MDP and RL: Q-learning, stochastic approximation

Nicolas Gast

October 1, 2024

This document is a **DRAFT** of notes of the second part of the course on *MDP* and reinforcement learning given at ENS de Lyon during the academic years 2023-2024 and 2024-2025.

Contents

1	\mathbf{The}	Q-table	2
	1.1	Reminder: value of a policy and Q -value of a policy \dots	2
	1.2	Optimality equation	2
	1.3	Examples	2
2	Mor	nte-Carlo methods and Q-learning	2
	2.1	Estimation via Monte-Carlo	3
	2.2	TD-learning	4
	2.3	Relation between MC, TD and DP	4
	2.4	Q-learning and SARSA	5
3	Stochastic approximation		
	3.1	Introduction and example: the ODE method	6
	3.2	Constant step-size	7
	3.3	Decreasing step-size	10
4	Two-player zero-sum games and Monte-Carlo Tree Search		11
	4.1	Two players zero sum games	11
		Min-max and alpha-beta pruning	12
			13

Main references: [2] for Q-learning and variants (Section 2), and [1] (Section 3) for the stochastic approximation part. The rest is from research papers.

1 The Q-table

1.1 Reminder: value of a policy and Q-value of a policy

$$V_{\pi}(s) = r(s, \pi(s)) + \sum_{s'} V_{\pi}(s') P(s'|s, \pi(s)).$$

We introduce $Q_{\pi}(s, a)$:

$$Q_{\pi}(s, a) = r(s, a) + \sum_{s'} V_{\pi}(s') P(s'|s, a).$$

1.2 Optimality equation

Recall Bellman's equation:

$$V^*(s) = \max_{a \in \mathcal{A}} \mathbf{r}(s, a) + \gamma \sum_{s'} V^*(s') p(s' \mid s, a).$$

The idea of Q-learning is to use the Q-table.

$$V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a)$$
$$Q^*(s, a) = \mathbf{r}(s, a) + \gamma \sum_{s'} V^*(s') p(s' \mid s, a)$$

Good thing with Q-table: Only one equation for optimal value and policy:

$$Q^*(s, a) = \mathbf{r}(s, a) + \gamma \sum_{s'} \left(\max_{a'} Q^*(s', a') \right) p(s' \mid s, a)$$
$$\pi^*(s) = \arg \max_{a} Q^*(s, a).$$

Message: notations and modeling matters.

1.3 Examples

- Ice-skating problem: Q((i, j, d), a).
- A game of dice (see exercise sheet).
- Inventory control problem (https://polaris.imag.fr/nicolas.gast/teaching/MDP-exercises.pdf)

2 Monte-Carlo methods and Q-learning

Our assumption: we have access to a simulator.

Source: https://fr.wikipedia.org/wiki/Mthode_de_Monte-Carlo#Dtermination_de_la_valeur_de_%CF%80

Figure 1: Estimation of π via Monte-Carlo.

2.1 Estimation via Monte-Carlo

See Figure 1. Area is $\pi/4$. A point (x,y) is in the red zone if $x^2+y^2\leq 1$. Estimation via rollout:

$$V^{\pi}(S_t) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right].$$

- \bullet Monte-Carlo = sample G_t by using rollout. Can use every-visit or first-visit.
- Converges in $O(1/\sqrt{n})$

2.1.1 Monte-Carlo optimization

Recall: improve can be done by using *greedy*:

$$\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} Q(s, a).$$

Possible problems:

- One may need many samples for all actions.
- Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (previous), importance sampling.

2.2 TD-learning

Bellman's equation states:

$$V(S_t) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \dots\right]$$
$$= \mathbb{E}\left[R_{t+1} + \gamma V(S_{t+1})\right].$$

This is equivalent to

$$0 = \mathbb{E}\left[\underbrace{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}_{\text{TD error}}\right]$$

The TD learning algorithm uses the updates:

$$V(S_t) := V(S_t) + \alpha_t (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)),$$

where α is a learning rate such that $\sum_t \alpha_t = +\infty$ and $\sum_t (\alpha_t)^2 < \infty$.

Proof. Main proof: see later. for some ideas:

Let $\beta_t(s)$ be such that

$$\beta_t(s) = \begin{cases} 0 & \text{if } s = S_t \\ \alpha_t & \text{otherwise} \end{cases}$$

Let V_t be the V-table at time t. The definition of β_t implies that for all s:

$$V_{t+1}(s) := V_t(s) + \beta_t(s) \left(\underbrace{R_{t+1} + \gamma V_t(S_{t+1})}_{=T^{\pi}V_t + \text{noise}} - V_t(s)\right).$$

with $\sum_t \beta_t(s) = \infty$ and $\sum_t \beta_t^2(s) < \infty$.

As T^{π} is contracting, Theorem 1 of (On the convergence of stochastic iterative dynamic programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93) shows that this implies $\lim_{t\to\infty} V_t = V^{\pi}$ almost surely.

2.3 Relation between MC, TD and DP

$$V(S_t) = \mathbb{E}[G_t]$$
 MC

$$V(S_t) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})]$$
 TD

$$V(S_t) = \mathbb{E}[R_{t+1}] + \gamma \sum_{s'} V(S_{t+1}) \mathbb{P}(S_{t+1} = s')$$
 DP

- (figure from Sutton and Barto)
- MC simulates a full trajectory
- \bullet TD samples one-step and uses a previous estimation of V.
- DP needs all possible values of V(s').

MC: One full trajectory for update The tradeoff comes by using $TD(\lambda)$:

TD: Updates take time to propagate

• Use *n*-step returns (see Sutton-Barto, chapter 7).

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^{t+n} V(S_{t+n}).$$

• $TD(\lambda)$ (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

$$G_t(\lambda) = (1 - \lambda) \sum_{t=1}^{T} \lambda^{n-1} G_{t:t+n} + \lambda^T G_t.$$

2.4 Q-learning and SARSA

Bellman's equations are:

$$V^{\pi}(S_t) = \mathbb{E}^{\pi} \left[R_{t+1} + \gamma V^{\pi}(S_{t+1}) \right]$$
to evaluate π
$$Q^*(S_t, A_t) = \mathbb{E} \left[R_{t+1} + \gamma \max_{a} Q^*(S_{t+1}, a) \right]$$
to find the best policy

This leads to two variant of:

- \bullet Q-learning = off-policy learning.
 - Choose $A_t \sim \pi$.

- Apply TD-learning replacing V(s) by $\max_a Q(s, a)$.
- SARSA = on-policy learning:
 - Choose $A_{t+1} \sim \arg \max_{a \in \mathcal{A}} Q(S_{t+1}, a)$.
 - Apply TD-learning replacing V(s) by $Q(s, A_{t+1})$.

2.4.1 Q-learning

$$A_t \sim \pi$$

$$Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t) \right).$$

Theorem 1. Assume that $\gamma < 1$ and that:

- Any station-action pair (a, s) is visited infinitely often.
- $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$.

Then: Q converges almost surely to the optimal Q^* -table as t goes to infinity.

2.4.2 SARSA

SARSA (name comes from $S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}$)

$$A_{t+1} \sim \arg\max Q(S_t, A_t) \text{ (or } \varepsilon\text{-greedy)}$$

$$Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right).$$

Open questions:

- Does it converge (and why?)
- How to choose the step-size?
- How to explore?

3 Stochastic approximation

3.1 Introduction and example: the ODE method

$$x_{n+1} = x_n + \alpha(f(x_n) + \text{noise}),$$

• TD-learning or Q-learning.

• Stochastic gradient descent. We are given N couples $(X_1, Y_1) \dots (X_N, Y_N)$ and a parametric function g_x . We want to find x such that $g_x(X_i) \approx Y_i$ for all i. We model this as an empirical risk minimization by using a loss function ℓ :

$$F(x) = \frac{1}{N} \sum_{k=1}^{N} \ell(f_x(X_k), Y_k) = \mathbb{E} \left[\ell(f_x(X), Y) \right],$$

where the expectation is taken uniformly over all data.

We want to do $x_{n+1} = x_n - a_n \nabla_x F(x)$ but this is costly. The stochastic gradient descent is:

- Pick (X_n, Y_n) uniformly at random among all data points.
- Computes $x_{n+1} a_n \nabla_x \ell(g_{x_n}(X), Y)$.

This rewrites as:

$$x_{n+1} = x_n + \alpha(f(x_n) + \text{noise}),$$

where $f(x) = \nabla_x F(x)$.

In what follows, we want to show that the stochastic system behaves as the solutions of the $\dot{x} = f(x)$. This helps us to show where the iterates concentrate.

3.2 Constant step-size

$$x_{n+1} = x_n + \alpha(f(x_n) + M_{n+1}),$$

We need the assumptions:

- 1. $f: \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz-continuous.
- 2. M_n Martingale difference sequence : $\mathbb{E}\left[M_{n+1}|\mathcal{F}_n\right] = 0$ and $\mathbb{E}\left[||M_{n+1}||^2|\mathcal{F}_n\right] \leq \sigma^2$.
- 3. x_n stay bounded.

Let $\phi_t(x_0)$ be the solution of the ODE $\dot{x} = f(x)$. We have the result:

Theorem 2. Assume that the ODE has a unique fixed point to which every trajectory converge $(\lim_{t\to\infty} \sup_{x\in\mathcal{X}} \|\phi_t(x) - x^*\| = 0)$. Then:

$$\lim_{\alpha \to 0, n \to \infty} \mathbb{P}(\|x_n - x^*\| \ge \varepsilon) = 0.$$

The proof is based on the following lemma:

Lemma 1. For all T > 0, we have:

$$\sup_{n \in [0,T]} \|\phi_{\alpha n}(x_0) - x_n\| = O(\sqrt{\alpha}).$$

Proof. Study the difference between the ODE and a Euler discretization of the ODE.

3.2.1 Application to Q-learning

For Q-learning, we can rewrite the ODE in vector form as:

$$\dot{Q}_{s,a} = \underbrace{r_{s,a} + \gamma \sum_{s'} p(s'|s,a) \max_{a' \in \mathcal{A}} Q_{s',a'} - Q_{s,a}}_{=:f_{s,a}(Q)}$$

The ODE is $\dot{Q} = f(Q)$, the variable is Q.

We can verify that this satisfy all assumption for the finite case:

- f is Lipschitz-continuous (because max is.)
- Moreover, the noise is *i.i.d.* if
- — If we apply to "synchronous" Q-learning (for all state s, a); or
 - If we apply to "asynchronous" Q-learning with a generative model (we pick one (s_t, a_t)) at random each time.

If we want to treat the general case, the problem is that the noise is not i.i.d.. In this case, we need to treat that we have a "Markovian" noise. This is out of scope of this course.

For $T = +\infty$, we have:

- f can be written as f(Q) = F(Q) Q. We know that F is contracting for the $\|\|_{\infty}$ (see first course on MDP). Hence, it has a unique fixed point Q^* .
- Proving that the ODE converges to Q^* is more complicated. For that, let us denote $u(t) = Q(t) Q^*$ and assume for now that F is δ -contracting for the L_p norm. We have:

$$\frac{d}{dt} \|u(t)\|
= \frac{d}{dt} \left(\sum_{i} |u_{i}|^{p} \right)^{1/p}
= \frac{1}{p} \left(\sum_{i} |u_{i}|^{p} \right)^{1/p-1} \frac{d}{dt} \left(\sum_{i} |u_{i}|^{p} \right)
= \|u\|^{1-p} \sum_{i} \operatorname{sgn}(u_{i}) |u_{i}|^{p-1} (F(Q) - Q).$$

$$= \|u\|^{1-p} \left[\sum_{i} \operatorname{sgn}(u_{i}) |u_{i}|^{p-1} (F_{i}(Q) - F_{i}(Q^{*})) - \sum_{i} \operatorname{sgn}(u_{i}) |u_{i}|^{p-1} \underbrace{(Q_{i} - Q_{i}^{*})}_{=u_{i}} \right]$$

Recall Hölder: if 1/p + 1/q = 1, i.e., q = p/(p-1), we have:

$$\sum_{i} x_{i} y_{i} \leq \left(\sum_{i} |x_{i}|^{p}\right)^{1/p} \left(\sum_{i} |y_{i}|^{q}\right)^{1/q}.$$

Using this with $x_i = F_i(Q) - F_i(Q^*)$ and $y_i = \operatorname{sgn}(u_i)|u_i|^{p-1}$, the first term is smaller than:

$$||F(Q) - F(Q^*)||_p \left(\sum_i (|u_i|^{p-1})^{p/(p-1)} \right)^{(p-1)/p} = ||F(Q) - F(Q^*)||_p ||Q - Q^*||^{p-1}$$

$$\leq \delta ||Q - Q^*||_p^p$$

$$= \delta ||u||^p$$

This shows that $\frac{d}{dt} \|u(t)\| \le (\delta - 1) \|u(t)\|$.

The proof for $p = +\infty$ comes by continuity of the norm.

3.2.2 Fluctuations

Let us go back to $x_{n+1} = x_n + \alpha(f(x_n) + M_{n+1})$ and we assume in addition that:

- $\mathbb{E}\left[M_{n+1}M_{n+1}^T|\mathcal{F}_n\right] = Q(x_n)$
- \bullet f is twice differentiable.
- The ODE has a unique fixed point that is exponentially stable.

The main idea is to use *generators*. For $n \geq k$, let $y_{k,n}$ be the hybrid term:

$$y_{k,k} = x_k$$

$$y_{k,n+1} = y_{k,n} + \alpha f(y_{k,n}).$$

We have:

$$x_n - y_k = y_{n,n} - y_{0,n}$$
$$= \sum_{k=0}^{n-1} y_{k+1,n} - y_{k,n}.$$

Hence, if we can bound $y_{k+1,n} - y_{k,n}$, we are "done".

We can do that by showing that the function $x_k \mapsto y_{k,n}$ is smooth.

We can show that if there is a unique attractor of the ODE x^* , and we use $a = \alpha$, then:

$$\lim_{\alpha \to 0} \lim_{n \to \infty} \mathbb{P}(\operatorname{dist}(x_n^{(\alpha)}) - x^*) = 0$$

We can also obtain fluctuation results. In particular, if the function f is smooth, we get:

$$\lim_{n \to \infty} \mathbb{E}\left[x_n^{(\alpha)}\right] = x^* + C\alpha + O(\alpha^2),$$

with a constant C that is non-zero.

For decreasing steps-sizes where we replace α by $\alpha_n = 1/(n+1)$, we can show that the variance of order O(1/n).

3.2.3 Averaging methods

We can do acceleration via averaging. Polyak & Juditsky 92. Ruppert [?]. Consider a sequence θ_n and let:

$$\bar{\theta}_n = \frac{1}{n} \sum_{k=1}^n \theta_k = (1 - \frac{1}{n}) \bar{\theta}_{n-1} + \frac{1}{n} \theta_n.$$

Theorem 3 (Cesaro). Assume that $\lim_{n\to\infty} \theta_n = \theta^*$ with convergence rate $\|\theta_n - \theta^*\| \le \alpha_n$. Then:

$$\|\theta_n - \theta^*\| \le \frac{1}{n} \sum_{k=1}^n \alpha_k =: \bar{\alpha}_n.$$

Can be better or less good than the original convergence rate. For instance, one may loose exponential convergence.

One can also use:

$$\tilde{\theta}_n = \frac{2}{n(n-1)} \sum_{k=1}^n k\theta_k.$$

3.2.4 Markovian noise

We can do the same with a two time-scale model:

$$x_{n+1} = x_n + \alpha f(x_n, y_n)$$
$$y_{n+1} \sim P(\cdot | x_n, y_n),$$

, where y_{n+1} is a "Markov chain that depends on x_n ".

We obtain similar convergence results, $O(\sqrt{\alpha})$ fluctuations and $O(\alpha)$ bias.

3.3 Decreasing step-size

$$x_{n+1} = x_n + a_n(f(x_n) + M_{n+1}),$$

We need the assumptions:

- 1. $f: \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz-continuous.
- 2. The step-sizes $a_n \ge 0$ is such that $\sum_n a_n = +\infty$ and $\sum_n (a_n)^2 = +\infty$.
- 3. M_n Martingale difference sequence : $\mathbb{E}\left[M_{n+1}|\mathcal{F}_n\right] = 0$ and $\mathbb{E}\left[||M_{n+1}||^2|\mathcal{F}_n\right] \leq \sigma^2$.
- 4. $\sup_n ||x_n||$ remains bounded a.s.

We define $t_n = \sum_{k=0}^{n-1} a_k$ and \bar{x} a piecewise linear function such that $\bar{x}(t(n)) = x_n$. We also write $x_s(t)$ the solution of the ODE $\dot{x} = f(x)$ with $x_s(s) = \bar{x}(s)$.

Theorem 4. For all T > 0, we have:

$$\lim_{s \to \infty} \sup_{t \in [s, s+T]} \|\bar{x}(t) - x_s(t)\| = 0 \text{ almost surely.}$$

The sequence x_n converges almost surely to the invariant sets of the ODE $\dot{x} = f(x)$, that is, the set A such that if $x(0) \in A$, then $x(t) \in A$ for all t > 0. In particular, if the ODE has a unique attractor x^* , then

$$\lim_{s \to \infty} x_n = x^*.$$

Proof. For the first part, we consider s=0 and use the following tools:

- 1. We compare the ODE and the discrete ODE $y_{n+1} = y_n + a_n f(x_n)$: to show that at t(n): $||y_n \bar{x}_n|| = O(\sum_k (a_k)^2)$ by Gronwall's inequality. Recall the discrete-Gronwall's lemma: if $d_{n+1} = \varepsilon + L \sum_{k=0}^n a_k d_k$, then $d_n \leq e^{Lt_n} \varepsilon$ (proof = recurrence + log is convex).
- 2. Let $B_n = \sum_{k=0}^{L} a_n M_{n+1}$. We have $\operatorname{var}(B_n) \leq \sum_n (a_n)^2 \sigma^2$. In particular, $\mathbb{P}(||B_n|| \geq \varepsilon) \leq \sum_n (a_n)^2 \sigma^2 / \varepsilon^2$ (Chebyshev's inequality). We can extend that to sup by using Doob's inequality and use the supermartingale $B_n^+ = \max_{k \leq b} B_n$?
- 3. Fix T. The idea is now to consider $K_n = \min_{K>n}$ such that $t(K_n) = t_n + T$. By what the assumption on a_n , we have $\sum_{k=1}^{K_n} (a_k)^2 \to 0$.

Similar to our way of defining y_n , we can define a $y_{k,n}$ that starts at x_k when n = k. Let m(k) be such that $\sum_{\ell=k}^{m(k)} \approx T$. We can show that:

$$||y_{k,k+m(k)} - x_k + m(k)|| \le e^{LT} \varepsilon,$$

with probability at least $\sum_{\ell=k}^{m(k)} (a_{\ell})^2 \sigma^2 / \varepsilon^2 < \sum_{\ell=k}^{\infty} (a_{\ell})^2 \sigma^2 / \varepsilon^2$.

This probability converges to 0 because $\sum_{\ell=1}^{\infty} (a_{\ell})^2 < \infty$.

For $t = +\infty$, we write $A = \bigcap_{t \geq 0} \bigcup_{s \geq t} \{\bar{x}(t)\}$. If should be clear that $x_n \to A$ a.s. A is invariant by using the first part of the lemma and the fact that the flow is invariant. \square

Note: we can say more (A is chain transitive).

4 Two-player zero-sum games and Monte-Carlo Tree Search

4.1 Two players zero sum games

Zero-sum game: On agent tries to maximize, one tries to minimize.

Many different notions: or turn-based games, perfect or imperfect information. For instance:

- "State-less" simultaneous moves: Rock-paper-scissors (extensive form games)
- Simultaneous moves + states: 007
- Deterministic turn-based games: chess, go,...
- Turn-based games with a stochastic component: backgammon.
- Imperfect information: Poker

Here: we will focus on perfect information turn-based games.

From a given position, takes the best decision. To do so, one can generate a tree of possibilities and explore this tree (e.g.), min-max algorithm.

Example / exercise: Russian Roullette You have one weapon with 1 bullets out of n slots. There are two actions:

- Try to shoot yourself, in which case you keep the weapon.
- Try to shoot your adversary, in which case you give the weapon to him.
- 1. What is the best strategy?
- 2. What changes if there are k we apons and you have more than one life?

4.2 Min-max and alpha-beta pruning

But: what if the tree is too big?

You can construct the tree of possibilities

If the tree is two big, you stop at depth D and use a heuristic.

- You can backtrack with the min-max algorithm.
- For optimization, you can use alpha-beta pruning.

4.3 MCTS and exploration

4.3.1 Motivation for MCTS

Min-max and alpha-beta perform well (ex: Chess)...but can be limited (ex: go).

- Tree can still be very big (A^D)
- You need a good heuristic.
 - Result is only available at the end
- You might want to avoid the exploration of not promising parts.
 - For that you need a good heuristic.

4.3.2 MCTS algorithm

(figure from wikipedia)

The algorithm:

- Creates one or multiple children of the leaf.
- Obtains a value of the node (e.g. rollout)
- Backpropagates to the root

For the exploration, one typically uses bandit-like formulas: For each child, let S(c) be the number of success and N(c) be the number of time you played c, and $t = \sum_{c'} N(c')$.

• Explore $\arg\max_{c} \frac{S(c)}{N(c)} + 2\sqrt{\frac{\log t}{N(c)}}$.

Open question: no guarantee with $\sqrt{\log t/N(c)}$. Is $\sqrt{t}/N(c)$ better?

1: while Some time is left do

2: Select a leaf node

3: Expand a leaf

4: Use rollout (or equivalent) to estimate the leaf

5: Backpropagate to the root

6: end while

7: Return $\arg \max_{c \in \text{children(root)}} N(c)$

#random sampling

 $\#or\ S(c)/N(c)$.

#UCB-like

4.3.3 Demo / exercice

See the file connect4.tar.gz on the website.

References

- [1] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.
- [2] Richard S Sutton, Andrew G Barto, et al. *Introduction to reinforcement learning*, volume 135. MIT press Cambridge, 1998.