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Abstract. Regularized learning is a fundamental technique in online opti-
mization, machine learning and many other fields of computer science. A nat-
ural question that arises in these settings is how regularized learning algorithms
behave when faced against each other. We study a natural formulation of this
problem by coupling regularized learning dynamics in zero-sum games. We
show that the system’s behavior is Poincaré recurrent, implying that almost
every trajectory revisits any (arbitrarily small) neighborhood of its starting
point infinitely often. This cycling behavior is robust to the agents’ choice of
regularization mechanism (each agent could be using a different regularizer),
to positive-affine transformations of the agents’ utilities, and it also persists in
the case of networked competition, i.e., for zero-sum polymatrix games.

1. Introduction

Regularization is a fundamental and incisive method in optimization, its present
zeitgeist and its entry into machine learning. Through the introduction of a new
component in the objective, regularization techniques overcome ill-conditioning and
overfitting, and they yield algorithms that achieve sparsity and parsimony without
sacrificing efficiency [2, 5, 8].

In the context of online optimization, these features are exemplified in the fam-
ily of learning algorithms known as “Follow the Regularized Leader” (FoReL) [41].
FoReL represents an important archetype of adaptive behavior for several reasons:
it provides optimal min-max regret guarantees (O(t−1/2) in an adversarial setting),
it offers significant flexibility with respect to the geometry of the problem at hand,
and it captures numerous other dynamics as special cases (hedge, multiplicative
weights, gradient descent, etc.) [2, 8, 15]. As such, given that these regret guaran-
tees hold without any further assumptions about how payoffs/costs are determined
at each stage, the dynamics of FoReL have been the object of intense scrutiny and
study in algorithmic game theory.

The standard way of analyzing such no-regret dynamics in games involves a
two-step approach. The first step exploits the fact that the empirical frequency of
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play under a no-regret algorithm converges to the game’s set of coarse correlated
equilibria (CCE). The second involves proving some useful property of the game’s
CCE: For instance, leveraging (λ, µ)-robustness [33] implies that the social welfare
at a CCE lies within a small constant of the optimum social welfare; as another
example, the product of the marginal distributions of CCE in zero-sum games is
Nash. In this way, the no-regret properties of FoReL can be turned into convergence
guarantees for the players’ empirical frequency of play (that is, in a time-averaged,
correlated sense).

Recently, several papers have moved beyond this “black-box” framework and
focused instead on obtaining stronger regret/convergence guarantees for systems
of learning algorithms coupled together in games with a specific structure. Along
these lines, Daskalakis et al. [9] and Rakhlin and Sridharan [31] developed classes
of dynamics that enjoy a O(log t/t) regret minimization rate in two-player zero-
sum games. Syrgkanis et al. [43] further analyzed a recency biased variant of
FoReL in more general multi-player games and showed that it is possible to achieve
an O(t−3/4) regret minimization rate. The social welfare converges at a rate of
O(t−1), a result which was extended to standard versions of FoReL dynamics in
[11].

Whilst a regret-based analysis provides significant insights about these systems,
it does not answer a fundamental behavioral question:

Does the system converge to a Nash equilibrium?
Does it even stabilize?

The dichotomy between a self-stabilizing, convergent system and a system with re-
current cycles is of obvious significance, but a regret-based analysis cannot distin-
guish between the two. Indeed, convergent, recurrent, and even chaotic [26] systems
may exhibit equally strong regret minimization properties in general games, so the
question remains: What does the long-run behavior of FoReL look like, really?

This question becomes particularly interesting and important under perfect com-
petition (such as zero-sum games and variants thereof). Especially in practice,
zero-sum games can capture optimization “duels” [18]: for example, two Internet
search engines competing to maximize their market share can be modeled as play-
ers in a zero-sum game with a convex strategy space. In [18] it was shown that
the time-average of a regret-minimizing class of dynamics converges to an approx-
imate equilibrium of the game. Finally, zero-sum games have also been used quite
recently as a model for deep learning optimization techniques in image generation
and discrimination [14, 39].

In each of the above cases, min-max strategies are typically thought of as the
axiomatically correct prediction. The fact that the time average of the marginals
of a FoReL procedure converges to such states is considered as further evidence
of the correctness of this prediction. However, the long-run behavior of the actual
sequence of play (as opposed to its time-averages) seems to be trickier, and a number
of natural questions arise:

- Does optimization-driven learning converge under perfect competition?
- Does fast regret minimization necessarily imply (fast) equilibration in this case?

Our results. We settle these questions with a resounding “no”. Specifically, we
show that the behavior of FoReL in zero-sum games with an interior equilibrium
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Figure 1. Evolution of the dynamics of FoReL in a 3-player zero-sum poly-
matrix game with entropic and Euclidean regularization (left and right re-
spectively). The game considered is a graphical variant of Matching Pennies
with three players. As can be seen, the trajectories of FoReL orbit the game’s
line of Nash equilibria (dark red). The kinks observed in the Euclidean case
occur when the support of the trajectory of play changes; by contrast, the
multiplicative weights dynamics (left) are interior, so they do not exhibit such
kinks.

(e.g. Matching Pennies) is Poincaré recurrent, implying that almost every trajec-
tory revisits any (arbitrarily small) neighborhood of its starting point infinitely
often. Importantly, the observed cycling behavior is robust to the agents’ choice of
regularization mechanism (each agent could be using a different regularizer), and
it applies to any positive affine transformation of zero-sum games (and hence all
strictly competitive games [1]) even though these transformations lead to differ-
ent trajectories of play. Finally, this cycling behavior also persists in the case of
networked competition, i.e. for constant-sum polymatrix games [6, 7, 10].

Given that the no-regret guarantees of FoReL require a decreasing step-size (or
learning rate),1 we focus on a smooth version of FoReL described by a dynamical
system in continuous time. The resulting FoReL dynamics enjoy a particularly
strong O(t−1) regret minimization rate and they capture as a special case the
replicator dynamics [38, 44, 45] and the projection dynamics [12, 24, 36], arguably
the most widely studied game dynamics in biology, evolutionary game theory and
transportation science [16, 35, 48]. In this way, our analysis unifies and generalizes
many prior results on the cycling behavior of evolutionary dynamics [16, 28, 29, 37]
and it provides a new interpretation of these results through the lens of optimization
and machine learning.

From a technical point of view, our analysis touches on several issues. Our first
insight is to focus not on the simplex of the players’ mixed strategies, but on a
dual space of payoff differences. The reason for this is that the vector of cumulative
payoff differences between two strategies fully determines a player’s mixed strategy
under FoReL, and it is precisely these differences that ultimately drive the players’
learning process. Under this transformation, FoReL exhibits a striking property,

1A standard trick is to decrease step-sizes by a constant factor after a window of “doubling”
length [40].
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incompressibility : the flow of the dynamics is volume-preserving, so a ball of initial
conditions in this dual space can never collapse to a point.

That being said, the evolution of such a ball in the space of payoffs could be
transient, implying in particular that the players’ mixed strategies could converge
(because the choice map that links payoff differences to strategies is nonlinear). To
rule out such behaviors, we show that FoReL in zero-sum games with an interior
Nash equilibrium has a further important property: it admits a constant of motion.
Specifically, if x∗ = (x∗i )i∈N is an interior equilibrium of the game and yi is an
arbitrary point in the payoff space of player i, this constant is given by the coupling
function

G(y) =
∑
i∈N

[h∗i (yi)− 〈yi, x∗i 〉],

where h∗i (yi) = maxxi{〈yi, xi〉 − hi(xi)} is the convex conjugate of the regularizer
hi that generates the learning process of player i (for the details, see Sections 3
and 4). Coupled with the dynamics’ incompressibility, this invariance can be used
to show that FoReL is recurrent : after some finite time, almost every trajectory
returns arbitrarily close to its initial state.

On the other hand, if the game does not admit an interior equilibrium, the
coupling above is no longer a constant of motion. In this case, G decreases over time
until the support of the players’ mixed strategies matches that of a Nash equilibrium
with maximal support: as this point in time is approached, G essentially becomes
a constant. Thus, in general zero-sum games, FoReL wanders perpetually in the
smallest face of the game’s strategy space containing all of the game’s equilibria;
indeed, the only possibility that FoReL converges is if the game admits a unique
Nash equilibrium in pure strategies – a fairly restrictive requirement.

2. Definitions from game theory

2.1. Games in normal form. We begin with some basic definitions from game the-
ory. A finite game in normal form consists of a finite set of players N = {1, . . . , N},
each with a finite set of actions (or strategies) Ai. The preferences of player
i for one action over another are determined by an associated payoff function
ui : A ≡

∏
iAi → R which assigns a reward ui(αi;α−i) to player i ∈ N under

the strategy profile (αi;α−i) of all players’ actions.2 Putting all this together, a
game in normal form will be written as a tuple Γ ≡ Γ(N ,A, u) with players, ac-
tions and payoffs defined as above.

Players can also use mixed strategies, i.e. mixed probability distributions xi =
(xiαi)αi∈Ai ∈ ∆(Ai) over their action sets Ai. The resulting probability vector xi
is called a mixed strategy and we write Xi = ∆(Ai) for the mixed strategy space of
player i. Aggregating over players, we also write X =

∏
i Xi for the game’s strategy

space, i.e. the space of all strategy profiles x = (xi)i∈N .
In this context (and in a slight abuse of notation), the expected payoff of the

i-th player in the profile x = (x1, . . . , xN ) is

ui(x) =
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN )x1α1 · · ·xNαN . (2.1)

To keep track of the payoff of each pure strategy, we also write viαi(x) = ui(αi;x−i)
for the payoff of strategy αi ∈ Ai under the profile x ∈ X and vi(x) = (viαi(x))αi∈Ai

2In the above, we use the standard shorthand (βi;α−i) for the profile (α1, . . . , βi, . . . , αN ).
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for the resulting payoff vector of player i. We then have

ui(x) = 〈vi(x), xi〉 =
∑
αi∈Ai

xiαiviαi(x), (2.2)

where 〈v, x〉 ≡ v>x denotes the ordinary pairing between v and x.
The most widely used solution concept in game theory is that of a Nash equilib-

rium (NE), defined here as a mixed strategy profile x∗ ∈ X such that

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) (NE)

for every deviation xi ∈ Xi of player i and all i ∈ N . Writing supp(x∗i ) = {αi ∈
Ai : x∗i > 0} for the support of x∗i ∈ Xi, a Nash equilibrium x∗ ∈ X is called
pure if supp(x∗i ) = {α∗i } for some α∗i ∈ Ai and all i ∈ N . At the other end of
the spectrum, x∗ is said to be interior (or fully mixed) if supp(x∗i ) = Ai for all
i ∈ N . Finally, a coarse correlated equilibrium (CCE) is a distribution π over
the set of action profiles A ≡

∏
iAi such that, for every player i ∈ N and every

action βi ∈ Ai, we have
∑
α∈A vi(α)π(α) ≥

∑
α−i∈A−i vi(βi, α−i)πi(α−i), where

πi(α−i) =
∑
αi∈αi π(αi, α−i) is the marginal distribution of π with respect to i.

2.2. Zero-sum games and zero-sum polymatrix games. Perhaps the most widely
studied class of finite games (and certainly the first to be considered) is that of 2-
player zero-sum games, i.e. when N = {1, 2} and u1 = −u2. Letting u ≡ u1 = −u2,
the value of a 2-player zero-sum game Γ is defined as

uΓ = max
x1∈X1

min
x2∈X2

u(x1, x2) = min
x2∈X2

max
x1∈X1

u(x1, x2), (2.3)

with equality following from von Neumann’s celebrated min-max theorem [47]. As
is well known, the solutions of this saddle-point problem form a closed, convex set
consisting precisely of the game’s Nash equilibria; moreover, the players’ equilibrium
payoffs are simply uΓ and −uΓ respectively. As a result, Nash equilibrium is the
standard game-theoretic prediction in such games.

An important question that arises here is whether the straightforward equilib-
rium structure of zero-sum games extends to the case of a network of competitors.
Following [6, 7, 10], an N -player pairwise zero-/constant-sum polymatrix game con-
sists of an (undirected) interaction graph G ≡ G(N , E) whose set of nodes N repre-
sents the competing players, with two nodes i, j ∈ N connected by an edge e = (i, j)
in E if and only if the corresponding players compete with each other in a two-player
zero-/constant-sum game.

To formalize this, we assume that a) every player has a finite set of actions Ai
(as before); and b) to each edge e = {i, j} ∈ E is associated a two-player game
zero-/constant-sum Γe with player set Ne = {i, j}, action sets Ai and Aj , and
payoff functions uij = γ{i,j} − uji : Ai ×Aj → R respectively.3 The space of mixed
strategies of player i is again Xi = ∆(Ai), but the player’s payoff is now determined
by aggregating over all games involving player i, i.e.

ui(x) =
∑
j∈Ni

uij(xi, xj), (2.4)

3In a zero-sum game, we have γ{i,j} = 0 by default. Since the underlying interaction graph is
assumed undirected, we also assume that the labeling of the players’ payoff functions is symmet-
ric. At the expense of concision, our analysis extends to directed graphs, but we stick with the
undirected case for clarity.



6 CYCLES IN ADVERSARIAL REGULARIZED LEARNING

where Ni = {j ∈ N : {i, j} ∈ E} denotes the set of “neighbors” of player i. In
other words, the payoff to player i is simply the the sum of all payoffs in the zero-
/constant-sum games that player i plays with their neighbors.

In what follows, we will also consider games which are payoff-equivalent to
positive-affine transformations of pairwise constant-sum polymatrix games. For-
mally, we will allow for games Γ such that there exists a pairwise constant-sum
polymatrix game Γ′ and constants ai > 0 and bi ∈ R for each player i such that
uΓ
i (α) = aiu

Γ′

i (α) + bi for each outcome α ∈ A.

3. No-regret learning via regularization

Throughout this paper, our focus will be on repeated decision making in low-
information environments where the players don’t know the rules of the game (per-
haps not even that they are playing a game). In this case, even if the game admits
a unique Nash equilibrium, it is not reasonable to assume that players are able to
pre-compute their component of an equilibrium strategy – let alone assume that all
players are fully rational, that there is common knowledge of rationality, etc.

With this in mind, we only make the bare-bones assumption that every player
seeks to at least minimize their “regret”, i.e. the average payoff difference between
a player’s mixed strategy at time t ≥ 0 and the player’s best possible strategy in
hindsight. Formally, assuming that play evolves in continuous time, the regret of
player i along the sequence of play x(t) is defined as

Regi(t) = max
pi∈Xi

1

t

∫ t

0

[ui(pi;x−i(s))− ui(x(s))] ds, (3.1)

and we say that player i has no regret under x(t) if lim supt→∞Regi(t) ≤ 0.
The most widely used scheme to achieve this worst-case guarantee is known as

“Follow the Regularized Leader” (FoReL), an exploitation-exploration class of poli-
cies that consists of playing a mixed strategy that maximizes the player’s expected
cumulative payoff (the exploitation part) minus a regularization term (exploration).
In our continuous-time framework, this is described by the learning dynamics

yi(t) = yi(0) +

∫ t

0

vi(x(s)) ds,

xi(t) = Qi(yi(t)),

(FoReL)

where the so-called choice map Qi : RAi → Xi is defined as

Qi(yi) = arg max
xi∈Xi

{〈yi, xi〉 − hi(xi)}. (3.2)

In the above, the regularizer function hi : Xi → R is a convex penalty term
which smoothens the “hard” arg max correspondence yi 7→ arg maxxi∈Xi〈yi, xi〉 that
maximizes the player’s cumulative payoff over [0, t]. As a result, the “regularized
leader” Qi(yi) = arg maxxi∈Xi{〈yi, xi〉 − hi(xi)} is biased towards the prox-center
pi = arg minxi∈Xi hi(xi) of Xi. For most common regularizers, the prox-center is
interior (and usually coincides with the barycenter of X ), so the regularization in
(3.2) encourages exploration by favoring mixed strategies with full support.

In Appendix A, we present in detail two of the prototypical examples of (FoReL):
i) the multiplicative weights (MW) dynamics induced by the entropic regularizer
function hi(x) =

∑
αi∈Ai xiαi log xiαi (which lead to the replicator dynamics of evo-

lutionary game theory); and ii) the projection dynamics induced by the Euclidean
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regularizer hi(x) = 1
2‖xi‖

2. For concreteness, we will assume in what follows that
the regularizer of every player i ∈ N satisfies the following minimal requirements:

(1) hi is continuous and strictly convex on Xi.
(2) hi is smooth on the relative interior of every face of Xi (including Xi itself).

Under these basic assumptions, the “regularized leader” Qi(yi) is well-defined in the
sense that (3.2) admits a unique solution. More importantly, we have the following
no-regret guarantee:

Theorem 3.1. A player following (FoReL) enjoys an O(1/t) regret bound, no matter
what other players do. Specifically, if player i ∈ N follows (FoReL), then, for every
continuous trajectory of play x−i(t) of the opponents of player i, we have

Regi(t) ≤
Ωi
t
, (3.3)

where Ωi = maxhi −minhi is a positive constant.

To streamline our discussion, we relegate the proof of Theorem 3.1 to Appen-
dix C; we also refer to [20] for a similar regret bound for (FoReL) in the context of
online convex optimization. Instead of discussing the proof, we close this section by
noting that (3.3) represents a striking improvement over the Θ(t−1/2) worst-case
bound for FoReL in discrete time [40]. In view of this, the continuous-time frame-
work we consider here can be seen as particularly amenable to learning because it
allows players seek to minimize their regret (and thus converge to coarse correlated
equilibria) at the fastest possible rate.

4. Recurrence in adversarial regularized learning

In this section, our aim is to take a closer look at the ramifications of fast regret
minimization under (FoReL) beyond convergence to the set of coarse correlated
equilibria. Indeed, as is well known, this set is fairly large and may contain thor-
oughly non-rationalizable strategies: for instance, Viossat and Zapechelnyuk [46]
recently showed that a coarse correlated equilibrium could assign positive selection
probability only to strictly dominated strategies. Moreover, the time-averaging
that is inherent in the definition of the players’ regret leaves open the possibility
of complex day-to-day behavior e.g. periodicity, recurrence, limit cycles or chaos
[26, 27, 29, 37]. Motivated by this, we examine the long-run behavior of the (FoReL)
in the popular setting of zero-sum games (with or without interior equilibria) and
several extensions thereof.

A key notion in our analysis is that of (Poincaré) recurrence. Intuitively, a
dynamical system is recurrent if, after a sufficiently long (but finite) time, almost
every state returns arbitrarily close to the system’s initial state.4 More formally,
given a dynamical system on X that is defined by means of a semiflow Φ: X ×
[0,∞)→ X , we have:5

Definition 4.1. A point x ∈ X is said to be recurrent under Φ if, for every neigh-
borhood U of x in X , there exists an increasing sequence of times tn ↑ ∞ such that

4Here, “almost” means that the set of such states has full Lebesgue measure.
5Recall that a continuous map Φ: X×[0,∞)→ X is a semiflow if Φ(x, 0) = x and Φ(x, t+s) =

Φ(Φ(x, t), s) for all x ∈ X and all s, t ≥ 0. Heuristically, Φt(x) ≡ Φ(x, t) describes the trajectory
of the dynamical system starting at x.
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Φ(x, tn) ∈ U for all n. Moreover, the flow Φ is called (Poincaré) recurrent if, for
every measurable subset A of X , the set of recurrent points in A has full measure.

An immediate consequence of Definition 4.1 is that, if a point is recurrent, there
exists an increasing sequence of times tn ↑ ∞ such that Φ(x, tn) → x. On that
account, recurrence can be seen as the flip side of convergence: under the latter,
(almost) every initial state of the dynamics eventually reaches some well-defined
end-state; instead, under the former, the system’s orbits fill the entire state space
and return arbitarily close to their starting points infinitely often (so there is no
possibility of convergence beyond trivial cases).

4.1. Zero-sum games with an interior equilibrium. Our first result is that (FoReL)
is recurrent (and hence, non-convergent) in zero-sum games with an interior Nash
equilibrium:

Theorem 4.2. Let Γ be a 2-player zero-sum game that admits an interior Nash
equilibrium. Then, almost every solution trajectory of (FoReL) is recurrent; specif-
ically, for (Lebesgue) almost every initial condition x(0) = Q(y(0)) ∈ X , there
exists an increasing sequence of times tn ↑ ∞ such that x(tn)→ x(0).

The proof of Theorem 4.2 is fairly complicated, so we outline the basic steps
below:

(1) We first show that the dynamics of the score sequence y(t) are incompress-
ible, i.e. the volume of a set of initial conditions remains invariant as the
dynamics evolve over time. By Poincaré’s recurrence theorem (cf. Appen-
dix B), if every solution orbit y(t) of (FoReL) remains in a compact set for
all t ≥ 0, incompressibility implies recurrence.

(2) To counter the possibility of solutions escaping to infinity, we introduce a
transformed system based on the differences between scores (as opposed to
the scores themselves). To establish boundedness in these dynamics, we
consider the “primal-dual” coupling

G(y) =
∑
i∈N

[h∗i (yi)− 〈yi, x∗i 〉], (4.1)

where x∗ is an interior Nash equilibrium and h∗i (yi) = maxxi∈Xi{〈yi, xi〉 −
hi(xi)} denotes the convex conjugate of hi.6 The key property of this
coupling is that it remains invariant under (FoReL); however, its level sets
are not bounded so, again, precompactness of solutions is not guaranteed.

(3) Nevertheless, under the score transformation described above, the level sets
of G are compact. Since the transformed dynamics are invariant under said
transformation, Poincaré’s theorem finally implies recurrence.

Proof of Theorem 4.2. To make the above plan precise, fix some “benchmark” strat-
egy α̂i ∈ Ai for every player i ∈ N and, for all αi ∈ Ai\{α̂i}, consider the corre-
sponding score differences

ziαi = yiαi − yi,α̂i . (4.2)
Obviously, ziα̂i = yiα̂i − yiα̂i is identically zero so we can ignore it in the above
definition. In so doing, we obtain a linear map Πi : RAi → RAi\{α̂i} sending yi 7→ zi;
aggregating over all players, we also write Π for the product map Π = (Π1, . . . ,ΠN )

6This coupling is closely related to the so-called Bregman divergence – for the details, see
[3, 19, 24, 40].
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sending y 7→ z. For posterity, note that this map is surjective but not injective,7 so
it does not allow us to recover the score vector y from the score difference vector z.

Now, under (FoReL), the score differences (4.2) evolve as

żiαi = viαi(x(t))− viα̂i(x(t)). (4.3)

However, since the right-hand side (RHS) of (4.3) depends on x = Q(y) and the
mapping y 7→ z is not invertible (so y cannot be expressed as a function of z), the
above does not a priori constitute an autonomous dynamical system (as required
to apply Poincaré’s recurrence theorem). Our first step below is to show that (4.3)
does in fact constitute a well-defined dynamical system on z.

To do so, consider the reduced choice map Q̂i : RAi\{α̂i} → Xi defined as

Q̂i(zi) = Qi(yi) (4.4)

for some yi ∈ RAi such that Πi(yi) = zi. That such a yi exists is a consequence
of Πi being surjective; furthemore, that Q̂i(zi) is well-defined is a consequence of
the fact that Qi is invariant on the fibers of Πi. Indeed, by construction, we have
Πi(yi) = Πi(y

′
i) if and only if y′iαi = yiαi + c for some c ∈ R and all αi ∈ Ai. Hence,

by the definition of Qi, we get

Qi(y
′
i) = arg max

xi∈Xi

{
〈yi, xi〉+ c

∑
αi∈Ai xiαi − hi(xi)

}
= arg max

xi∈Xi
{〈yi, xi〉 − hi(xi)} = Qi(yi), (4.5)

where we used the fact that
∑
αi∈Ai xiαi = 1. The above shows thatQi(y′i) = Qi(yi)

if and only if Πi(yi) = Πi(y
′
i), so Q̂i is well-defined.

Letting Q̂ ≡ (Q̂1, . . . , Q̂N ) denote the aggregation of the players’ individual
choice maps Q̂i, it follows immediately that Q(y) = Q̂(Π(y)) = Q̂(z) by construc-
tion. Hence, the dynamics (4.3) may be written as

ż = V (z), (4.6)

where
Viαi(z) = viαi(Q̂i(z))− viα̂i(Q̂i(z)). (4.7)

These dynamics obviously constitute an autonomous system, so our goal will be to
use Liouville’s formula and Poincaré’s theorem in order to establish recurrence and
then conclude that the induced trajectory of play x(t) is recurrent by leveraging
the properties of Q̂.

As a first step towards applying Liouville’s formula, we note that the dynamics
(4.6) are incompressible. Indeed, we have

∂Viαi
∂ziαi

=
∑
βi∈Ai

∂Viαi
∂xiβi

∂xiβi
∂ziαi

= 0, (4.8)

because vi does not depend on xi. We thus obtain divz V (z) = 0, i.e. the dynamics
(4.6) are incompressible.

We now show that every solution orbit z(t) of (4.6) is precompact, that is,
supt≥0‖z(t)‖ < ∞. To that end, note that the coupling G(y) =

∑
i∈N [h∗i (yi) −

7Specifically, Πi(yi) = Πi(y
′
i) if and only if y′iαi = yiαi + c for some c ∈ R and all αi ∈ Ai.



10 CYCLES IN ADVERSARIAL REGULARIZED LEARNING

〈yi, x∗i 〉] defined in (4.1) remains invariant under (FoReL) when Γ is a 2-player
zero-sum game. Indeed, by Lemma C.1, we have
dG

dt
=
∑
i∈N
〈vi(x), xi − x∗i 〉 = 〈v1(x), x1 − x∗1〉+ 〈v2(x), x2 − x∗2〉

= u1(x1, x2)− u1(x∗1, x2) + u2(x1, x2)− u2(x1, x
∗
2) = 0,

(4.9)

where we used the fact that Qi = ∇h∗i in the first line (cf. (C.2) above), and the
assumption that x∗ is an interior Nash equilibrium of a 2-player zero-sum game
in the last one. We conclude that G(y(t)) remains constant under (FoReL), as
claimed.

By Lemma D.2 in Appendix D, the invariance of G(y(t)) under (FoReL) implies
that the score differences ziαi(t) = yiαi(t)−yiα̂i(t) also remain bounded for all t ≥ 0.
Hence, by Liouville’s formula and Poincaré’s recurrence theorem, the dynamics
(4.6) are recurrent, i.e. for (Lebesgue) almost every initial condition z0 and every
neighborhood U of z0, there exists some τU such that z(τU ) ∈ U (cf. Definition 4.1).
Thus, taking a shrinking net of balls Bn(z0) = {z : ‖z − z0‖ ≤ 1/n} and iterating
the above, it follows that there exists an increasing sequence of times tn ↑ ∞ such
that z(tn) → z0. Therefore, to prove the corresponding claim for the induced
trajectories of play x(t) = Q(y(t)) = Q̂(z(t)) of (FoReL), fix an initial condition
x0 ∈ X ◦ and take some z0 such that x0 = Q̂(z0). By taking tn as above, we have
z(tn) → z0 so, by continuity, x(tn) = Q̂(zn) → Q̂(z0) = x0. This shows that any
solution orbit x(t) of (FoReL) is recurrent and our proof is complete. �

Remark. We close this section by noting that the invariance of (4.1) under (FoReL)
induces a foliation of X , with each individual trajectory of (FoReL) living on a “leaf”
of the foliation (a level set of G). Fig. 1 provides a schematic illustration of this
foliation/cycling structure.

4.2. Zero-sum games with no interior equilibria. At first sight, Theorem 4.2 sug-
gests that cycling is ubiquitous in zero-sum games; however, if the game does not
admit an interior equilibrium, the behavior of (FoReL) turns out to be qualitatively
different. To state our result for such games, it will be convenient to assume that
the players’ regularizer functions are strongly convex, i.e. each hi can be bounded
from below by a quadratic minorant:

hi(txi + (1− t)x′i) ≤ thi(xi) + (1− t)hi(x′i)− 1
2Kit(1− t)‖xi − x′i‖2, (4.10)

for all xi, x′i ∈ Xi and for all t ∈ [0, 1]. Under this technical assumption, we have:

Theorem 4.3. Let Γ be a 2-player zero-sum game that does not admit an interior
Nash equilibrium. Then, for every initial condition of (FoReL), the induced tra-
jectory of play x(t) converges to the boundary of X . Specifically, if x∗ is a Nash
equilibrium of Γ with maximal support, x(t) converges to the relative interior of the
face of X spanned by supp(x∗).

Theorem 4.3 is our most comprehensive result for the behavior of (FoReL) in
zero-sum games, so several remarks are in order. First, we note that Theorem 4.3
complements Theorem 4.2 in a very natural way: specifically, if Γ admits an interior
Nash equilibrium, Theorem 4.3 suggests that the solutions of (FoReL) will stay
within the relative interior X ◦ of X (since an interior equilibrium is supported on
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all actions). Of course, Theorem 4.2 provides a stronger result because it states
that, within X ◦, (FoReL) is recurrent. Hence, applying both results in tandem, we
obtain the following heuristic for the behavior of (FoReL) in zero-sum games:

In the long run, (FoReL) wanders in perpetuity
in the smallest face of X containing the equilibrium set of Γ.

This leads to two extremes: On the one hand, if Γ admits an interior equilibrium,
(FoReL) is recurrent and cycles in the level sets of the coupling function (4.1). At
the other end of the spectrum, if Γ admits only a single, pure equilibrium, then
(FoReL) converges to it (since it has to wander in a singleton set). In all other
“in-between” cases, (FoReL) exhibits a hybrid behavior, converging to the face of
X that is spanned by the maximal support equilibrium of Γ, and then cycling in
that face in perpetuity.

The reason for this behavior is that the coupling (4.1) is no longer a constant
of motion of (FoReL) if the game does not admit an interior equilibrium. As we
show in Appendix C, the coupling (4.1) is strictly decreasing when the support of
x(t) is strictly greater than that of a Nash equilibrium x∗ with maximal support.
When the two match, the rate of change of (4.1) drops to zero, and we fall back
to a “constrained” version of Theorem 4.2. We make this argument precise in
Appendix C (where we present the proof of Theorem 4.3).

4.3. Zero-sum polymatrix games & positive affine payoff transformations. We close
this section by showing that the recurrence properties of (FoReL) are not unique
to “vanilla” zero-sum games, but also occur when there is a network of competitors
– i.e. in N -player zero-sum polymatrix games. In fact, the recurrence results
carry over to any N -player game which is isomorphic to a constant-sum polymatrix
game with an interior equilibrium up to a positive-affine payoff transformation
(possibly different transformation for each agent). For example, this class of games
contains all strictly competitive games [1]. Such transformations do not affect the
equilibrium structure of the game, but can affect the geometry of the trajectories;
nevertheless, the recurrent behavior persists as shown by the following result:

Theorem 4.4. Let Γ = (Γe)e∈E be a constant-sum polymatrix game (or a positive
affine payoff transformation thereof ). If Γ admits an interior Nash equilibrium, al-
most every solution trajectory of (FoReL) is recurrent; specifically, for (Lebesgue)
almost every initial condition x(0) = Q(y(0)) ∈ X , there exists an increasing se-
quence of times tn ↑ ∞ such that x(tn)→ x(0).

We leave the case of zero-sum polymatrix games with no interior equilibria to
future work.

5. Conclusions

Our results show that the behavior of regularized learning in adversarial environ-
ments is considerably more intricate than the strong no-regret properties of FoReL
might at first suggest. Even though the empirical frequency of play under FoReL
converges to the set of coarse correlated equilibria (possibly at an increased rate,
depending on the game’s structure), the actual trajectory of play under FoReL is
recurrent and exhibits cycles in zero-sum games. We find this property particularly
interesting as it suggests that “black box” guarantees are not the be-all/end-all
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of learning in games: the theory of dynamical systems is rife with complex phe-
nomena and notions that arise naturally when examining the behavior of learning
algorithms in finer detail.

Appendix A. Examples of FoReL dynamics

Example A.1 (Multiplicative weights and the replicator dynamics). Perhaps the
most widely known example of a regularized choice map is the so-called logit choice
map

Λi(y) =
(exp(yiαi))αi∈Ai∑
βi∈Ai exp(yiβi)

. (A.1)

This choice model was first studied in the context of discrete choice theory by
McFadden [22] and it leads to the multiplicative weights (MW) dynamics:8

ẏi = vi(x),

xi = Λi(yi).
(MW)

As is well known, the logit map above is obtained by the model (3.2) by considering
the entropic regularizer

hi(x) =
∑
αi∈Ai

xiαi log xiαi , (A.2)

i.e. the (negative) Gibbs–Shannon entropy function. A simple differentiation of
(MW) then shows that the players’ mixed strategies evolve according to the dy-
namics

ẋiαi = xiαi

viαi(x)−
∑
βi∈Ai

xiβiviβi(x)

, (RD)

This equation describes the replicator dynamics of [45], the most widely studied
model for evolution under natural selection in population biology and evolutionary
game theory. The basic relation between (MW) and (RD) was first noted in a
single-agent environment by [34] and was explored further in game theory by [17,
23, 24, 42] and many others.
Example A.2 (Euclidean regularization and the projection dynamics). Another
widely used example of regularization is given by the quadratic penalty

hi(xi) =
1

2

∑
αi∈Ai

x2
iαi . (A.3)

The induced choice map (3.2) is the (Euclidean) projection map

Πi(yi) = arg maxxi∈Xi
{
〈yi, xi〉 − 1

2‖xi‖
2
2

}
= arg minxi∈Xi‖yi − xi‖

2
2, (A.4)

leading to the projected reinforcement learning process
ẏi = vi(x),

xi = Πi(yi).
(PL)

8The terminology “multiplicative weights” refers to the fact that (MW) is the continuous
version of the discrete-time multiplicative weights update rule:

xiαi (t+ 1) =
xiαi (t)e

ηiviαi (x(t))∑
βi∈Ai xiβi (t)e

ηiviβi
(x(t))

, (MWU)

where ηi > 0 is the scheme’s “learning rate”. For more details about (MWU), we refer the reader
to [2].
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The players’ mixed strategies are then known to follow the projection dynamics

ẋiαi =

{
viαi(x)− |supp(xi)|−1

∑
βi∈supp(xi)

viβi(x) if αi ∈ supp(xi),

0 if αi /∈ supp(xi),
(PD)

over all intervals for which the support of x(t) remains constant [24]. The dynamics
(PD) were introduced in game theory by [12] as a geometric model of the evolution
of play in population games; for a closely related approach, see also [21, 25] and
references therein.

Appendix B. Liouville’s formula and Poincaré recurrence

Below we present for completeness some basic results from the theory of dynamical
systems.

Liouville’s Formula. Liouville’s formula can be applied to any system of autonomous
differential equations with a continuously differentiable vector field ξ on an open
domain of S ⊂k. The divergence of ξ at x ∈ S is defined as the trace of the
corresponding Jacobian at x, i.e., div[ξ(x)] =

∑k
i=1

∂ξi
∂xi

(x). Since divergence is a
continuous function we can compute its integral over measurable sets A ⊂ S. Given
any such set A, let A(t) = {Φ(x0, t) : x0 ∈ A} be the image of A under map Φ at
time t. A(t) is measurable and is volume is vol[A(t)] =

∫
A(t)

dx. Liouville’s formula
states that the time derivative of the volume A(t) exists and is equal to the integral
of the divergence over A(t):

d

dt
[A(t)] =

∫
A(t)

div[ξ(x)]dx.

A vector field is called divergence free if its divergence is zero everywhere. Liou-
ville’s formula trivially implies that volume is preserved in such flows.

Poincaré’s recurrence theorem. The notion of recurrence that we will be using
in this paper goes back to Poincaré and specifically to his study of the three-
body problem. In 1890, in his celebrated work [30], he proved that whenever a
dynamical system preserves volume almost all trajectories return arbitrarily close
to their initial position, and they do so an infinite number of times. More precisely,
Poincaré established the following:

Poincaré Recurrence: [4, 30] If a flow preserves volume and has only bounded
orbits then for each open set there exist orbits that intersect the set infinitely often.

Appendix C. Technical proofs

The first result that we prove in this appendix is a key technical lemma concern-
ing the evolution of the coupling function (4.1):

Lemma C.1. Let pi ∈ Xi and let Gi(yi) = h∗i (yi)−〈yi, pi〉 denote the coupling (4.1)
for player i ∈ N . If player i ∈ N follows (FoReL), we have

d

dt
Gi(yi(t)) = 〈vi(x(t)), xi(t)− pi〉, (C.1)

for every trajectory of play x−i(t) of all players other than i.
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Proof. We begin by recalling the “maximizing argument” identity

Qi(yi) = ∇h∗i (yi) (C.2)

which expresses the choice map Qi as a function of the convex conjugate of hi [40,
p. 149]. With this at hand, a simple differentiation gives

d

dt
Gi(yi(t)) =

d

dt
h∗i (yi(t))− 〈ẏi(t), pi〉

= 〈ẏi(t),∇h∗i (yi(t))− pi〉
= 〈vi(x(t)), xi(t)− pi〉, (C.3)

where the last step follows from the fact that xi(t) = Qi(yi(t)) = ∇h∗i (yi(t)). �

Armed with this lemma, we proceed to prove the no-regret guarantees of (FoReL):

Proof of Theorem 3.1. Fix some base point pi ∈ Xi and let Li(t) = Gi(yi(t)) =
hi(yi(t))− 〈yi(t), pi〉. Then, by Lemma C.1, we have

L′i(t) = 〈vi(x(t)), xi(t)− pi〉 (C.4)

and hence, after integrating and rearranging, we get∫ t

0

[ui(pi;x−i(s))−ui(x(s))]ds =

∫ t

0

〈vi(x(s)), pi−xi(s)〉ds = Li(0)−Li(t), (C.5)

where we used the fact that ui(pi;x−i) = 〈vi(x), pi〉 – cf. Eq. (2.2) in Section 2.
However, expanding the RHS of (C.5), we get

Li(0)− Li(t) = h∗i (yi(0))− 〈yi(0), pi〉 − h∗i (yi(t)) + 〈yi(t), pi〉
≤ h∗i (yi(0))− 〈yi(0), pi〉+ hi(pi)

= hi(pi)− hi(Qi(yi(0)))

≤ maxhi −minhi ≡ Ωi, (C.6)

where we used the defining property of convex conjugation in the second and third
lines above – i.e. that h∗i (yi) ≥ 〈yi, xi〉 − hi(xi) for all xi ∈ Xi, with equality if and
only if xi = Qi(yi). Thus, maximizing (C.5) over pi ∈ Xi, we finally obtain

Regi(t) = max
pi∈Xi

1

t

∫ t

0

[ui(pi;x−i(s))− ui(x(s))] ds ≤ Ωi
t
, (C.7)

as claimed. �

We now turn to two-player zero-sum games that do not admit interior equilibria.
To describe such equilibria in more detail, we consider below the notion of essential
and non-essential strategies:

Definition C.2. A strategy αi of agent i ∈ {1, 2} in a zero sum game is called
essential if there exists a Nash equilibrium in which player i plays αi with positive
probability. A strategy that is not essential is called non-essential.

As it turns out, the Nash equilibria of a zero-sum game admit a very useful
characterization in terms of essential and non-essential strategies:

Lemma C.3. Let Γ be a 2-player zero-sum game that does not admit an interior
Nash equilibrium. Then, there exists a mixed Nash equilibrium (x1, x2) such that
a) each agent plays each of their essential strategies with positive probability; and
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b) for each agent deviating to a non-essential strategy results to a strictly worse
performance than the value of the game.

The key step in proving this characterization is Farkas’ lemma; the version we
employ here is due to Gale, Kuhn and Tucker [13]):

Lemma C.4 (Farkas’ lemma). Let P ∈ Rm×n and b ∈ Rm. Then exactly one of the
following two statements is true:

• There exists a x ∈ Rm such that P>x ≥ 0 and b>x < 0.
• There exists a y ∈ Rn such that P · y = b and y ≥ 0.

With this lemma at hand, we have:

Proof of Lemma C.3. Assume without loss of generality that the value of the zero-
sum game is zero. and that the first agent is a maximizing agent. Let A be
the payoff matrix of the first agent and hence AT = A the payoff matrix of the
second/minimizing agent. We will show first that for any non-essential strategy αi
of each agent there exists a Nash equilibrium strategy of his opponent such that
the expected performance of αi is strictly worse than the value of the game (i.e.
zero).

It suffices to argue this for the first agent. Let αi be one of his non-essential
strategies then by definition there does not exist any Nash equilibrium strategy
of that agent that chooses αi with positive probability. This is equivalent to the
negation of the following statement:

There exists a x ∈ Rm such that P>x ≥ 0 and b>x < 0
where

P> =

(
A>

Im×m

)
=



a11 a21 . . . am1

...
... . . .

...
a1n a2n . . . amn
1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1


, (C.8)

and b = −ei = (0, . . . , 0,−1, 0, . . . , 0)T , the standard basis vector of dimension m
that “chooses" the i-th strategy. By Farkas’ lemma, there exists a y ∈ Rm+n such
that Py = b and y ≥ 0. It is convenient to express y = (z;w) where z ∈ Rn and
w ∈ Rm. Hence, for all j 6= i ∈ {1, 2, . . . ,m} : (Py)j = (Az)j + wj = 0 and thus
(Az)j ≤ 0. Finally, for j = i : (Py)i = (Az)i + wi = −1 and thus (Az)i < 0.
Hence z is a Nash equilibrium strategy for the second player such that when the
first agent chooses the non-essential strategy αi he receives payoff which is strictly
worse than his value (zero).

To complete the proof, for each essential strategy of the first agent there exists
one equilibrium strategy of his that chooses it with positive probability (by defini-
tion). Similarly, for each non-essential strategy of the second agent there exists one
equilibrium strategy of the first agent such that makes the expected payoff of that
non-essential strategy strictly worse than the value of the game. The barycenter of
all the above equilibrium strategies is still an equilibrium strategy (by convexity)
and has all the desired properties. �
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With all this at hand, we are finally in a position to prove Theorem 4.3:

Proof of Theorem 4.3. We first show that the coupling G(y) =
∑
i∈N [h∗i (yi) −

〈yi, x∗i 〉] defined in (4.1) given any fully mixed initial condition strictly increases
under (FoReL) when Γ is a 2-player zero-sum game that does not have an equilib-
rium with full support.

Indeed, by (C.3) there exists a mixed Nash equilibrium (x∗1, x
∗
2) such that i) both

players employ each of their essential strategies with positive probability over time;
and ii) every player deviating to a non-essential strategy obtains a payoff lower
than the value of the game. As a result, any player playing an interior (fully
mixed) strategy against such an equilibrium strategy must receive less utility than
their value. In more detail, we have

dG

dt
=
∑
i∈N
〈vi(x), xi − x∗i 〉 = 〈v1(x), x1 − x∗1〉+ 〈v2(x), x2 − x∗2〉

= u1(x1, x2)− u1(x∗1, x2) + u2(x1, x2)− u2(x1, x
∗
2)

= −u1(x∗1, x2)− u2(x1, x
∗
2)

< −u1(x∗1, x
∗
2)− u2(x∗1, x

∗
2) = 0, (C.9)

where we used the fact that Qi = ∇h∗i in the first line (cf. Appendix D), and the
assumption that x∗ is a Nash equilibrium of a 2-player zero-sum game such that
any agent playing an interior (fully mixed) strategy against such an equilibrium
strategy must receive less utility than their value (and hence the agent himself
receives more utility than the value of the game). We thus conclude that G(y(t))
strictly increases under (FoReL), as claimed.

Let x∗ = (x∗1, x
∗
2) be the Nash equilibrium identified in (C.9) and let L(t) =

G(y(t)) =
∑
i∈N [h∗i (yi(t)) − 〈yi(t), x∗i 〉] denote the primal-dual coupling (4.1) be-

tween y(t) and x∗. From (C.9), we have that starting from any fully mixed strategy
profile x(0) ∈

∏
i int(Xi) and for all t ≥ 0, L′(t) = 〈ẏ(t),∇G(y(t))〉 < 0. However,

G is bounded from below by −
∑
i maxxi∈Xi hi(xi), and since G(y(t)) is strictly

decreasing, it must exhibit a finite limit.
We begin by noting that x(t) = Q(y(t)) is Lipschitz continuous in t. Indeed, v is

Lipschitz continuous on X by linearity; furthermore, since the regularizer functions
hi are assumed Ki-strongly convex, it follows that Qi is (1/Ki)-continuous by
standard convex analysis arguments [32, Theorem 12.60]. In turn, this implies
that the field of motion V (y) ≡ v(Q(y)) of (FoReL) is Lipschitz continuous, so the
dynamics are well-posed and y(t) is differentiable. Since ẏ = v and, in addition, v
is bounded on X , we conclude that ẏ is bounded so, in particular, y(t) is Lipschitz
continuous on [0,∞). We thus conclude that x(t) = Q(y(t)) is Lipschitz continuous
as the composition of Lipschitz continuous functions.

We now further claim that L′(t) is also Lipschitz continuous in t. Indeed, by
(C.1), we have L′(t) =

∑
i∈N 〈vi(x(t)), xi(t) − x∗i 〉; since vi is Lipschitz continuous

in x and x(t) is Lipschitz continuous in t, our claim follows trivially. Hence, by
Lemma D.3, we conclude that limt→∞ L′(t) = lim→∞

∑
i∈N 〈vi(x(t), xi(t)−x∗i 〉 = 0.

By (C.9), we know that L′(t) < 0 as long as x(t) is interior. Hence, any ω-limit
x̂ of x(t) cannot be interior (given that the embedded game does not have any
interior Nash equilibria). Moreover, we can repeat this argument for any subspace
such that the restriction of the game on that subspace (when ignoring the strategies
that are played with probability zero) does not have a fully mixed NE. We thus
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Figure 2. Evolution of the multiplicative weights dynamics (MW) in a 3-player
zero-sum polymatrix game. In the left subfigure, each pair of players faces off
in a game of standard (symmetric) Matching Pennies; in the right, the game on
each pair is weighted by a different factor. In both cases, we plot the solution
trajectories of (MW) for the same initial conditions. Even though the different
weights change the trajectories of (MW) and the game’s equilibrium set, the
cycling behavior of the dynamics remains unaffected.

conclude that the support of x̂ must be a subset of the support of x∗. Since Γ does
not admit an interior equilibrium, x∗ does not have full support, so every ω-limit
of x(t) lies on the boundary of X , as claimed. �

We close this appendix with the proof of our result on constant-sum polymatrix
games (and positive affine transformations thereof):

Proof of Theorem 4.4. Our proof follows closely that of Theorem 4.2; to streamline
our presentation, we only highlight here the points that differ due to working with
(an positive-affine transformations of) a network of constant-sum games (as opposed
to a single 2-player zero-sum game).

The first such point is the incompressibility of the “reduced” dynamics (4.6). By
definition, we have ui(x) =

∑
j∈Ni uij(xi, xj), so we also have

viαi(x) =
∑
j∈Ni

uij(αi, xj). (C.10)

Since uij(αi, xj) does not depend on xi, we readily obtain ∂αiviαi(x) = 0 and
incompressibility follows as before.

Let the network game in question be isomorphic to a network of constant-
sum games after the following positive-affine transformation of utilities, ui(x) ←
aiui(x) + bi where ai > 0. The second point of interest is the use of the coupling
G(y) =

∑
i∈N ai[h

∗
i (yi) − 〈yi, x∗i 〉] as a constant of motion for (FoReL). Indeed,

adapting the derivation of (C.1), we now get
dG

dt
= 〈ẏ,∇G(y)〉 =

∑
i∈N
〈vi(x), ai(∇h∗i (yi)− x∗i )〉 =

∑
i∈N
〈aivi(x), xi − x∗i 〉

=
∑
i∈N

∑
j∈Ni

〈aivij(x), xi − x∗i 〉
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=
∑
{i,j}∈E

[aiuij(xi, xj) + bi − aiuij(x∗i , xj)− bi + ajuji(xi, xj) + bj − ajuji(xi, x∗j )− bj ]

= 0, (C.11)

where the third line follows by regrouping the summands in the second line by edge,
and the last line follows as in the case of (C.1). This implies that G(y(t)) remains
constant along any solution of (FoReL), so the rest of the proof follows as in the
case of Theorem 4.2. �

Appendix D. Auxiliary results

In this appendix, we provide two auxiliary results that are used in the proof of
Theorem 4.2. The first one shows that if the score difference between two strategies
grows large, the strategy with the lower score becomes extinct:

Lemma D.1. Let A be a finite set and let h be a regularizer on X ≡ ∆(A). If
the sequence yn ∈ RA is such that yβ,n − yα,n → ∞ for some α, β ∈ A, then
limn→∞Qα(yn) = 0.

Proof. Set xn = Q(yn) and, by descending to a subsequence if necessary, assume
there exists some ε > 0 such that xα,n ≥ ε > 0 for all n. Then, by the defining
relation Q(y) = arg max{〈y, x〉 − h(x)} of Q, we have:

〈yn, xn〉 − h(xn) ≥ 〈yn, x′〉 − h(x′) (D.1)

for all x′ ∈ ∆. Therefore, taking x′n = xn + ε(eβ − eα), we readily obtain

ε(yα,n − yβ,n) ≥ h(xn)− h(x′n) ≥ minh−maxh (D.2)

which contradicts our original assumption that yα,n − yβ,n → −∞. With ∆ com-
pact, the above shows that x∗α = 0 for any limit point x∗ of xn, i.e. Qα(yn)→ 0. �

A key step of the proof of Theorem 4.2 consists of showing that the level sets
of the Fenchel coupling G(p, y) become bounded under the coordinate reduction
transformation y 7→ Π(y) = z, so every solution orbit z(t) of (4.6) also remains
bounded. We encode this in the following lemma:

Lemma D.2. Let A be a finite set, let h be a regularizer on X ≡ ∆(A), and fix some
interior p ∈ X . If the sequence yn ∈ RA is such that supn|h∗(yn) − 〈yn, p〉| < ∞,
the differences yβ,n − yα,n also remain bounded for all α, β ∈ A.

Proof. We argue by contradiction. Indeed, assume that the sequence Gn ≡ h∗(yn)−
〈yn, p〉 is bounded but lim supn→∞|yα,n − yβ,n| = ∞ for some α, β ∈ A. Letting
y+
n = maxα yα,n and y−n = minα∈A yα,n, this implies that lim supn→∞(y+

n − y−n ) =
∞. Hence, by descending to a subsequence if necessary, there exist α+, α− ∈ A
such that a) y±n = yα±,n for all n; and b) yα+,n − yα−,n →∞ as n→∞.

By construction, we have yα−,n = y−n ≤ yα,n ≤ y+
n = yα+,n for all α ∈ A. Thus,

by descending to a further subsequence if necessary, we may assume that the index
set A can be partitioned into two nonempty sets A+ and A− such that

(1) y+
n − yα,n is bounded for all α ∈ A+.

(2) y+
n − yα,n →∞ for all α ∈ A−.

In more detail, consider the quantity

δα = lim inf
n→∞

(y+
n − yα,n), (D.3)
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and construct the required partition {A+,A−} according to the following proce-
dure:

0: Set A+ ← {α+}, A− = A \ A+

1: while δα <∞ for some α ∈ A− do
2: pick α∗ such that δα∗ <∞;
3: set A+ ← A+ ∪ {α∗}, A− ← A−\{α∗};
4: descend to a subsequence of yn that realizes δα∗ ;
5: redefine δα for all α ∈ A based on chosen subsequence;
6: end while
7: return A+,A−

Thus, if we let xn = Q(yn) we readily obtain:

〈yn, p− xn〉 =
∑
α∈A

yα,n(pα − xα,n) =
∑
α∈A

(yα,n − y+
n )(pα − xα,n)

=
∑
α∈A+

(yα,n − y+
n )(pα − xα,n) +

∑
α∈A−

(yα,n − y+
n )(pα − xα,n), (D.4)

where we used the fact that
∑
α∈A pα =

∑
α∈A xα,n = 1 in the first line. The

first sum above is bounded by assumption. As for the second one, the fact that
yα+,n−yα,n = y+

n −yα,n →∞ implies that xα,n → 0 for all α ∈ A− (by Lemma D.1
above). We thus get lim infn(pα − xα,n) > 0 (recall that p ∈ ∆◦), and hence,∑
α∈A−(yα,n − y+

n )(pα − xα,n)→ −∞.
From the above, we conclude that 〈yn, p − xn〉 → −∞ as n → ∞. However, by

construction, we also have

Gn = h∗(yn)−〈yn, x∗〉 = 〈yn, xn〉−h(xn)−〈yn, x∗〉 = 〈yn, p−xn〉−h(xn). (D.5)

Since h is finite on x, it follows that Gn → −∞, contradicting our assumption that
Gn is bounded. Retracing our steps, this implies that supn|yα,n − yβ,n| < ∞, as
claimed. �

The final result we state here is a technical result regarding the asymptotic
behavior of the derivative of functions with a finite limit at infinity:

Lemma D.3. Suppose that L : [0,∞)→ R is differentiable with Lipschitz continuous
derivative. If limt→∞ L(t) exists and is finite, we have limt→∞ L′(t) = 0.

Proof. Assume ad absurdum that limt→∞ L′(t) 6= 0. Then, without loss of gener-
ality, we may assume there exists some ε > 0 and an increasing sequence tn ↑ ∞
such that L′(tn) ≥ ε for all n ∈ N. Thus, if M denotes the Lipschitz constant of L′
and t ∈ [tn, tn + ε/(2M)], we readily obtain

|L′(t)− L′(tn)| ≤M |t− tn| ≤M ·
ε

2M
=
ε

2
(D.6)

by the Lipschitz continuity of L′. Since L′(tn) ≥ ε by assumption, we conclude
that L′(t) ≥ ε/2 for all t ∈ [tn, tn + ε/(2M)]. Hence, by integrating, we get
L(tn + ε/(2M)) ≥ L(tn) + ε/(2M) · (ε/2) = L(tn) + ε2/(4M) for all n ∈ N. Taking
n → ∞ and recalling that L∞ ≡ limt→∞ L(t) exists and is finite, we get L∞ =
L∞ + ε2/(4M) > L∞, a contradiction. �



20 CYCLES IN ADVERSARIAL REGULARIZED LEARNING

References

[1] I. Adler, C. Daskalakis, and C. H. Papadimitriou, A note on strictly competitive
games., in WINE, Springer, 2009, pp. 471–474.

[2] S. Arora, E. Hazan, and S. Kale, The multiplicative weights update method: a meta-
algorithm and applications., Theory of Computing, 8 (2012), pp. 121–164.

[3] H. Attouch, J. Bolte, P. Redont, and M. Teboulle, Singular Riemannian barrier
methods and gradient-projection dynamical systems for constrained optimization, Optimiza-
tion, 53 (2004), pp. 435–454.

[4] L. Barreira, Poincare recurrence: old and new, in XIVth International Congress on Math-
ematical Physics. World Scientific., 2006, pp. 415–422.

[5] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algo-
rithms, and engineering applications, SIAM, 2001.

[6] Y. Cai, O. Candogan, C. Daskalakis, and C. Papadimitriou, Zero-sum polyma-
trix games: A generalization of minmax, Mathematics of Operations Research, 41 (2016),
pp. 648–655.

[7] Y. Cai and C. Daskalakis, On minmax theorems for multiplayer games, in ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2011, pp. 217–234.

[8] N. Cesa-Bianchi and G. Lugoisi, Prediction, Learning, and Games, Cambridge University
Press, 2006.

[9] C. Daskalakis, A. Deckelbaum, and A. Kim, Near-optimal no-regret algorithms for
zero-sum games, in Proceedings of the Twenty-second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’11, Philadelphia, PA, USA, 2011, Society for Industrial and
Applied Mathematics, pp. 235–254.

[10] C. Daskalakis and C. H. Papadimitriou, On a network generalization of the minmax
theorem, in ICALP 2009: Proceedings of the 2009 International Colloquium on Automata,
Languages, and Programming, 2009.

[11] D. J. Foster, T. Lykouris, K. Sridharan, and E. Tardos, Learning in games: Ro-
bustness of fast convergence, in Advances in Neural Information Processing Systems, 2016,
pp. 4727–4735.

[12] D. Friedman, Evolutionary games in economics, Econometrica, 59 (1991), pp. 637–666.

[13] D. Gale, H. Kuhn, and A. W. Tucker, (Linear Programming and the Theory of Games
- Chapter XII) in Koopmans, Activity Analysis of Production and Allocation, Wiley, 1951.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in Advances in neural infor-
mation processing systems, 2014, pp. 2672–2680.

[15] E. Hazan et al., Introduction to online convex optimization, Foundations and Trends® in
Optimization, 2 (2016), pp. 157–325.

[16] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge
University Press, Cambridge, 1998.

[17] J. Hofbauer, S. Sorin, and Y. Viossat, Time average replicator and best reply dynamics,
Mathematics of Operations Research, 34 (2009), pp. 263–269.

[18] N. Immorlica, A. T. Kalai, B. Lucier, A. Moitra, A. Postlewaite, and M. Ten-
nenholtz, Dueling algorithms, in Proceedings of the forty-third annual ACM symposium on
Theory of computing, ACM, 2011, pp. 215–224.

[19] K. C. Kiwiel, Free-steering relaxation methods for problems with strictly convex costs and
linear constraints, Mathematics of Operations Research, 22 (1997), pp. 326–349.

[20] J. Kwon and P. Mertikopoulos, A continuous-time approach to online optimization,
Journal of Dynamics and Games, 4 (2017), pp. 125–148.

[21] R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population
games, Games and Economic Behavior, 64 (2008), pp. 565–590.

[22] D. L. McFadden, Conditional logit analysis of qualitative choice behavior, in Frontiers in
Econometrics, P. Zarembka, ed., Academic Press, New York, NY, 1974, pp. 105–142.



CYCLES IN ADVERSARIAL REGULARIZED LEARNING 21

[23] P. Mertikopoulos and A. L. Moustakas, The emergence of rational behavior in the
presence of stochastic perturbations, The Annals of Applied Probability, 20 (2010), pp. 1359–
1388.

[24] P. Mertikopoulos and W. H. Sandholm, Learning in games via reinforcement and reg-
ularization, Mathematics of Operations Research, 41 (2016), pp. 1297–1324.

[25] A. Nagurney and D. Zhang, Projected dynamical systems in the formulation, stability
analysis, and computation of fixed demand traffic network equilibria, Transportation Science,
31 (1997), pp. 147–158.

[26] G. Palaiopanos, I. Panageas, and G. Piliouras, Multiplicative Weights Update with
Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos, ArXiv
e-prints, (2017).

[27] C. Papadimitriou and G. Piliouras, From nash equilibria to chain recurrent sets: Solution
concepts and topology, in ITCS, 2016.

[28] G. Piliouras, C. Nieto-Granda, H. I. Christensen, and J. S. Shamma, Persistent
patterns: Multi-agent learning beyond equilibrium and utility, in AAMAS, 2014, pp. 181–
188.

[29] G. Piliouras and J. S. Shamma, Optimization despite chaos: Convex relaxations to com-
plex limit sets via poincaré recurrence, in Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, SIAM, 2014, pp. 861–873.

[30] H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Math,
13 (1890), pp. 1–270.

[31] S. Rakhlin and K. Sridharan, Optimization, learning, and games with predictable se-
quences, in Advances in Neural Information Processing Systems, 2013, pp. 3066–3074.

[32] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, vol. 317 of A Series of
Comprehensive Studies in Mathematics, Springer-Verlag, Berlin, 1998.

[33] T. Roughgarden, Intrinsic robustness of the price of anarchy, in Proc. of STOC, 2009,
pp. 513–522.

[34] A. Rustichini, Optimal properties of stimulus-response learning models, Games and Eco-
nomic Behavior, 29 (1999), pp. 244–273.

[35] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge,
MA, 2010.

[36] W. H. Sandholm, E. Dokumacı, and R. Lahkar, The projection dynamic and the repli-
cator dynamic, Games and Economic Behavior, 64 (2008), pp. 666–683.

[37] Y. Sato, E. Akiyama, and J. D. Farmer, Chaos in learning a simple two-person game,
Proceedings of the National Academy of Sciences, 99 (2002), pp. 4748–4751.

[38] P. Schuster and K. Sigmund, Replicator dynamics, Journal of Theoretical Biology, 100
(1983), pp. 533–538.

[39] D. Schuurmans and M. A. Zinkevich, Deep learning games, in Advances in Neural In-
formation Processing Systems, 2016, pp. 1678–1686.

[40] S. Shalev-Shwartz, Online learning and online convex optimization, Foundations and
Trends in Machine Learning, 4 (2011), pp. 107–194.

[41] S. Shalev-Shwartz and Y. Singer, Convex repeated games and Fenchel duality, in Ad-
vances in Neural Information Processing Systems 19, MIT Press, 2007, pp. 1265–1272.

[42] S. Sorin, Exponential weight algorithm in continuous time, Mathematical Programming,
116 (2009), pp. 513–528.

[43] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire, Fast convergence of regularized
learning in games, in Proceedings of the 28th International Conference on Neural Information
Processing Systems, NIPS’15, Cambridge, MA, USA, 2015, MIT Press, pp. 2989–2997.

[44] P. D. Taylor, Evolutionarily stable strategies with two types of player, Journal of Applied
Probability, 16 (1979), pp. 76–83.

[45] P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics,
Mathematical Biosciences, 40 (1978), pp. 145–156.

[46] Y. Viossat and A. Zapechelnyuk, No-regret dynamics and fictitious play, Journal of
Economic Theory, 148 (2013), pp. 825–842.



22 CYCLES IN ADVERSARIAL REGULARIZED LEARNING

[47] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen, 100 (1928),
pp. 295–320. Translated by S. Bargmann as “On the Theory of Games of Strategy” in A.
Tucker and R. D. Luce, editors, Contributions to the Theory of Games IV, volume 40 of
Annals of Mathematics Studies, pages 13-42, 1957, Princeton University Press, Princeton.

[48] J. W. Weibull, Evolutionary Game Theory, MIT Press; Cambridge, MA: Cambridge Uni-
versity Press., 1995.


	1. Introduction
	Our results

	2. Definitions from game theory
	2.1. Games in normal form
	2.2. Zero-sum games and zero-sum polymatrix games

	3. No-regret learning via regularization
	4. Recurrence in adversarial regularized learning
	4.1. Zero-sum games with an interior equilibrium
	4.2. Zero-sum games with no interior equilibria
	4.3. Zero-sum polymatrix games & positive affine payoff transformations

	5. Conclusions
	Appendix A. Examples of FoReL dynamics
	Appendix B. Liouville's formula and Poincaré recurrence
	Liouville's Formula
	Poincaré's recurrence theorem

	Appendix C. Technical proofs
	Appendix D. Auxiliary results
	References

