learning process.

Definition 2.1. A continuous game G is a tuple G = (N ,X =
∏N

i=1 Xi, {ui}Ni=1), where N is the set of N

players {1,2, . . . ,N}, X is the joint action space, with Xi , a compact and convex subset of a finite-dimensional

vector space �di , being the action space for player i. Finally, ui : X →R is the reward function for player i,

assuming to satisfy the following regularity conditions for all i ∈N :

1. ui(x) is continuous in x.

2. ui is continuously differentiable in xi and the partial gradient ∇xi ui(x) is Lipschitz continuous in x.

Throughout the paper, x−i denotes the joint action of all players but player i. Consequently, the joint action3

x will frequently be written as (xi,x−i). Note that we do not assume, as is typical in the single-agent online

learning problem, that each reward function ui is concave in xi: such an assumption is crucial in obtaining

good regret performance, but is fairly restrictive for the current multi-agent learning problem.

Next, we define two important quantities in the current context.

Definition 2.2. We denote by v(x) to be the column vector of all the partial gradients of the reward

functions4: v(x) = (v1(x), . . . ,vN (x)), where vi(x), ∇xi ui(x).

Definition 2.3. Given a continuous game (N ,X =
∏N

i=1 Xi, {ui}Ni=1), x
∗ ∈ X is called a Nash equilibrium

if for each i ∈N , ui(x∗i ,x
∗
−i) ≥ ui(xi,x∗−i),∀xi ∈ Xi.

Two comments on notational conventions used in this paper: First, 〈·, ·〉 denotes inner product. However,

when there is no confusion (particularly in the proofs), we abbreviate it to normal multiplication for

convenience. For instance, we write vi(x)(xi − x∗i ) as a shorthand in replacement of 〈vi(x), xi − x∗i 〉. Second, let

‖ · ‖ be a vector norm on X . Then ‖ · ‖∗ denote its dual norm: ‖y‖∗ =max‖x ‖≤1〈x, y〉. We use the superscript

‖ · ‖∗ (rather than a subscript) because each agent has its own norm ‖ · ‖i on Xi; hence we reserve the subscript

to agent index.

2.2. Examples Below, we present some motivating examples for the class of games under consideration:

Example 2.1 (Cournot oligopolies). In the standard Cournot oligopoly model, there is a finite set

N = {1, . . . ,N} of firms, each supplying the market with a quantity xi ∈ [0,Ci] of some good (or service)

up to the firm’s production capacity, given here by a positive scalar Ci > 0. This good is then priced as a

decreasing function P(x) of the total supply to the market, as determined by each firm’s production; for

concreteness, we focus on the standard linear model P(x) = a− b
∑

i xi where a and b are positive constants.

3Note that boldfaced letters are only used to denote joint actions. In particular, xi is a vector even though it is not boldfaced.

4Note that per the second assumption in the definition of a continuous game, the gradient v(x) always exists and is a continuous
function on the joint action space X .



In this model, the utility of firm i (considered here as a player) is given by

ui(x) = xiP(x) − cixi, (2.1)

where ci represents the marginal production cost of firm i, i.e., as the income obtained by producing xi units

of the good in question minus the corresponding production cost. Letting Xi = [0,Ci] denote the space of

possible production values for each firm, the resulting game G ≡ G(N ,X ,u) is easily seen to be a continuous

game in the sense described above.

Example 2.2 (Kelly auctions). Consider a service provider with a number of splittable resources

s ∈ S = {1, . . . ,S} (representing e.g., bandwidth, server time, ad space on a website, etc.). These resources

can be leased to a set of N bidders (players) who can place monetary bids xis ≥ 0 for the utilization of

each resource s ∈ S up to each player’s total budget bi, i.e.,
∑

s∈S xis ≤ bi. A popular – and widely used –

mechanism to allocate resources in this case is the so-called Kelly mechanism [23] whereby resources are

allocated proportionally to each player’s bid, i.e., player i gets

ρis =
qsxis

cs +
∑

j∈N xjs
(2.2)

units of the s-th resource (in the above, qs denotes the available units of said resource and cs ≥ 0 is the “entry

barrier” for bidding on it). A simple model for the utility of player i is then given by

ui(xi; x−i) =
∑
s∈S
[giρis − xis], (2.3)

where xi = (xis)s∈S is the bid vector of player i and gi denotes the player’s marginal gain from acquiring a

unit slice of resources. As before, if we write Xi = {xi ∈�S
+ :

∑
s∈S xis ≤ bi} for the space of possible bids of

player i on the set of resources S, we again obtain a continuous game in the sense of the previous section.

Example 2.3 (Congestion games). Consider a set of playersN that share a set of amenities s ∈ S , each

associated with a nondecreasing convex cost function cs : �+→� (for instance, these amenities could be

links in an urban traffic network and their corresponding delay functions). Each player i ∈N has a certain

load ρi > 0 which is split over a collection Ai ⊆ 2S of subsets of amenities αi of S – e.g., sets of links that

form paths in the network. Then, the set of possible actions of player i ∈N can be represented by the scaled

simplex Xi = ρi∆(Ai) = {xi ∈�
Ai
+ :

∑
αi ∈Ai

xiαi = ρi} of load distributions over Ai.

Given a load profile x = (x1, . . . , xN ), costs are determined based on the utilization of each amenity as

follows: First, the demand ws of the s-th amenity is defined as the total load ws =
∑

i∈N
∑
αi 3s xiαi on

said amenity. This demand incurs a cost cs(ws) per unit of load to each player utilizing amenity s, with



cs : �+→� being here a nondecreasing convex function. Accordingly, the total cost to player i ∈N is given

by

ci(x) =
∑
αi ∈Ai

xiαi ciαi (x), (2.4)

where ciαi (x) =
∑

s∈αi
cs(ws) denotes the cost incurred to player i by the utilization of the set of amenities

αi ⊆ S . The resulting game is called an atomic splittable congestion game and is easily seen to adhere to the

above framework.

2.3. Online Mirror Descent on Continuous Games under Delays We extend the general single-agent

online learning delay model [39] to the multi-agent case. Algorithm 1 gives multi-agent OMD learning under

delays. Several comments are in order here. First, each hi(·) is a regularizer on Xi, as defined next.

Algorithm 1 Multi-Agent Online Mirror Descent under Delays

1: Each player i chooses an arbitrary initial y0
i ∈Rdi .

2: for t = 0,1,2, . . . do

3: for i = 1, . . . ,N do

4: xti = arg maxxi ∈Xi {〈y
t
i , xi〉 − hi(xi)}

5: yt+1
i = yti +α

t ∑
s∈G t

i
vi(xs)

6: end for

7: end for

Definition 2.4. Let D be a compact and convex subset of Rm. We say that g : D→R is a regularizer

(with respect to some vector norm ‖ · ‖) if g is continuous and K-strongly convex with respect to ‖ · ‖: there

exists some K > 0 such that∀t ∈ [0,1],∀d,d′ ∈D: g(td+ (1− t)d′) ≤ tg(d)+ (1− t)g(d′)− 1
2 Kt(1− t)‖d′−d‖2.

Second, the gradient step size αt in Algorithm 1 can be any positive and non-increasing sequence that

satisfies the standard summability assumption:
∑∞

t=0 α
t =∞,

∑∞
t=0(α

t )2 <∞.

Third, some words on the delay model: in Algorithm 1, Gt
i denotes the set of rounds whose gradients

become available for player i at the current round t. Denote player i’s delay of the gradient at round s to be ds
i

(a positive integer), then this gradient vi(xs) will be available at round s+ ds
i − 1: s ∈ Gs+ds

i −1
i . In particular, if

ds
i = 1,∀s, then this corresponds to the case where player i doesn’t have any delays. Note that each player can

receive out-of-order gradients: this can happen if the gradient at an earlier round has a larger delay than that

of the gradient at a later round. Finally, note that the data (i.e. feedback) each player needs to collect and act

upon is only of dimension di (i.e. dimension of each player’s actions space), rather than the dimension of the

joint action space.



2.4. Online Mirror Descent on Continuous Games under Both Delays and Noise We can further

incorporate noisy feedback, the second feature of imperfect information, into the existing framework.

Specifically, player i, instead of receiving a perfect gradient as in Line 5 of Algorithm 1, only receives a noisy

gradient ṽi(Xs) = vi(Xs)+ ξs+1
i (see Algorithm 2), where {ξ t }∞

t=1 = {(ξ
t
i )

N
i=1}

∞
t=1 is some noise process. Note

that the iterates X t
i and Y t

i are now capitalized to make explicit the fact that they are now random variables.

It is important to point out that the random variables X t
i and Y t

i are adapted to y0, ξ1, . . . , ξ t , rather than

y0
i , ξ

1
i , . . . , ξ

t
i . We make the following assumption on the noise process:

Algorithm 2 Multi-Agent Online Mirror Descent under Delays and Noise

1: Each player i chooses an arbitrary initial y0
i ∈Rdi .

2: for t = 0,1,2, . . . do

3: for i = 1, . . . ,N do

4: X t
i = arg maxxi ∈Xi {〈Y

t
i , xi〉 − hi(xi)}

5: Y t+1
i =Y t

i +α
t ∑

s∈Gt
i
ṽi(Xs),Y t

i +α
t ∑

s∈Gt
i
(vi(Xs)+ ξs+1

i )

6: end for

7: end for

Assumption 2.1. Let F t be the canonical filtration induced by the random variables ξ1, . . . , ξ t .

1. The noisy gradients are conditionally unbiased: ∀t,E[ξ t+1 | F t ] = 0,a.s..

2. The noisy gradients are bounded in second moments: ∀t,E[(‖ξ t+1‖∗)2 | F t ] ≤ V,a.s., for some V > 0.

3. λ-Variational Stability As mentioned in the introduction, convergence to Nash equilibria does not

hold in general, and can easily fail even in mixed extensions of finite games. Consequently, the existing

literature has focused on obtaining such results in specific finite games (and mixed extensions thereof). In this

section, we define a broad class of continuous games, called λ-variationally stable games, study its structural

properties, and give several subclasses of games that belong to this class. In subsequent sections, we establish

last-iterate convergence results in this general class of games.

3.1. Definition and Properties

Definition 3.1. Given a continuous game (N ,X =
∏N

i=1 Xi, {ui}Ni=1), a set C ⊂ X is called λ-variationally

stable for some λ ∈RN
++ if C is non-empty and it holds that (with equality if and only if x ∈ C):

N∑
i=1

λi 〈vi(x), xi − ci〉 ≤ 0,∀x ∈ X ,∀c ∈ C.

As the next lemma indicates, a variationally stable set has special structures:



Lemma 3.1. In a continuous game (N ,X =
∏N

i=1 Xi, {ui}Ni=1), if C is a non-empty λ-variationally stable

set, then C is a closed and convex set of all Nash equilibria of the game.

Proof: First we show that any element x∗ ∈ C is a Nash equilibrium. For any i ∈N , take any xi ∈ Xi and

any τ ∈ (0,1], set x, (x∗1, . . . , x
∗
i−1,(1− τ)x

∗
i + τxi, x∗i+1, . . . , x

∗
N ) = x∗ + τ(xi − x∗i )ei, where ei is the j-th unit

vector in the standard basis. By convexity of Xi, we have x ∈ X . We then also have

d
dτ

ui(x∗i + τ(xi − x∗i ); x−i) = uvi(x)(xi − x∗i ). (3.1)

By applying the variational stability condition to the profiles x∗ and x, it follows that the RHS of the above

equation is strictly negative for all τ > 0. In turn, this implies that ui(x) ≤ ui(x∗), i.e. x∗ is a Nash equilibrium.

Next, we show that C is closed. Take any convergent sequence {xj}∞
j=0 in C: xj ∈ C, limj→∞ xj = x∗. Then,

for any x ∈ X , we have
∑N

i=1 λivi(x)(xi − x j
i ) ≤ 0,∀ j = 0,1, . . . . Therefore, by continuity, it follows that

limj→∞
∑N

i=1 λivi(x)(xi − x j
i ) =

∑N
i=1 λivi(x)(xi − x∗i ) ≤ 0,∀x ∈ C, thereby implying x∗ ∈ C. Since {xj}∞

j=0 is

any sequence in C, C contains all its limit points and is therefore closed.

To see that C is convex, take any x∗,y∗ ∈ C and any τ ∈ [0,1]. For any x ∈ X , we have

N∑
i=1

λivi(x)(xi − (τx∗i − (1− τ)y
∗
i )) = (3.2)

τ

N∑
i=1

λivi(x)(xi − x∗i )+ (1− τ)
N∑
i=1

λivi(x)(xi − y∗i ) ≤ 0, (3.3)

thereby establishing that τx∗ + (1− τ)y∗ ∈ C.

Finally, to see that C contains all Nash equilibria of the game, assume z∗ < C is a Nash equilibrium. Then:

N∑
i=1

λivi(z∗)(xi − z∗i ) ≤ 0,∀x ∈ X . (3.4)

Take an arbitrary x∗ ∈ C. Since C is λ-variational stable and z∗ < C, we have
∑N

i=1 λivi(z∗)(z∗i − x∗i ) < 0,

implying that
∑N

i=1 λivi(z∗)(x∗i − z∗i ) > 0,which contradicts Equation 3.4. �

In view of Lemma 3.1, we can define a general class of games based on the structure of the Nash set.

Definition 3.2. A continuous game (N ,X =
∏N

i=1 Xi, {ui}Ni=1) is said to be λ-variationally stable if its

set X ∗ of all Nash equilibria is a λ-variationally stable set.

We emphasize that in a game setting, λ-variational stability is more general than an important concept

called operator monotonicity in variational analysis. Specifically, v(·) is called a monotone operator [40] if

the following holds (with equality if and only if x = x̃):

〈v(x) − v(x̃),x− x̃〉 ,
N∑
i=1
〈vi(x) − vi(x̃), xi − x̃i〉 ≤ 0,∀x, x̃ ∈ X . (3.5)



It is known that if v(·) is monotone (which defines an important and broad class of games referred to as strictly

diagonal concave games studied in [42]), then a unique Nash equilibrium x∗ exists and (per the property of a

Nash equilibrium) satisfies 〈v(x∗),x− x∗〉 ≤ 0. Consequently, by expanding Equation 3.5, it then follows that

〈v(x),x− x∗〉 ≤ 〈v(x∗),x− x∗〉 ≤ 0, where equality is achieved if and only if x = x∗. This implies that when

v(x) is a monotone operator, the singleton set of the unique Nash equilibrium is 1-variationally stable. The

converse is not true: when v(x) is not a monotone operator, we can still have a unique Nash equilibrium5 that

is λ-variationally stable, or more generally, have a λ-variationally stable set of Nash equilibria.

3.2. A Simple Sufficient Condition for Variational Stability We now give a condition ensuring that a

unique Nash equilibrium exists and is λ-variationally stable.

Lemma 3.2. Given a continuous game (N ,X =
∏N

i=1 Xi, {ui}Ni=1), where each ui is twice continuously

differentiable. For each x ∈ X , define the λ-weighted Hessian matrix Hλ(x) as follows:

Hλ
i j(x) =

1
2
λi ∇x j vi(x)+

1
2
λj(∇xi vj(x))>. (3.6)

If Hλ(x) is negative-definite for every x ∈ X , then x∗ is the unique λ-variationally stable Nash equilibrium.

Remark 3.1. It is important to note that the Hessian matrix so defined is a block matrix: each Hλ
i j(x) is a

di × dj matrix: Hλ
i j(x) =

1
2λi ∇x j ∇xi ui(x)+ 1

2λj(∇xi ∇x j u j(x))>. The proofs to both lemmas in this section

are omitted due to space limitation.

Proof: Per Thereom 6 of [43], the assumption in the lemma implies that:

N∑
i=1

λi 〈vi(x) − vi(x̃), xi − x̃i〉 ≤ 0,∀x, x̃ ∈ X , (3.7)

where equality holds if and only if x = x̃. Per Theorem 2 of [43], this inequality then implies that there exists

a unique Nash equilibrium x∗. Plug x∗ into Inequality 3.7 for x̃, we have that for any x ∈ X :

N∑
i=1

λi 〈vi(x), xi − x∗i 〉 ≤
N∑
i=1

λi 〈vi(x∗), xi − x∗i 〉 ≤ 0,

where the second inequality follows from the fact that x∗ is a Nash equilibrium. Furthermore, both equality

are achieved if and only if x = x∗. This implies that {x∗} is λ-variationally stable. �

5When a continuous game admits a unique Nash equilibrium x∗, we shall say for convenience that x∗ is λ-variationally stable if {x∗}
is λ-variationally stable, although it should be kept in mind that variational stability is a property on a set.



3.3. Examples of λ-Variationally Stable Games We end this section with several important classes of

games that satisfy the λ-variational stability criterion. This is by no means a comprehensive list. Our goal is

to illustrate that many important and well-known classes of games, some of which are already quite broad,

are in fact subclasses of λ-variationally stable games:

Example 3.1 (Cournot Oligopolies). With notation as in Example 2.1 and λ = 1, we have

H1
i j(x) =

1
2
∂vi(x)
∂xj

+
1
2
∂vj(x)
∂xi

= −bδi j − b, (3.8)

where δi j = 1 if i = j and δi j = 0 otherwise. Consequently, we get

H1
i j(x) = −b(I+ 1N×N ). (3.9)

Since 1N×N = 11>, we trivially conclude that H1
i j(x) is negative-definite for all x. Hence, by Lemma 3.2, the

game admits a unique Nash equilibrium that is 1-variationally stable.

Example 3.2 (Kelly auctions). Our second example of a variationally stable game is the Kelly auction

of Example 2.2. To show this, consider the weighted social welfare function

U(x) =
∑
i∈N

g−1
i ui(x) =

∑
i∈N

∑
s∈S

qsxis
cs +

∑
j∈N xjs

−
∑
i∈N

∑
s∈S

xis =
∑
s∈S

qs

∑
i∈N xis

cs +
∑

i∈N xis
−

∑
i∈N

∑
s∈S

xis . (3.10)

Since the function q(x) = x/(c+ x) is strictly concave for all c > 0, it readily follows that

a) Each payoff function ui is strictly concave in xi and convex in x−i.

b) The welfare function U(x) is concave in x.

With these properties in mind, let λi = 1/gi and note that

∇2
xi

U(x) =
N∑
k=1

λk∇
2
xi

uk(x) = λi∇2
xi

ui(x)+
∑
k,i

λk∇
2
xi

uk(x)

= 2Hλ
ii(x) − λi∇

2
xi

ui(x)+
∑
k,i

λk∇
2
xi

uk(x) (3.11)

and

∇xi∇x jU(x) =
N∑
k=1

λk∇xi∇x j uk(x) = λi∇xi∇x j ui(x)+ λj∇x j∇xiu j(x)+
∑
k,i, j

λk∇xi∇x j uk(x)

= 2Hλ
i j(x)+

∑
k,i, j

λk∇xi∇x j uk(x). (3.12)

To proceed, write the terms in the expressions above as Mi j(x) = ∇xi∇x jU(x), Di j(x) = δi j∇xi∇x j ui(x), and

Bk
i j(x) = (1− δik)(1− δjk)∇xi∇x j uk(x), so

2Hλ(x) =M(x)+D(x) −
N∑
i=1

λiBi(x). (3.13)



Since U(x) is concave in x, we will also have M(x)< 0; by the strict concavity of ui(x) in xi, we also get

D(x) � 0; finally, since each ui is convex in x−i, it follows that Bi(x)4 0 for all i = 1, . . . ,N , x ∈ X (simply

note that Bi(x) is the Hessian matrix of ui(xi; x−i) with the variable xi omitted). Putting all this together, we

get Hλ(x) � 0, i.e., so the game is variationally stable by Lemma 3.2.

Example 3.3 (Concave potential games). A game G = (N ,X =
∏N

i=1 Xi, {ui}Ni=1) is called a potential

game [32] if there exists a potential function V : X → R such that ui(xi,x−i) − ui(x̃i,x−i) = V(xi,x−i) −

Vi(x̃i,x−i),∀i ∈N ,∀x ∈ X ,∀x̃i ∈ Xi . A potential game is further called a concave potential game if the potential

function V(·) is concave. Note that in a concave potential game, we have

Hλ
i j(x) =

1
2
λi ∇x j vi(x)+

1
2
λj(∇xi vj(x))>

=
1
2
λi ∇x j ∇xi V(x)+ 1

2
λj(∇xi ∇x j V(x))>. (3.14)

Setting λ = 1, we obtain H1(x) = ∇2 V , which is negative semi-definite when V is concave. This implies that

in a concave potential game, C = arg maxx∈X V(x) is 1-variationally stable per Lemma 3.2.

Example 3.4 (Diagonally Strict Concave Games). This is a class of continuous games introduced

by Rosen [42]. Specifically, a diagonally strict concave games satisfies the following two conditions:

1) It is a concave game: each ui(xi, x−i) is individually concave in xi.

2)
∑N

i=1 λi 〈vi(x) − vi(x̃), xi − x̃i〉 ≤ 0,∀x, x̃ ∈ X , for some positive scalars λ1,λ2, . . . ,λN .

Note that strictly diagonally concave games strictly include monotone games, which are concave games

satisfying 〈v(x) − v(x̃),x− x̃〉 ≤ 0,∀x, x̃ ∈ X . Namely, a monotone game is a concave game where the joint

gradient is a monotone operator.

Example 3.5 (Pseudo-Monotone Games). The recentwork [51] relaxed themonotone operator assump-

tion and introduced a broader class of games called pseudo-monotone games. A pseudo-monotone game is a

concave game satisfying, ∀x, x̃ ∈ X : If 〈v(x̃),x− x̃〉 ≤ 0, then 〈v(x),x− x̃〉 ≤ 0.

To see that a pseudo-monotone game is λ-variationally stable, we start by noting an important characteri-

zation of a Nash equilibrium that is well-known in the literature (e.g. [14]): x∗ is a Nash equilibrium of a

concave game if and only if for every i ∈N , and every x ∈ X , 〈vi(x∗),(xi − x∗i )〉 ≤ 0. Note that the “only if"

direction holds even in a general continuous game.

Consequently, at a Nash equilibrium x∗, we have 〈v(x∗),x− x∗〉 ≤ 0. Since a pseudo-monotone game is a

concave game, its set of Nash equilibria is non-empty, and hence at least one Nash equilibrium x∗ exists. The

definition of a pseudo-monotone game then immediately implies 〈v(x),x− x∗〉 ≤ 0, thereby establishing the

conclusion.



Albeit general, not every continuous game is λ-variationally stable. To see this, simply note that at the

generality of an arbitrary continuous game, a Nash equilibrium may fail to exist. And, even if a game

admits an equilibrium, this need not be necessarily stable: the class of atomic splittable congestion games of

Example 2.3 satisfies Rosen’s diagonal strict concavity condition when the set of amenities corresponds to a

network with parallel links [36], but not necessarily otherwise.

4. Multi-Agent Online Mirror Descent under Imperfect Information We tackle the convergence

problem of multi-agent OMD under imperfect information: both delays and noise. We start by defining

(Section 4.1) an important divergence measure, λ-Fenchel coupling. We then establish its useful properties

that play an indispensable role throughout. Building on this tool, we establish (Section 4.2) last-iterate

convergence of multi-agent OMD to Nash equilibria under synchronous and bounded delays and extend

(Section 4.3) the result to almost sure convergence to Nash equilibria under both delays and noise.

4.1. λ-Fenchel Coupling

Definition 4.1. Let (N ,X =
∏N

i=1 Xi, {ui}Ni=1) be a continuous game. For each player i, let hi : Xi→R

be a regularizer with respect to the norm ‖ · ‖i that is Ki-strongly convex.

1. The convex conjugate function h∗i :�di →R of hi is defined as: h∗i (yi) =maxxi ∈Xi {〈xi, yi〉 − hi(xi)}.

2. The mirror map Ci : �di → Xi associated with regularizer hi for player i is defined as: Ci(yi) =

arg maxxi ∈Xi {〈xi, yi〉 − hi(xi)}. Further, define C : R
∑N

i=1 di →X , with C(y) = (C1(y1), . . . ,CN (yN )).

3. For a λ ∈�N
++, the λ-Fenchel coupling Fλ : X ×�

∑N
i=1 di →R is defined as: Fλ(x,y) =

∑N
i=1 λi(hi(xi) −

〈xi, yi〉 + h∗i (yi)).

Note that although the domain of hi is Xi ⊂�
di , the domain of its conjugate (gradient space) h∗i is �

di .

Since it is not directly relevant to the results presented in this work, we mention in passing that λ-Fenchel

coupling generalizes the well-known Bregman divergence function: when λ = 1, λ-Fenchel coupling coincides

in value with Bregman divergence if x is an inteior point in X (but not necessarily otherwise). The two key

properties of λ-Fenchel coupling are:

Lemma 4.1. For each i ∈ {1, . . . ,N}, let hi : Xi→� be a regularizer with respect to the norm ‖ · ‖i that

is Ki-strongly convex and let λ ∈�N
++. Then ∀x ∈ X ,∀ỹ,y ∈�

∑N
i=1 di :

1. Fλ(x,y) ≥ 1
2
∑N

i=1 Kiλi ‖Ci(yi) − xi ‖2i ≥
1
2 (mini Kiλi)

∑N
i=1 ‖Ci(yi) − xi ‖2i .

2. Fλ(x, ỹ) ≤ Fλ(x,y)+
∑N

i=1 λi 〈ỹi − yi,Ci(yi) − xi〉 + 1
2 (maxi λiKi

)
∑N

i=1(‖ ỹi − yi ‖
∗
i )

2, where ‖ · ‖∗i is the dual

norm of ‖ · ‖i (i.e. ‖yi ‖∗i =max‖xi ‖i ≤1〈xi, yi〉.

Remark 4.1. Since each space Xi is endowed with norm ‖ · ‖i, we can define the induced aggregate

norm ‖ · ‖ on the joint space X as follows: ‖x‖ =
∑N

i=1 ‖xi ‖i. Similarly for the aggregate dual norm:



‖y‖∗ =
∑N

i=1 ‖yi ‖
∗
i . Finally, note that Part 1 of Lemma 4.1 implies that Fλ(x,yt )→ 0 =⇒C(yt )→ x as t→∞.

We further assume for the rest of the paper that the mirror maps are regular in the following (very weak)

sense: C(yt )→ x =⇒ Fλ(x,yt )→ 0 as t→∞. Unless one aims for pathological cases, mirror maps induced

by typical regularizers are regular: examples include the commonly used Euclidean and entropic regularizers.

4.2. Convergence of Multi-Agent OMD to Nash under Synchronous and Bounded Delays

Assumption 4.1. The delays are assumed to be:

1. Synchronous: Gt
i = G

t
j,∀i, j,∀t.

2. Bounded: dt
i ≤ D,∀i,∀t (for some positive integer D).

Theorem 4.1. Let (N ,X =
∏N

i=1 Xi, {ui}Ni=1) be a continuous game that admits x∗ as the unique Nash

equilibrium that is λ-variationally stable. Under Assumption 4.1, xt→ x∗, where xt is given in Algorithm 1.

Remark 4.2. The proof is somewhat long and involved. To aid the understanding and enhance the

intuition, we break it down into four main steps, the details are omitted due to space limitation.

1. Since the delays are synchronous, we denote by Gt the common set and dt the common delay at round t.

The gradient update in OMD under delays can then be written as:

yt+1
i = yti +α

t
∑
s∈G t

vi(xs) = yti +α
t

{
|Gt |vi(xt )+

∑
s∈G t

{vi(xs) − vi(xt )}
}
. (4.1)

Define bti =
∑

s∈G t {vi(xs) − vi(xt )}. Using the bounded delay assumption, we establish, after a chain

of inequalities, that ‖bti ‖
∗
i ≤

LD3Vmax
K αt−D+1 where K , mini Ki, L is the Lipschitz constant for v(·),

Vmax ,maxx∈X ‖v(x)‖∗ and D is the bound on delays. This implies that limt→∞ ‖bti ‖
∗
i = 0 for each i.

2. Define bt = (bt1, . . . ,b
t
N ) and Claim 1 yields that limt→∞ bt = 0. Per Equation 4.1 in Claim 1, we can then

write the joint OMD update of all players under delays as follows:

xt =C(yt ), (4.2)

yt+1 = yt +αt
{
|Gt |v(xt )+bt

}
. (4.3)

Let B(x∗, ε), {x ∈ X | ‖x − x∗‖ < ε} be the open ball centered around x∗ with radius ε . Then, using

λ-Fenchel coupling as an energy function and leveraging the handle on bt given by Claim 1, we establish

that for any ε > 0, the iterate xt will visit B(x∗, ε) infinitely often, no matter what the initial point x0 is.

This is accomplished by applying Statement 2 of Lemma 3.1 to expand Equation C.12, and subsequently

by showing that, through a chain of inequalities, unless the above statement is true, the λ-Fenchel coupling,

always non-negative, would go to −∞.



3. Fix any δ > 0 and consider the set B̃(x∗, δ) , {C(y) | Fλ(x∗,y) < δ}. In other words, B̃(x∗, δ) is some

“neighborhood" of x∗, which contains every x that is an image of some y (under the mirror map C(·))

that is within δ distance of x∗ under the λ-Fenchel coupling “metric". Although Fλ(x∗,y) is not a metric,

B̃(x∗, δ) contains an open ball within it: for any δ > 0, ∃ε(δ) > 0 such that: B(x∗, ε) ⊂ B̃(x∗, δ).

4. For any “neighborhood" B̃(x∗, δ), after long enough rounds, if xt ever enters B̃(x∗, δ), it will be trapped

inside B̃(x∗, δ) thereafter. Mathematically, the claim is that for any δ > 0, ∃T(δ), such that for any t ≥ T(δ),

if xt ∈ B̃(x∗, δ), then xt̃ ∈ B̃(x∗, δ),∀t̃ ≥ t. This is done by considering two possibilities:

(a) Possibility 1: xt ∈ B(x∗, ε( δ2 ));

(b) Possibility 2: xt ∈ B̃(x∗, δ) − B(x∗, ε( δ2 ));

and using a different argument for each possibility to establish that xt+1 ∈ B̃(x∗, δ) in both cases.

It is now time to put all four elements above together. The significance of Claim 3 is that, since the iterate xt

will enter B(x∗, ε) infinitely often (per Claim 2), xt must enter B̃(x∗, δ) infinitely often. It therefore follows

that, per Claim 4, starting from iteration t, xt will remain in B̃(x∗, δ). Since this is true for any δ > 0, we

have Fλ(x∗,yt )→ 0 as t→∞. Per Statement 1 in Lemma 4.1, this leads to that ‖C(yt ) − x∗‖ → 0 as t→∞,

thereby establishing that xt =C(yt )→ x∗ as t→ 0.

In fact, the result generalizes straightforwardly to the set of Nash equilibria case, where proof is line-by-line

identical, provided we redefine, in a standard way, every quantity that measures the distance between two

points to the corresponding quantity that measures the distance between a point and a set (by taking the

infimum over the distances between the point and a point in that set). We directly state the result below.

Theorem 4.2. Let (N ,X =
∏N

i=1 Xi, {ui}Ni=1) be a continuous game that admits X
∗ as the λ-variationally

stable set of Nash equilibria. Under Assumption 4.1, limt→∞ dist(xt,X ∗) = 0, where dist(·, ·) is the standard

point-to-set distance function induced by the norm ‖ · ‖.

4.3. Almost SureConvergence ofMulti-AgentOMD toNash underDelays andNoise The additional

feature of noisy gradients (Algorithm 2) introduces significant new challenges for establishing the convergence

result. For instance, Claim 4 in Remark 4.2, a crucial step in establishing Theorem 4.1, no longer holds

because, a priori, a single noisy gradient can potentially perturb the iterates out of the open neighborhood

around the Nash set. Consequently, we take a different approach here: cast the OMD dynamics in a differential

equation approximation framework and connect the iterates from the OMD algorithm to the solution from

the differential equation. We begin with minimal mathematical preliminaries (see [4]).

Definition 4.2. A semiflow φ on a metric space (M,d) is a continuous map φ : R+ ×M→M: (t, x)→

φt (x), such that the semi-group properties hold: φ0 = identity, φt+s = φt ◦ φs for all (t, s) ∈R+ ×R+.



Remark 4.3. A standard way to induce a semiflow is via an ordinary differential equation (ODE).

Specifically, as mentioned in [4], if F : Rm→Rm is a continuous function and if the following ODE has a

unique solution trajectory for each initial point x̃ ∈Rm:

dx
dt
= F(x),

x(0) = x̃,

then φt (x̃) defined by the solution trajectory x(t) ∈Rm as follows is a semiflow: φt (x̃), x(t) with x(0) = x̃.

We say φ defined in this way is the semiflow induced by the corresponding ODE.

Definition 4.3. Let φ be a semiflow on the metric space (M,d). A continuous function s : R+→M is

an asymptotic pseudotrajectory for φ if for every T > 0, the following holds:

lim
t→∞

sup
0≤h≤T

d(s(t + h), φh(s(t))) = 0. (4.4)

Remark 4.4. By definition, that s is an asymptotic pseudotrajectory for φmeans s and φ are very close for

sufficiently large t. Specifically, for each T > 0, there is a large enough t0, such that ∀t > t0, the curve s(t + h)

approximates the trajectory φh(s(t)) on the interval h ∈ [0,T] with any pre-specified degree of accuracy.

We next state two martingale convergence theorems (adapted from [18]) that shall be useful: law of large

number for martingales and Doob’s martingale convergence theorem in order.

Theorem 4.3 (Law of large number for martingales). Let St =
∑t

k=0 Xk be amartingale adapted

to the filtration S t and {ut }∞
t=0 be a increasing sequence of positive numbers with limt→∞ ut =∞. If ∃p ∈ [1,2]

such that
∑∞

t=0
E[ |X t+1 |p |S t ]

(ut )p
<∞, a.s. , then:

lim
t→∞

St

ut
= 0, a.s..

Theorem 4.4 (Doob’s martingale convergence). Let St be a submartingale adapted to the filtration

S t , where t = 0,1,2, . . . . If St is l1-bounded: supt≥0 E[|St |] <∞, then St converges almost surely to a random

variable S with E[|S |] <∞.

With the above notation in place, we are now ready to state and establish the convergence result.

Theorem 4.5. Let (N ,X =
∏N

i=1 Xi, {ui}Ni=1) be a continuous game that admits X
∗ as the λ-variationally

stable set of Nash equilibria. Under Assumptions 4.1 and 2.1, Xt in Algorithm 2 converges to X ∗ a.s..

Remark 4.5. The proof builds on the delays-only case, but is more involved and calls for a different

proof strategy. We outline the main steps (again it suffices to consider the single Nash equilibrium case):



1. Using the same notation as Remark 4.2, OMD’s joint gradient update in Algorithm 2 can be rewritten as:

Y t+1 =Y t +αt
∑
s∈G t

(v(Xs)+ ξs+1) =Y t +αt

{
|Gt |v(X t )+

∑
s∈G t

ξs+1 + Bt

}
, (4.5)

where Bt
i =

∑
s∈G t {vi(Xs)− vi(X t )} and Bt = (Bt

1, . . . ,B
t
N ). Similar to Claim 1 in Remark 4.2, we establish

that Bt→ 0 almost surely as t→∞. Similar to Claim 2 in Remark 4.2, using λ-Fenchel coupling as the

energy function, leveraging Bt → 0,a.s., and using both the law of large number for martingales and

Doob’s martingale convergence theorem [18], we establish that any open ball around x∗ is recurrent.

Mathematically, for any ε > 0 and any initial point x0, the iterate Xt visit B(x∗, ε) infinitely often almost

surely. Note that per Claim 3 in Remark 4.2, this then implies that for any δ > 0, Xt must almost surely

visit B̃(x∗, δ) infinitely often, irrespective of the initial point.

2. Next we consider the ordinary differential equation (ODE) approximation of OMD as follows:

Ûy = v(x),

x =C(y).

This ODE is a mean approximation of Equation 4.5, where both the martingale noise term
∑

s∈G t ξs+1

and the negligible Bt term are removed, and where |Gt | is absorbed into the step-size. This can be written

as Ûy = v(C(y)), which can be verified to admit a unique solution trajectory for any initial condition.

Consequently, per Remark 4.3, this solution induces a semiflow6, which we denote φt (y): it is the state at

time t given it starts at y. Note that we have used y as the initial point (as opposed to y0) to indicate that

the semiflow representing the solution trajectory should be viewed as a function of the initial point y.

3. We now relate the iterates generated by OMD to the above ODE’s solution. First, we connect linearly

the OMD iterates Y0,Y1,Y2, . . . ,Y k, . . . at times 0,α0, |G0 |α0 + |G1 |α1, . . . ,
∑k−1

l=0 |Gl |αl, . . . respectively to

form a continuous, piecewise affine curve. Namely:

Y (t) =Y k + (t −
k−1∑
l=0

αl)
Y k+1 −Y k

αk
,for t ∈ [

k−1∑
l=0
|Gl |αl,

k∑
l=0
|Gl |αl), k = 0,1, . . . ,

wherewe adopt the usual convention that
∑−1

l=0 α
l = 0.We then show thatY (t) (a random trajectory) is almost

surely an asymptotic pseudotrajectory of the semi-flow φ induced by the above ODE. Mathematically, we

establish that ∀T > 0, limt→∞ sup0≤h≤T ‖Y (t + h), φh(Y (t))‖∗ = 0,a.s..

4. Having characterized the relation between the OMD trajectory (affine interpolation of the discrete OMD

iterates) and the ODE trajectory (the semi-flow), we now turn to studying the latter (the semiflow given by

the ODE trajectory). A desirable property of φt (y) is that the distance Fλ(x∗, φt (y)) between the primal

6A crucial point to note is that since C may not be invertible, there may not exist a unique solution for x(t).



variable x∗ and the dual variable φt (y)) (as measured by the Lyapunov function λ-Fenchel coupling) can

never increase as a function of t. We refer to this as the monotonicity property of λ-Fenchel coupling under

the ODE trajectory, to be contrasted to the discrete-time dynamics, where such monotonicity is absent

(even when perfect information on the gradient is available). More formally, we show that ∀y,∀0 ≤ s ≤ t,

Fλ(x∗, φs(y)) ≥ Fλ(x∗, φt (y)). (4.6)

5. Continuing on the previous point, not only the distance Fλ(x∗, φt (y)) can never increase as t increases,

but also, provided that φt (y) is not too close to x∗ (under the λ-Fenchel coupling divergence measure),

Fλ(x∗, φt (y)) will decrease no slower than linearly. This suggests that either φt (y) is already close to x∗

(and hence x(t) =C(φt (y)) is close to x∗), or their distance will be decreased by a meaningful amount in

(at least) the ensuing short time-frame. We formalize this discussion into the following mathematical

claim: ∀ε > 0,∀y,∃s > 0, such that:

Fλ(x∗, φs(y)) ≤max{
ε

2
,Fλ(x∗,y) − ε

2
}. (4.7)

6. Now consider an arbitrary fixed horizon T . If at time t, Fλ(x∗, φ0(Y (t))) is small, then by the monotonicity

property in Claim 4, Fλ(x∗, φh(Y (t))) will remain small on the entire interval h ∈ [0,T]. Since Y (t) is an

asymptotic pseudotrajectory of φ (Claim 3), Y (t + h) and φh(Y (t)) should be very close for h ∈ [0,T],

at least for t large enough. This means that Fλ(x∗,Y (t + h)) should also be small on the entire interval

h ∈ [0,T], if λ-Fenchel coupling has a regular enough structure. It turns out that this is indeed the case.

This can be made precise as follows: ∀ε,T > 0,∃τ(ε,T) > 0 such that ∀t ≥ τ,∀h ∈ [0,T]:

Fλ(x∗,Y (t + h)) < Fλ(x∗, φh(Y (t)))+
ε

2
, a.s.. (4.8)

7. Finally, we are ready to put the above pieces together. Claim 6 gives us a way to control the amount by

which the two λ-Fenchel coupling functions differ on the interval [0,T]. Claim 4 and Claim 5 together

allow us to extend such control over successive intervals [T,2T),[2T,3T), . . . , thereby establishing that,

at least for t large enough, if Fλ(x∗,Y (t)) is small, then Fλ(x∗,Y (t + h)) will remains small ∀h > 0. As

it turns out, this means that after long enough time, if Xt ever visits B̃(x∗, ε), it will (almost surely) be

forever trapped inside the neighborhood twice that size (i.e. B̃(x∗,2ε)). Since Claim 1 ensures that Xt

visits B̃(x∗, ε) infinitively often (almost surely), the hypothesis is guaranteed to be true. Consequently, this

leads to the following formal claim: ∀ε > 0,∃τ0 (a positive integer), such that:

Fλ(x∗,Y (τ0 + h)) < ε,∀h ∈ [0,∞), a.s.. (4.9)

To conclude, Equation (4.9) in Claim 7 implies that Fλ(x∗,Y t )→ 0, a.s. as t→∞, where the OMD iterates

Y t are values at integer time points of the affine trajectory Y (τ). Per Statement 1 in Lemma 4.1, this leads to

that ‖C(Y t ) − x∗‖ → 0, a.s. as t→∞, thereby establishing that X t =C(Y t )→ x∗, a.s. as t→ 0.



5. Multi-Agent Delayed Mirror Descent under Imperfect Information The synchronous and

bounded delay assumption in Assumption 4.1 is fairly strong7. In this section, by a simple modification of

OMD, we propose a new learning algorithm called Delayed Mirror Descent (DMD), that allows the result to

be generalized to cases with arbitrary asynchronous delays among players as well as unbounded delay growth.

5.1. Delayed Mirror Descent on Continuous Games The main idea for the modification is that when

player i doesn’t receive any gradient on round t, instead of not doing any gradient updates as in OMD, it uses

the most recent set of gradients to perform updates. More formally, define the most recent information set8:

G̃t
i =

{
Gt
i , if G

t
i , ∅

G̃t−1
i , if Gt

i = ∅.

With this definition, DMD is given in Algorithm 3: note that G̃t
i is always non-empty by definition. As in

OMD, the information each player needs to collect and act upon in DMD is of dimension di . Note also that if

there is no delay, then DMD recovers OMD in Algorithm 1.

Algorithm 3 Multi-Agent Delayed Mirror Descent

1: Each player i chooses an arbitrary initial y0
i .

2: for t = 0,1,2, . . . do

3: for i = 1, . . . ,N do

4: xti = arg maxxi ∈Xi {〈y
t
i , xi〉 − hi(xi)}

5: yt+1
i = yti +

αt

|G̃ t
i |

∑
s∈G̃ t

i
vi(xs)

6: end for

7: end for

5.2. Main Delay Assumption Here we only make the following assumption on the delays:

Assumption 5.1. For each player i, limt→∞
∑t

s=min G̃ t
i

αs = 0.

This assumption essentially requires delays to not grow too fast. In particular, delays can be arbitrarily

asynchronous among agents. For concreteness, we next give two more explicit delay conditions that satisfy

the main delay assumption. As made formal by the following lemma, if the delays are bounded (but possibly

fully asynchronous), then Assumption 5.1 is satisfied. Furthermore, by appropriately choosing the sequence

αt , Assumption 5.1 can accommodate delays that grow unbounded at a super-linear rate.

7An important reason that vanilla OMD may fail to converge in the absence of such strong delays assumptions is that players do
not take any actions when no gradient is received. This can potentially lead the joint OMD update off the convergence track when
different players receive gradients at arbitrarily different times.

8 There may not be any gradient information in the first few rounds due to delays. Without loss of generality, we can always start at
the first round when there is non-empty gradient information, or equivalently, assume that some gradient is available at t = 0.



Lemma 5.1. Let {ds
i }
∞
s=1 be the delay sequence for player i.

1. If each player i’s delay is bounded (i.e. ∃d ∈ �,ds
i ≤ d,∀s), then Assumption 5.1 is satisfied for any

positive, non-increasing, not-summable-but-square-summable sequence {αt }.

2. There exists a positive, non-increasing, not-summable-but-square-summable sequence (e.g. αt =

1
t log t log log t ) such that if ds

i =O(s log s),∀i, then Assumption 5.1 is satisfied.

Remark 5.1. The proof, which is given in the appendix, indicates that one can also easily obtain

slightly larger delay growth rates: O(t log t log log t),O(t log t log log t log log log t) and so on, by choosing the

corresponding step size sequences. However, we believe such rates are only marginally larger and do not

focus on them here. Further, it is conceivable that one can identify meaningfully larger delay growth rates that

still satisfy Assumption 5.1, particularly under more restrictions on the degree of delay asynchrony among

the players. We leave that for future work.

5.3. Convergence of Multi-Agent DMD to Nash under Asynchronous and Unbounded Delays

Theorem 5.1. Let (N ,X =
∏N

i=1 Xi, {ui}Ni=1) be a continuous game that admits X
∗ as the λ-variationally

stable set of Nash equilibria. Under Assumption 5.1, limt→∞ dist(xt,X ∗) = 0, where xt is given in Algorithm 3.

Remark 5.2. The proof uses a similar framework as the one in Remark 4.2, although the details are

different. Building on the notation and arguments given in Remark 4.2, we again outline main ingredients.

Once again, it suffices to consider the single Nash equilibrium case. Details are given in the appendix.

1. The individual gradient update in DMD can be rewritten as:

yt+1
i = yti +

αt

|G̃t
i |

∑
s∈G̃ t

i

vi(xs) = yti +α
tvi(xt )+αt

∑
s∈G̃ t

i

vi(xs) − vi(xt )
|G̃t

i |
.

By defining: bti =
∑

s∈G̃ t
i

vi (xs )−vi (xt )
|G̃ t

i |
, we can write player i’s gradient update as:

yt+1
i = yti +α

t (vi(xt )+ bti).

By bounding bti’s magnitude using the delay sequence, Assumption 5.1 allows us to establish that bti has

negligible impact over time. Mathematically, the claim is that limt→∞ ‖bti ‖
∗
i = 0.

2. The joint DMD update can be written as:

xt =C(yt ), (5.1)

yt+1 = yt +αt (v(xt )+bt ). (5.2)

Here again using λ-Fenchel coupling as the energy function and leveraging the handle on bt given by

Claim 1, we show that for any ε > 0 the iterate xt will visit B(x∗, ε) infinitely often. Furthermore, per

Claim 3 in Remark 4.2, B(x∗, ε) ⊂ B̃(x∗, δ). This implies that xt must enter B̃(x∗, δ) infinitely often.



3. Again using λ-Fenchel coupling, we show that under multi-agent DMD, for any “neighborhood" B̃(x∗, δ),

after long enough iterations, if xt ever enters B̃(x∗, δ), it will be trapped inside B̃(x∗, δ) thereafter.

Combining the above three elements, it follows that under multi-agent DMD, for any δ > 0, starting from

iteration t (depending possibly on δ), xt will remain in B̃(x∗, δ). Since this is true for any δ > 0, we have

Fλ(x∗,yt )→ 0 as t→∞, thereby establishing that xt =C(yt )→ x∗ as t→ 0.

5.4. Almost Sure Convergence of Multi-Agent DMD to Nash under Delays and Noise Similar to

Section 2.4 and adopting the same notation therein, when there are both delays and noise, multi-agent DMD

is given in Algorithm 4. Characterizing convergence properties in the presence of both asynchronous delays

and noise is more challenging. Here we only focus on the case where all delays are bounded.

Algorithm 4 Multi-Agent Delayed Mirror Descent under Noise

1: Each player i chooses an arbitrary initial y0
i .

2: for t = 0,1,2, . . . do

3: for i = 1, . . . ,N do

4: X t
i = arg maxxi ∈Xi {〈Y

t
i , xi〉 − hi(xi)}

5: Y t+1
i =Y t

i +
αt

|G̃ t
i |

∑
s∈G̃ t

i
ṽi(Xs),Y t

i +
αt

|G̃ t
i |

∑
s∈G̃ t

i
(vi(Xs)+ ξs+1

i )

6: end for

7: end for

By using a similar framework in Remark 4.5, we obtain the following almost sure convergence result:

Theorem 5.2. Let (N ,X =
∏N

i=1 Xi, {ui}Ni=1) be a continuous game that admits X
∗ as the λ-variationally

stable set of Nash equilibria. Under Assumption 2.1, if all delays are bounded (i.e. dt
i ≤ D,∀i, t), then Xt in

Algorithm 4 converges to X ∗a.s..

Remark 5.3. One thing to note is that if Gt
i is always non-empty for every agent i (but otherwise fully

asynchronous), then almost sure convergence to Nash would still hold even when delays grow unbounded at

a O(t log t) rate in the presence of noise. Extending the convergence result to O(t log t) delays without this

non-emptiness assumption (i.e. general arbitrary asynchrony in the presence of noise) is much harder and

requires a substantially different argument in characterizing the behavior of the iterate dynamics. Nevertheless,

we believe the result is still true and leave the full analysis for future work due to space limitation.



6. Discussion and Future Work In this paper, we have presented a framework of multi-agent online

learning under imperfect information. To further demonstrate the broad applicability of this framework, we

quickly discuss some consequences of our results, which can be applied to domains which may not appear

at first sight directly related to the problem we are studying here. For space concerns, we will only focus

on stochastic optimization. Specifically, a one-player game is an optimization problem, where each Nash

equilibrium corresponds to an optimal solution. Consequently, specializing our result to the case where there

is noise but no delay, we obtain that stochastic mirror descent converges to global optimal solutions almost

surely for star-convex objectives. One step further, if we consider a different special case where each agent

shares the same objective, we again obtain a stochastic optimization problem, but this time a distributed

stochastic optimization problem where each agent is updating the global decision variables jointly. In this case,

our result again gives almost sure convergence to global optimal solutions under fairly general conditions.

With the above said, we also believe much future work remains. For instance, it remains to extend the

convergence result to both arbitrarily asynchronous and unbounded delays. We believe the result is still true,

however, the proof will likely be substantially different. Another direction is to study other types of imperfect

information such as feedback loss or duplicate feedback. Another thing to mention is that algorithms studied

in this paper (OMD and/or DMD) are analyzed with respect to a family of admissible step-sizes. Sometimes

an optimal step-size sequence can be chosen to optimize some additional criterion such as computational

budget [46]. We leave this investigation and its implications on the applications for future work as well.
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Appendix. Missing Proofs

A. Proof of Lemma 4.1 For the first statement, note that by a well-known result in convex analysis

(see [41]) when x∗i =Ci(yi), it holds that yi is a subgradient of hi at the point x∗i : hi(xi) ≥ hi(x∗i )+ yi(xi − x∗i ).

This then implies that, for any β ∈ (0,1]:

λi(hi(x∗i )+ yi(β(xi − x∗i ))) ≤ λihi(x
∗
i + β(xi − x∗i )) = λihi((1− β)x

∗
i + βxi) ≤ (A.1)

λi{(1− β)hi(x∗i )+ βhi(xi) −
1
2

Kiβ(1− β)‖xi − x∗i ‖
2
i }, (A.2)

where the last inequality follows from the fact that hi is Ki-strongly convex.

Connecting the first and the last term of the above inequality chain, we have:

λiyiβ(xi − x∗i ) ≤ λi(−β)hi(x
∗
i )+ λiβhi(xi) −

1
2

Kiλiβ(1− β)‖xi − x∗i ‖
2
i .

Dividing both sides by β (since β > 0) and rearranging, we obtain:

1
2

Kiλi(1− β)‖xi − x∗i ‖
2
i ≤ λihi(xi) − λihi(x

∗
i ) − λiyi(xi − x∗i ).

Taking the limit that β approaches 0 (from above) results: λihi(xi)−λihi(x∗i )−λiyi(xi− x∗i ) ≥
1
2 Kiλi ‖xi− x∗i ‖

2
i .

Summing over all i’s, we then obtain:
N∑
i=1
{λihi(xi) − λihi(x∗i ) − λiyi(xi − x∗i )} ≥

N∑
i=1

1
2

Kiλi ‖xi − x∗i ‖
2
i .

The conclusion then follows by noting that:

Fλ(x,y) =
N∑
i=1

λi(hi(xi) − xiyi + h∗i (yi)) =
N∑
i=1

λi(hi(xi) − xiyi + x∗i yi − hi(x∗i )) (A.3)

≥

N∑
i=1

1
2

Kiλi ‖xi − x∗i ‖
2
i ≥

1
2
(min

i
Kiλi)

N∑
i=1
‖Ci(yi) − xi ‖2i , (A.4)

where the last inequality follows by noting that x∗i =Ci(yi).

For the second statement, we start by citing here a useful result in [40] (Theorem 12.60): For a proper,

lower semi-continuous and convex function f : Rn→ R̄ and a value σ > 0, f ∗ is σ-strongly convex (with

respect to norm ‖ · ‖∗) if and only if f is differentiable and satisfies:

f (x̃) ≤ f (x)+ < ∇ f (x), x̃− x) > + 1
2σ
‖x̃− x‖2,∀x, x̃,



where R̄ = [−∞,∞]. Note that in the original statement, only the Euclidean norm ‖ · ‖2 is used (Definition

12.58 in [40] defined strong convexity implicitly in terms of the Euclidean norm), in which case ‖ · ‖∗2 = ‖ · ‖2.

However, as stated here, the same result holds true for any pair of norms (‖ · ‖, ‖ · ‖∗) by a straightforward

adaptation of their proof.

Next, we note that in our case, each hi is Ki-strongly convex with respect to norm ‖ · ‖i and since hi is

proper, lower semi-continuous and convex, it follows that (h∗i )
∗ = hi (Theorem 11.1 in [40]). Further, it can

be easily checked that h∗i is proper, lower semi-continuous and convex (since it is a point-wise maximum of

affine functions per its definition), it therefore follows that the Ki-strong convexity of (h∗i )
∗ (with respect to

‖ · ‖∗∗i = ‖ · ‖i) implies that h∗i is differentiable and satisfies:

h∗i (ỹi) ≤ h∗i (yi)+ (h
∗
i )
′(yi)(ỹi − yi)+

1
2Ki
(‖ ỹi − yi ‖

∗
i )

2,∀yi, ỹi (A.5)

= h∗i (yi)+Ci(yi)(ỹi − yi)+
1

2Ki
(‖ ỹi − yi ‖

∗
i )

2,∀yi, ỹi (A.6)

where the equality follows because (h∗i )
′(yi) =Ci(yi).

Therefore, it then follows that upon substituting the preceding inequality for each h∗i (ỹi) into Fλ(x, ỹ) =∑N
i=1 λi(hi(xi) − xi ỹi + h∗i (ỹi)), we have:

Fλ(x, ỹ) ≤
N∑
i=1

λi(hi(xi) − xi ỹi)+
N∑
i=1

λi{h∗i (yi)+Ci(yi)(ỹi − yi)+
λi

2Ki
(‖ ỹi − yi ‖

∗
i )

2} (A.7)

=

N∑
i=1

λi{hi(xi)+ h∗i (yi) − xiyi + xi(yi − ỹi)+Ci(yi)(ỹi − yi))} +

N∑
i=1

λi
2Ki
(‖ ỹi − yi ‖

∗
i )

2 (A.8)

= Fλ(x,y)+
N∑
i=1

λi(ỹi − yi)(Ci(yi) − xi)+
N∑
i=1

λi
2Ki
(‖ ỹi − yi ‖

∗
i )

2 (A.9)

≤ Fλ(x,y)+
N∑
i=1

λi(ỹi − yi)(Ci(yi) − xi)+
1
2
(max

i

λi
Ki
)

N∑
i=1
(‖ ỹi − yi ‖

∗
i )

2. (A.10)

�

B. Proof to Theorem 4.1 We present the details to each of the four steps outlined in Remark 4.2.

1. We start by fixing some notation. Let yt = (yt1, . . . , y
t
N ),x

t = (xt1, . . . , x
t
N ) be the iterates generated

in Algorithm 1. Since X is compact and v(·) is continuous, V i
max , maxxi ∈Xi ‖vi(x)‖∗i < ∞,Vmax ,

maxx∈X ‖v(x)‖∗ =
∑N

i=1 V i
max <∞. Since each hi(·) is Ki strongly convex (with respect to ‖ · ‖i), it follows

from a well-known result in convex analysis [41] that the choice map C(·) is 1
K -Lipschitz continuous,

where K ,mini Ki. Finally, since each vi(·) is Lipschitz continuous, v(·) is Lipschitz continuous as well

and denote the Lipschitz constant as L.



Since dt ≤ D,∀t, it follows that |Gt | ≤ D and minGt ≥ t − D + 1, for otherwise at least one gradient

comes from D+ 1 rounds before. Further, per the OMD update (first equality in Equation 4.1), we have:

‖yt+1 − yt ‖∗ =
N∑
i=1
‖yt+1

i − yti ‖
∗
i =

N∑
i=1
‖αt

∑
s∈G t

vi(xs)‖∗i (B.1)

≤ αt
N∑
i=1

∑
s∈G t

‖vi(xs)‖∗i ≤ α
t

N∑
i=1
|Gt |V i

max ≤ α
tDVmax (B.2)

By definition, we can expand bti as follows:

bti =
∑
s∈G t

{vi(xs) − vi(xt )} ≤
∑
s∈G t

L‖xs − xt ‖ =
∑
s∈G t

L‖C(ys) −C(yt )‖ ≤
∑
s∈G t

L
K
‖ys − yt ‖∗ (B.3)

≤
L
K

∑
s∈G t

{
‖ys − ys+1‖∗ + ‖ys+1 − ys+2‖∗ + · · ·+ ‖yt−1 − yt ‖∗

}
(B.4)

≤
L
K

∑
s∈G t

{
αsDVmax +α

s+1DVmax + · · ·+α
tDVmax

}
(B.5)

=
LDVmax

K

∑
s∈G t

t∑
k=s

αk ≤
LDVmax

K
|Gt |

t∑
s=minG t

αs ≤
LD2Vmax

K

t∑
s=minG t

αs (B.6)

≤
LD2Vmax

K

t∑
s=t−D+1

αs ≤
LD3Vmax

K
αt−D+1→ 0,as t→∞, (B.7)

where the first inequality in Equation B.3 follows from the fact that v(·) is L-Lipschitz continuous, the

second inequality in Equation B.3 follows from the fact that C(·) is 1
K -Lipschitz continuous, Equation B.5

follows from Equations B.1 and B.2 and the first inequality in Equation B.6 follows from that αt’s are

non-negative and the second inequality in Equation B.7 follows from αt is non-increasing. Lastly, the

convergence to 0 in Equation B.7 follows from the fact that αt is square-summable.

2. Fix an arbitrary ε > 0. Assume for contradiction purposes that xt only visits B(x∗, ε) a finite number of

times and hence let t0−1 be the last time xt is in B(x∗, ε): ∀t ≥ t0,xt ∈ X −B(x∗, ε). Since X −B(x∗, ε) is a

compact set and vi(x) is continuous in x and since by assumption
∑N

i=1 λivi(x)(xi − x∗i ) < 0,∀x ∈ X ,x , x∗,

it follows that there exists a cmax(ε) < 0 such that

N∑
i=1

λivi(x)(xi − x∗i ) ≤ cmax(ε),∀x ∈ X − B(x∗, ε). (B.8)

Per Claim 1, limt→∞ bt = 0, therefore, ‖bt ‖∗ is bounded and we denote Bmax ,maxt ‖bt ‖∗. Next denote

R =maxx∈X ‖x‖, λmax ,maxi λi and βt ,maxi (α
t )2λi

2Ki
and note that

∑∞
t=1 β

t <∞. Using Lemma 4.1, we

have ∀t ≥ t0:

Fλ(x∗,yt+1) = Fλ(x∗,yt +αt {|Gt |v(xt )+bt }) ≤ (B.9)

Fλ(x∗,yt )+
N∑
i=1

λi(α
t {|Gt |vi(xt )+ bti})(Ci(y

t
i ) − x∗i )+ β

t (‖ |Gt |v(xt )+bt ‖∗)2 = (B.10)



Fλ(x∗,yt )+αt

{
|Gt |

N∑
i=1

λivi(xt )(xti − x∗i )+
N∑
i=1

λibti(x
t
i − x∗i )

}
+ βt (‖ |Gt |v(xt )+bt ‖∗)2 (B.11)

≤ Fλ(x∗,yt )+αt
{
|Gt |cmax(ε)+ λmax‖bt ‖∗‖xt − x∗‖

}
+ βt

{
2(‖ |Gt |v(xt )‖∗)2 + 2(‖bt ‖∗)2

}
(B.12)

≤ Fλ(x∗,yt )+αt
{
|Gt |cmax(ε)+ λmaxR‖bt ‖∗

}
+ 2βt (D2V2

max + B2
max) (B.13)

≤ Fλ(x∗,yt0
)+ (

t∑
k=t0

αk)

{∑t
k=t0 α

k |Gk |∑t
k=t0 αk

cmax(ε)+ λmaxR

∑t
k=t0 α

k ‖bk ‖∗∑t
k=t0 αk

}
(B.14)

+ 2(
t∑

k=t0

βk)(D2V2
max + B2

max), (B.15)

where Equation (B.12) follows from Equation (B.8) and Equation (B.14) follows from telescoping.

Next, we show that:

1 ≤ lim
t→∞

∑t
k=t0 α

k |Gk |∑t
k=t0 αk

≤ D. (B.16)

Partition the rounds into intervals {0,1, . . . ,D − 1}, {D,D + 1, . . . ,2D − 1}, . . . . Since each gradient is

received exactly once with at most delay D, the gradients corresponding to the first interval will have

been completely received by time 2D− 1 (i.e. by the end of the second interval). Similarly, the gradients

corresponding to the l-th interval will have been all received by time (l + 1)D− 1. Consequently, since αt

is non-increasing, it follows that:
∞∑
k=0

αk |Gk | ≥

∞∑
l=2

DαlD−1 ≥

∞∑
k=2D−1

αk =∞.

Consequently,

lim
t→∞

∑t
k=t0 α

k |Gk |∑t
k=t0 αk

= lim
t→∞

∑t
k=0 α

k |Gk |∑t
k=0 α

k
= lim

t→∞

∑t
k=0 α

k |Gk |∑t
k=2D−1 α

k
≥ 1.

Finally,
∑t

k=t0 α
k |G t |∑t

k=t0 α
k ≤ D follows easily by noting that |Gt | ≤ D.

Next, note that since limt→∞ bt = 0 and
∑∞

t=0 α
t =∞, it follows that:∑t

k=t0 α
k ‖bk ‖∗∑t

k=t0 αk
→ 0, as t→∞. (B.17)

Combining Equation B.16 and Equation B.17, we obtain:

(

t∑
k=t0

αk)

{∑t
k=t0 α

k |Gk |∑t
k=t0 αk

cmax(ε)+ λmaxR

∑t
k=t0 α

k ‖bk ‖∗∑t
k=t0 αk

}
→−∞, as t→∞.

Since
∑∞

k=t0 β
k <∞, Equation (B.14) implies that Fλ(x∗,yt )→−∞, which contradicts the first statement

in Lemma 4.1. The claim therefore follows.

3. Assume for contradiction purposes no B(x∗, ε) is contained in B̃(x∗, δ), which means that for any δ > 0,∃yl ,

such that ‖Q(yl) − x∗‖ = δ but Fλ(x∗,yl) ≥ ε . This produces a sequence {yl}∞
l=0 such that C(yl)→ x∗ but

Fλ(x∗,yl) ≥ ε,∀l. This contradicts with the fact that the choice mapC(·) is λ-Fenchel coupling conforming,

because by definition it holds that if C(yt )→ x, then Fλ(x,yt )→ 0. Consequently, the claim follows.



4. Fix a given δ > 0. Since βt is summable and αt is not summable but square summable, it follows that

βt→ 0,αt→ 0, α
t

βt →∞ as t→∞. There, denote

(a) T1(δ) = arg mint {t | βs < δ
8(D2V 2

max+B
2
max)

,∀s ≥ t}.

(b) T2(δ) = arg mint {t | cmax(ε(
δ
2 )) < −2λmaxR‖bs ‖∗,∀s ≥ t}.

(c) T3(δ) = arg mint {t | αs < δ
4λmaxRBmax

,∀s ≥ t}.

(d) T4(δ) = arg mint {t | α
s

βs >
4(D2V 2

max+B
2
max)

−cmax(ε (
δ
2 ))

,∀s ≥ t}.

We have T1(δ) < ∞,T2(δ) < ∞ (since limt→∞ ‖bt ‖∗ = 0 and note that cmax(ε(
δ
2 )) < 0 by definition),

T3(δ) <∞,T4(δ) <∞. Take

T(δ) =max(T1(δ),T2(δ),T3(δ),T4(δ)}.

Now take any t ≥ T(δ). We show that if xt ∈ B̃(x∗, δ), then xt+1 ∈ B̃(x∗, δ). To see that this statement holds,

let xt ∈ B̃(x∗, δ), which implies that Fλ(x∗,yt ) < δ. Note that it suffices to consider Gt , ∅, for otherwise

xt+1 = xt .

Now there are two possibilities:

(a) Possibility 1: xt ∈ B(x∗, ε( δ2 )).

(b) Possibility 2: xt ∈ B̃(x∗, δ) − B(x∗, ε( δ2 )).

Under Possibility 1, it follows

Fλ(x∗,yt+1) ≤ Fλ(x∗,yt )+αt
N∑
i=1

λi{|Gt |vi(xt )+ bti}(x
t
i − x∗i )+ β

t (‖ |Gt |v(xt )+bt ‖∗)2 (B.18)

≤ Fλ(x∗,yt )+αt
N∑
i=1

λibti(x
t
i − x∗i )+ β

t
{
2(‖ |Gt |v(xt )‖∗)2 + 2(‖bt ‖∗)2

}
(B.19)

≤ Fλ(x∗,yt )+αtλmaxRBmax + 2βt (D2V2
max + B2

max) (B.20)

< Fλ(x∗,yt )+ δ

4λmaxRBmax
λmaxRBmax +

2δ
8(D2V2

max + B2
max)
(D2Vmax2 + B2

max) (B.21)

≤
δ

2
+
δ

4
+
δ

4
= δ, (B.22)

where the second inequality follows from λ-variational stability and the last inequality follows from the

fact that xt ∈ B(x∗, ε( δ2 )) ⊂ B̃(x∗, δ2 ) per Claim 2.

Under Possibility 2, it follows from Equation B.13 that

Fλ(x∗,yt+1) ≤ Fλ(x∗,yt )+αt

{
|Gt |cmax(ε(

δ

2
))+ λmaxR‖bt ‖∗

}
+ 2βt (D2V2

max + B2
max) (B.23)

≤ Fλ(x∗,yt )+ 2βt (D2V2
max + B2

max)

{
αt

βt
cmax(ε(

δ
2 ))+ λmaxR‖bt ‖∗

2(D2V2
max + B2

max)
+ 1

}
(B.24)

≤ Fλ(x∗,yt )+ 2βt (V2
max + B2

max)

{
αt

βt
cmax(ε(

δ
2 ))

4(V2
max + B2

max)
+ 1

}
(B.25)

< Fλ(x∗,yt ) < ε, (B.26)



where the second inequality follows from |Gt | ≥ 1 since it is not empty by assumption and cmax < 0,

the third inequality follows from λmaxR‖bt ‖∗ < − 1
2 cmax(ε(

δ
2 )) since t ≥ T2(δ) and the second-to-last

inequality follows from αt

βt
cmax(ε (

δ
2 ))

4(V 2
max+B

2
max)
+ 1 < 0 since t ≥ T4(δ).

�

C. Proof to Theorem 4.5 We prove in turn each of the 7 claims laid out in Remark 5.2.

1. Adopt the same notation in the proof to Claim 1 in Remark 4.2 and letY t = (Y t
1 , . . . ,Y

t
N ),X

t = (X t
1, . . . ,X

t
N )

be the iterates generated inAlgorithm2. That Bt→ 0 almost surely follows exactly the same argument (path-

by-path) as that to bt→ 0 in the proof for the first claim of Theorem 4.1. Fix an arbitrary ε > 0. Assume for

contradiction purposes that X t only visits B(x∗, ε) a finite number of times and hence let t0 − 1 be the last

time X t is in B(x∗, ε). Since Y t+1 =Y t +αt ∑
s∈G t (v(Xs)+ ξs+1) =Y t +αt

{
|Gt |v(X t )+

∑
s∈G t ξs+1 + Bt

}
,

we have that ∀t ≥ t0:

Fλ(x∗,Y t+1) = Fλ(x∗,Y t +αt

{
|Gt |v(X t )+

∑
s∈G t

ξs+1 + Bt

}
) (C.1)

≤ Fλ(x∗,Y t )+

N∑
i=1

λi(α
t (|Gt |vi(X t )+ Bt

i +
∑
s∈G t

ξs+1
i )(Ci(Y t

i ) − x∗i )+ β
t (‖ |Gt |v(X t )+ Bt +

∑
s∈G t

ξs+1‖∗)2

(C.2)

= Fλ(x∗,Y t )+αt |Gt |

N∑
i=1

λivi(X t )(X t
i − x∗i )+α

t
N∑
i=1

λi(
∑
s∈G t

ξs+1
i )(X

t
i − x∗i )+α

t
N∑
i=1

λiBt
i (X

t
i − x∗i )

(C.3)
+ βt (‖ |Gt |v(X t )+ Bt +

∑
s∈G t

ξs+1‖∗)2 (C.4)

≤ Fλ(x∗,Y t )+αt |Gt |bmax(ε)+α
t

N∑
i=1

λi(
∑
s∈G t

ξs+1
i )(X

t
i − x∗i )+α

t
N∑
i=1

λiBt
i (X

t
i − x∗i ) (C.5)

+ 3βt
{

D2(‖v(X t )‖∗)2 + (‖Bt ‖∗)2 +D
∑
s∈G t

(‖ξs+1‖∗)2

}
(C.6)

≤ Fλ(x∗,Y t0
)+ (

t∑
k=t0

αk |Gk |)bmax(ε)+

t∑
k=t0

αk
N∑
i=1

λi(
∑
s∈Gk

ξs+1
i )(X

k
i − x∗i )+

t∑
k=t0

αk
N∑
i=1

λiBk
i (X

k
i − x∗i )

(C.7)

+ 3
t∑

k=t0

βk

{
D2(‖v(X t )‖∗)2 + (‖Bt ‖∗)2 +D

∑
s∈G t

(‖ξs+1‖∗)2

}
(C.8)

= Fλ(x∗,Y t0
)+ (

t∑
k=t0

αk |Gk |)

{
bmax(ε)+

N∑
i=1

λi(

t∑
k=t0

αk∑t
k=t0 αk |Gk |

(
∑
s∈Gk

ξs+1
i )(X

k
i − x∗i )) (C.9)

+

N∑
i=1
(λi

t∑
k=t0

αk∑t
k=t0 αk |Gk |

Bk+1
i (X

k
i − x∗i ))

}
+ 3

t∑
k=t0

βk

{
D2(‖v(X t )‖∗)2 + (‖Bt ‖∗)2 +D

∑
s∈G t

(‖ξs+1‖∗)2

}
(C.10)

→−∞, a.s., (C.11)



where the last inequality holds because
∑t

k=t0
αk∑t

k=t0 α
k |Gk |
(
∑

s∈Gk ξs+1
i )(X

k
i − x∗i )) → 0,a.s. as t →∞

by law of large numbers for martingales,
∑t

k=t0
αk∑t

k=t0 α
k |Gk |

Bk+1
i (X

k
i − x∗i ) → 0, a.s. as t→∞ (since

Bt→ 0 a.s. as t→∞), 3
∑t

k=t0 β
k
{
D2(‖v(X t )‖∗)2 + (‖Bt ‖∗)2 +D

∑
s∈G t (‖ξs+1‖∗)2

}
→C, a.s. as t→∞,

for some random variable C that is almost surely finite by Doob’s martingale convergence theorem and∑t
k=t0 α

k |Gk | →∞ as t→∞. This contradicts the first statement in Lemma 4.1 and the claim therefore

follows.

2. Since each hi(·) is Ki strongly convex, h(·) = (h1(·), . . . ,hN (·)) is K-strongly convex, where K =mini{Ki}.

By a standard result in convex analysis [41],C(·) is 1
K -Lipschitz continuous. Since v is lipschitz continuous

by assumption, v(Q(·)) is Lipschitz continuous. Consequently, standard results in differential equations

([11]) imply that a unique solution exists for the ODE.

3. [4] gives sufficient conditions that ensure a random trajectory to be an asymptotic pseudotrajectory of a

semiflow almost surely. We next state one set of sufficient conditions directly in the current context. If for

some q ≥ 2, the following list of conditions are satisfied:

(a) supt E[(‖ξ t+1‖∗)q] <∞;

(b)
∑∞

n=0(α
t )1+

q
2 <∞;

(c) supt ‖xt ‖ <∞;

then the affinely interpolated process Y (t) is an asymptotic pseudotrajectory of the semi-flow φ induced by

the ODE almost surely: ∀T > 0, limt→∞ sup0≤h≤T ‖Y (t + h), φh(Y (t))‖∗ = 0,a.s.. Choose q = 2, the above

conditions can be easily verified: (a) holds by the assumption on the martingale noise; (b) holds since αt

is square summable; (c) holds since the decision space X is compact. Therefore the claim follows.

4. By a well-known result in variational analysis ([40]), each hi(·) is differentiable and

dh∗i (yi)
dyi

=Ci(yi). (C.12)

Note further that since φt (y) is the solution to the ODE (under the initial condition y), we have
dφt (y)
dt = v(x(t)). Written out component-wise, we have

d(φt (y))i
dt

= vi(x(t)). (C.13)

We can thus compute the derivative of λ-Fenchel coupling as follows:

Fλ(x∗, φt (y))
dt

=

∑N
i=1 λi

{
hi(x∗i ) − (φt (y))ix

∗
i + h∗i ((φt (y))i)

}
dt

(C.14)

=

N∑
i=1

λi

{
−

d(φt (y))i
dt

x∗i +Ci(yi)
d(φt (y))i

dt

}
(C.15)

=

N∑
i=1

λi
{
−vi(x(t))x∗i + vi(x(t))Ci(yi)

}
(C.16)



=

N∑
i=1

λivi(x(t))(xi(t) − x∗i ) ≤ 0, (C.17)

where the second equality follows from Equation (C.12), the third equality follows from Equation (C.13),

and the last inequality follows from x∗ is λ-variationally stable. The monotonicity property therefore

follows.

5. For any given ε > 0, pick an ε̂ > 0 per Claim 2 in Remark 4.2 such that B(x∗, ε̂) ⊂ B̃(x∗, ε2 ). By

Equation (C.17), we have

Fλ(x∗, φt (y))
dt

=

N∑
i=1

λivi(x(t))(xi(t) − x∗i ) < 0,∀x(t) , x∗.

Since X − B(x∗, ε̂) is a compact set and each vi(·) is a continuous function, we have

N∑
i=1

λivi(x(t))(xi(t) − x∗i ) ≤ −aε̃ ,∀x(t) ∈ X − B(x∗, ε̂), (C.18)

for some positive constant aε̃ .

Starting at y, by time s, there are two possibilities. The first possibility is that x(s) ∈ B̃(x∗, ε2 ). In this

case, by definition,

Fλ(x∗, φs(y)) <
ε

2
. (C.19)

The second possibility is that x(s) < B̃(x∗, ε2 ). This implies that x(t) < B(x∗, ε̂),∀t ∈ [0, s], because otherwise,

since B(x∗, ε̂) ⊂ B̃(x∗, ε2 ), it must be that x(s0) ∈ B̃(x∗, ε2 ) for some s0 ∈ [0, s]. This then implies that, by

the monotonicity property established in Claim 4, Fλ(x∗, φs(y)) ≤ Fλ(x∗, φs0(y)), thereby leading to

x(s) ∈ B̃(x∗, ε2 ), a contradiction.

Since x(t) < B̃(x∗, ε2 ),∀t ∈ [0, s], we have x(t) < B(x∗, ε̃),∀t ∈ [0, s], leading to that Equation C.18 holds

for t ∈ [0, s]. Therefore, taking s = ε
2aε̃ , we obtain:

Fλ(x∗, φs(y)) ≤ Fλ(x∗,y) − aε̃ s = Fλ(x∗,y) − ε
2
. (C.20)

Equation (C.19) and Equation (C.20) together establish that:

Fλ(x∗, φs(y)) ≤max{
ε

2
,Fλ(x∗,y) − ε

2
}.

6. Let R = supx∈X ‖x‖, which is finite since X is compact. By the definition of dual norm and denote

λmax =maxi λi, we have

N∑
i=1

λi
{
(Yi(t + h) − φih(Y (t + h))

}
(Ci(φ

i
h(Y (t + h))) − x∗i ) ≤ (C.21)



N∑
i=1

λi ‖(Yi(t + h) − φih(Y (t + h))‖∗i ‖(Ci(φ
i
h(Y (t + h))) − x∗i )‖ ≤ λmaxR‖Y (t + h) − φh(t + h)‖∗, (C.22)

where φi
h
(Y (t + h)) is the i-th component of φh(Y (t + h)).

Fix some T > 0 and define Kλ =maxi λiKi
and δ =

√
(λmaxR)2+2εKλ−λmaxR

4Kλ
. Per Claim 3, we have

∀T > 0, lim
t→∞

sup
0≤h≤T

‖Y (t + h), φh(Y (t))‖∗ = 0,a.s..

Consequently, choose τ(δ,T) such that ‖Y (t + h), φh(Y (t))‖∗ < δ,∀t ≥ τ. Expanding λ-Fenchel coupling,

we obtain that ∀t ≥ τ and ∀h ∈ [0,T]:

Fλ(x∗,Y (t + h)) = Fλ(x∗, φh(Y (t))+Y (t + h) − φh(Y (t))) ≤ Fλ(x∗, φh(Y (t))) (C.23)

+

N∑
i=1

λi
{
(Yi(t + h) − φih(Y (t))

}
(Ci(φ

i
h(Y (t))) − x∗i )+Kλ(‖Y (t + h) − φh(Y (t))‖∗)2 (C.24)

≤ Fλ(x∗, φh(Y (t)))+ λmaxR‖Y (t + h) − φh(t)‖∗ +Kλ(‖Y (t + h) − φh(Y (t))‖∗)2 (C.25)

≤ Fλ(x∗, φh(Y (t)))+ λmaxRδ +Kλδ2 (C.26)

≤ Fλ(x∗, φh(Y (t)))+ λmaxR

√
(λmaxR)2 + 2εKλ − λmaxR

4Kλ
+Kλ(

√
(λmaxR)2 + 2εKλ − λmaxR

4Kλ
)2 (C.27)

< Fλ(x∗, φh(Y (t)))+ λmaxR

√
(λmaxR)2 + 2εKλ − λmaxR

2Kλ
+Kλ(

(
√
(λmaxR)2 + 2εKλ − λmaxR)2

4K2
λ

(C.28)

= Fλ(x∗, φh(Y (t)))+
ε

2
, (C.29)

where the first inequality follows from Equation (C.22) and the last equality follows from straightforward

algebraic verification. The claim is therefore established.

7. We start by fixing an arbitrary ε > 0. Per Claim 5, there exists an s > 0 (depending on ε) such that

Equation (4.7) holds. Set the horizon T = s. Per Claim 6, there exists a τ (depending on both ε and T)

such that Equation (4.8) holds ∀t ≥ τ. Now, per Claim 1, Xt visits B̃(x∗, δ) infinitely often9. Therefore,

pick an integer τ0 ≥ τ such that Xτ0 ∈ B̃(x∗, ε2 ). With this choice of τ0, we know that by definition of B̃,

Fλ(x∗,Y (τ0)) <
ε

2
. (C.30)

Our goal is to establish that Fλ(x∗,Y (τ0 + h)) < ε,∀h ∈ [0,∞). To that end, partition the time [0,∞) into

disjoint time intervals [0,T),[T,2T), . . . ,[nT,(n+ 1)T), . . . .

Per Claim 4, the monotonicity property given in Equation (4.6) implies that:

Fλ(x∗, φh(Y (τ0))) ≤ Fλ(x∗, φ0(Y (τ0))) = Fλ(x∗,Y (τ0)) <
ε

2
,∀h ≥ 0, (C.31)

9All the statements made here are true almost surely. We will omit repeatedly saying that for convenience. Alternatively, one can
think of this as a path-by-path argument and each ensuing statement is made for a particular sample path that comes from a probability
1 space.



where the equality follows from the semi-group property of a semiflow.

Per Equation (4.8), for h ∈ [0,T), we then have:

Fλ(x∗,Y (τ0 + h)) < Fλ(x∗, φh(Y (τ0)))+
ε

2
<
ε

2
+
ε

2
= ε, (C.32)

where the last inequality follows from Equation (C.31).

Now assume inductively that Equation (C.32) holds for every h ∈ [nT,(n+1)T), where n is a non-negative

integer. We then have ∀h ∈ [nT,(n+ 1)T):

Fλ(x∗,Y (τ0 +T + h)) < Fλ(x∗, φT (Y (τ0 + h)))+
ε

2
≤max{

ε

2
,Fλ(x∗,Y (τ0 + h)) −

ε

2
} +

ε

2
≤
ε

2
+
ε

2
= ε,

(C.33)

where the first inequality follows from Equation (4.8), the second inequality follows from Equation (4.7),

and the third inequality follows from the induction hypothesis Fλ(x∗,Y (τ0 + h)) < ε . Consequently,

Equation (C.32) holds for every h ∈ [(n+1)T,(n+2)T), thereby completing the induction and establishing

that:

Fλ(x∗,Y (τ0 + h)) < ε,∀h ∈ [0,∞).

�

D. Proof of Lemma 5.1 For Statement 1, first note that since αt is square-summable, we have

limt→∞(α
t )2 = 0, thereby implying limt→∞ α

t = 0. This further leads to maxs∈[t−d+1,t] α
s→ 0, as t→∞ for

any fixed d.

Since the delay is bounded by d, Gt
i is non-empty at least once in every D consecutive rounds. When it

is non-empty, the most delayed gradient must have occurred on or after round t − d + 1. Putting these two

pieces together, we conclude that on any round t, the most delayed gradient must have occurred on or after

round t − 2d + 1. Consequently, we have minGt
i ≥ t − 2d + 1. This leads to

lim
t→∞

t∑
s=min G̃ t

i

αs ≤ lim
t→∞

t∑
s=t−2d+1

αs ≤ lim
t→∞

2d max
s∈[t−2d+1,t]

αs = 0.

For Statement 2, take αt = 1
t log t log log t , which is obviously positive, non-increasing and square-summable.

Since
∫ t

s=4
1

s log s log log s ds = log log log t→∞ as t→∞, αt is not summable. Next, let G̃t
i be given and let t̃ be

the most recent round (up to and including t) such that G t̃
i is not empty. This means:

G̃t
i = G

t̃
i ,G

k
i = ∅,∀k ∈ (t̃, t]. (D.1)

Note that since the gradient at time t̃ will be available at time t̃ + d t̃
i − 1, it follows that

t − t̃ ≤ d t̃
i . (D.2)



Note that this implies t̃→∞ as t→∞, because otherwise, t̃ is bounded, leading to the right-side d t̃
i being

bounded, which contradicts to the left-side diverging to infinity.

Since ds
i =O(s log s), it follows that ds

i ≤ Ks log s for some K > 0. Consequently, Equation D.2 implies: t ≤

t̃+Kt̃ log t̃ .Denote stmin =min G̃t
i , Equation D.1 implies that stmin =minG t̃

i , thereby yielding stmin+d
stmin
i −1 = t̃.

Therefore:

d
stmin
i = t̃ − stmin + 1. (D.3)

Equation (D.3) implies that stmin→∞ as t→∞, because otherwise, the left-hand side of Equation (D.3) is

bounded while the right-hand side goes to infinity (since t̃→∞ as t→∞ as established earlier).

With the above notation, it follows that:

lim
t→∞

t∑
s=min G̃ t

i

αs ≤ lim
t→∞

t∑
s=stmin

αs = lim
t→∞


t̃∑

s=stmin

αs +

t∑
s=t̃+1

αs

 ≤ lim
t→∞

{
d
stmin
i αstmin + (t̃ log t̃)αt̃

}
(D.4)

= lim
t→∞


d
stmin
i

(stmin) log(stmin) log log(stmin)
+

Kt̃ log t̃
(t̃ + 1) log(t̃ + 1) log log(t̃ + 1)

 (D.5)

≤ lim
t→∞

{
K(stmin) log(stmin)

(stmin) log(stmin) log log(stmin)
+

Kt̃ log t̃
(t̃ + 1) log(t̃ + 1) log log(t̃ + 1)

}
(D.6)

≤ lim
t→∞

{
K

log log(stmin)
+

K
log log(t̃ + 1)

}
= 0. (D.7)

where the second inequality follows from 1
t log t is a decreasing sequence and the last equality follows from

the assumption ds
i = o(s log s) and that stmin→∞ as t→∞. �

E. Proof of Theorem 5.1 We first prove Claim 1. Using the same notation as Claim 1 in Remark 4.2,

and per the DMD update, we have

‖yt+1 − yt ‖∗ =
N∑
i=1
‖yt+1

i − yti ‖
∗
i =

N∑
i=1
‖
αt

|Gt
i |

∑
s∈G t

i

vi(xs)‖∗i ≤ α
t

N∑
i=1

1
|Gt

i |

∑
s∈G t

i

‖vi(xs)‖∗i (E.1)

≤ αt
N∑
i=1

1
|Gt

i |
|Gt

i |V
i
max = α

tVmax (E.2)

By definition, we can expand bti as follows:

bti =
∑
s∈G̃ t

i

vi(xs) − vi(xt )
|G̃t

i |
≤

1
|G̃t

i |

∑
s∈G̃ t

i

L‖xs − xt ‖ (E.3)

=
1
|G̃t

i |

∑
s∈G̃ t

i

L‖C(ys) −C(yt )‖ ≤ 1
|G̃t

i |

∑
s∈G̃ t

i

L
K
‖ys − yt ‖∗ (E.4)

≤
L
K

1
|G̃t

i |

∑
s∈G̃ t

i

{
‖ys − ys+1‖∗ + ‖ys+1 − ys+2‖∗ + · · ·+ ‖yt−1 − yt ‖∗

}
(E.5)



≤
L
K

1
|G̃t

i |

∑
s∈G̃ t

i

{
αsVmax +α

s+1Vmax + · · ·+α
tVmax

}
(E.6)

=
LVmax

K
1
|G̃t

i |

∑
s∈G̃ t

i

t∑
k=s

αk ≤
LVmax

K
1
|G̃t

i |
|G̃t

i |

t∑
s=min G̃t

i

αs ≤
LVmax

K

t∑
s=min G̃t

i

αs, (E.7)

where the inequality in Equation E.3 follows from the fact that v(·) is L-Lipschitz continuous, the inequality

in Equation E.4 follows from the fact that C(·) is 1
K -Lipschitz continuous, Equation E.6 follows from

Equations E.1 and E.2 and the first inequality in Equation E.7 follows from that αt ’s are non-negative. Finally,

the above chain of inequalities immediately implies the result by noting that per Assumption 5.1,

LVmax

K

t∑
s=min G̃t

i

αs→ 0.

To prove Claim 2, Fix an arbitrary ε > 0. Assume for contradiction purposes that xt only visits B(x∗, ε) a

finite number of times and hence let t0 − 1 be the last time xt is in B(x∗, ε): ∀t ≥ t0,xt ∈ X − B(x∗, ε). Since

X − B(x∗, ε) is a compact set and vi(x) is continuous in x and since by assumption
∑N

i=1 λivi(x)(xi − x∗i ) <

0,∀x ∈ X ,x , x∗, it follows that there exists a cmax(ε) < 0 such that

N∑
i=1

λivi(x)(xi − x∗i ) ≤ cmax(ε),∀x ∈ X − B(x∗, ε). (E.8)

Per Claim 1, limt→∞ bt = 0, therefore, ‖bt ‖∗ is bounded and we denote Bmax ,maxt ‖bt ‖∗. Next denote

R =maxx∈X ‖x‖, λmax ,maxi λi and βt ,maxi (α
t )2λi

2Ki
and note that

∑∞
t=1 β

t <∞. Using Lemma 4.1, we

have ∀t ≥ t0:

Fλ(x∗,yt+1) = Fλ(x∗,yt +αt {v(xt )+bt }) ≤ (E.9)

Fλ(x∗,yt )+
N∑
i=1

λi(α
t {vi(xt )+ bti})(Ci(y

t
i ) − x∗i )+ β

t (‖v(xt )+bt ‖∗)2 = (E.10)

Fλ(x∗,yt )+αt

{
N∑
i=1

λivi(xt )(xti − x∗i )+
N∑
i=1

λibti(x
t
i − x∗i )

}
+ βt (‖v(xt )+bt ‖∗)2 (E.11)

≤ Fλ(x∗,yt )+αt
{
cmax(ε)+ λmax‖bt ‖∗‖xt − x∗‖

}
+ βt

{
2(‖v(xt )‖∗)2 + 2(‖bt ‖∗)2

}
(E.12)

≤ Fλ(x∗,yt )+αt
{
cmax(ε)+ λmaxR‖bt ‖∗

}
+ 2βt (V2

max + B2
max) (E.13)

≤ Fλ(x∗,yt0
)+ (

t∑
k=t0

αi)

{
bmax(ε)+ λmaxR

∑t
k=t0 α

k ‖bk ‖∗∑t
k=t0 αk

}
+ 2(

t∑
k=t0

βk)(V2
max + B2

max), (E.14)

where Equation (E.12) follows from Equation (E.8) and Equation (E.14) follows from telescoping.

Consequently, since limt→∞ bt = 0 and
∑∞

t=0 α
t =∞, it follows that:∑t

k=t0 α
k ‖bk ‖∗∑t

k=t0 αk
→ 0, as t→∞,



therefore implying that:

(

t∑
k=t0

αi)

{
bmax(ε)+ λmaxR

∑t
k=t0 α

k ‖bk ‖∗∑t
k=t0 αk

}
→−∞, as t→∞.

Since
∑∞

k=t0 β
k <∞, Equation (E.14) implies that Fλ(x∗,yt )→−∞, which contradicts the first statement

in Lemma 4.1. The claim therefore follows.

Finally, we establish Claim 3. Fix a given δ > 0. Since βt is summable and αt is not summable but square

summable, it follows that βt→ 0,αt→ 0, α
t

βt →∞ as t→∞. There, denote

1. T1(δ) = arg mint {t | βs < δ
8(V 2

max+B
2
max)

,∀s ≥ t}.

2. T2(δ) = arg mint {t | cmax(ε(
δ
2 )) < −2λmaxR‖bs ‖∗,∀s ≥ t}.

3. T3(δ) = arg mint {t | αs < δ
4λmaxRBmax

,∀s ≥ t}.

4. T4(δ) = arg mint {t | α
s

βs >
4(V 2

max+B
2
max)

−cmax(ε (
δ
2 ))

,∀s ≥ t}.

We have T1(δ) <∞,T2(δ) <∞ (since limt→∞ ‖bt ‖∗ = 0 and note that cmax(ε(
δ
2 )) < 0 by definition), T3(δ) <

∞,T4(δ) <∞. Take

T(δ) =max(T1(δ),T2(δ),T3(δ),T4(δ)}.

Now take any t ≥ T(δ). It suffices to show that if xt ∈ B̃(x∗, δ), then xt+1 ∈ B̃(x∗, δ). To see that this statement

holds, let xt ∈ B̃(x∗, δ), which implies that Fλ(x∗,yt ) < δ.

Now there are two possibilities:

1. Possibility 1: xt ∈ B(x∗, ε( δ2 )).

2. Possibility 2: xt ∈ B̃(x∗, δ) − B(x∗, ε( δ2 )).

Under Possibility 1, it follows

Fλ(x∗,yt+1) ≤ Fλ(x∗,yt )+αt
N∑
i=1

λi{vi(xt )+ bti}(x
t
i − x∗i )+ β

t (‖v(xt )+bt ‖∗)2 (E.15)

≤ Fλ(x∗,yt )+αt
N∑
i=1

λibti(x
t
i − x∗i )+ β

t
{
2(‖v(xt )‖∗)2 + 2(‖bt ‖∗)2

}
(E.16)

≤ Fλ(x∗,yt )+αtλmaxRBmax + 2βt (V2
max + B2

max) (E.17)

< Fλ(x∗,yt )+ δ

4λmaxRBmax
λmaxRBmax +

2δ
8(V2

max + B2
max)
(Vmax2 + B2

max) (E.18)

≤
δ

2
+
δ

4
+
δ

4
= δ, (E.19)

where the second inequality follows from λ-variational stability and the last inequality follows from the fact

that xt ∈ B(x∗, ε( δ2 )) ⊂ B̃(x∗, δ2 ) per Claim 2.

Under Possibility 2, it follows from Equation E.13 that

Fλ(x∗,yt+1) ≤ Fλ(x∗,yt )+αt

{
cmax(ε(

δ

2
))+ λmaxR‖bt ‖∗

}
+ 2βt (V2

max + B2
max) (E.20)



≤ Fλ(x∗,yt )+ 2βt (V2
max + B2

max)

{
αt

βt
cmax(ε(

δ
2 ))+ λmaxR‖bt ‖∗

2(V2
max + B2

max)
+ 1

}
(E.21)

≤ Fλ(x∗,yt )+ 2βt (V2
max + B2

max)

{
αt

βt
cmax(ε(

δ
2 ))

4(V2
max + B2

max)
+ 1

}
(E.22)

< Fλ(x∗,yt ) < ε, (E.23)

where the second inequality follows from λmaxR‖bt ‖∗ < − 1
2 cmax(ε(

δ
2 )) since t ≥ T2(δ) and the second-to-last

inequality follows from αt

βt
cmax(ε (

δ
2 ))

4(V 2
max+B

2
max)
+ 1 < 0 since t ≥ T4(δ). �


	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Problem Setup
	2.1 Multi-Agent Reward Structure: Continuous Games
	2.2 Examples
	2.3 Online Mirror Descent on Continuous Games under Delays
	2.4 Online Mirror Descent on Continuous Games under Both Delays and Noise

	3 -Variational Stability
	3.1 Definition and Properties
	3.2 A Simple Sufficient Condition for Variational Stability
	3.3 Examples of -Variationally Stable Games

	4 Multi-Agent Online Mirror Descent under Imperfect Information
	4.1 -Fenchel Coupling
	4.2 Convergence of Multi-Agent OMD to Nash under Synchronous and Bounded Delays
	4.3 Almost Sure Convergence of Multi-Agent OMD to Nash under Delays and Noise

	5 Multi-Agent Delayed Mirror Descent under Imperfect Information
	5.1 Delayed Mirror Descent on Continuous Games
	5.2 Main Delay Assumption
	5.3 Convergence of Multi-Agent DMD to Nash under Asynchronous and Unbounded Delays
	5.4 Almost Sure Convergence of Multi-Agent DMD to Nash under Delays and Noise

	6 Discussion and Future Work
	A Proof of Lemma 4.1
	B Proof to Theorem 4.1
	C Proof to Theorem 4.5
	D Proof of Lemma 5.1
	E Proof of Theorem 5.1





