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1 The Q-table

1.1 Reminder: value of a policy and Q-value of a policy

Vπ(s) = r(s, π(s)) +
∑
s′

Vπ(s
′)P (s′|s, π(s)).

We introduce Qπ(s, a):

Qπ(s, a) = r(s, a) +
∑
s′

Vπ(s
′)P (s′|s, a).

1.2 Optimality equation

Recall Bellman’s equation:

V ∗(s) = max
a∈A

r(s, a) + γ
∑
s′

V ∗(s′)p(s′ | s, a).

The idea of Q-learning is to use the Q-table.

V ∗(s) = max
a∈A

Q∗(s, a)

Q∗(s, a) = r(s, a) + γ
∑
s′

V ∗(s′)p(s′ | s, a)

Good thing with Q-table: Only one equation for optimal value and policy:

Q∗(s, a) = r(s, a) + γ
∑
s′

(
max
a′

Q∗(s′, a′)
)
p(s′ | s, a)

π∗(s) = argmax
a

Q∗(s, a).

Message: notations and modeling matters.

1.3 Examples

• Ice-skating problem: Q((i, j, d), a).

• A game of dice (see exercise sheet).

• Inventory control problem (https://polaris.imag.fr/nicolas.gast/teaching/
MDP-exercises.pdf)

2 Monte-Carlo methods and Q-learning

Our assumption: we have access to a simulator.
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Source: https://fr.wikipedia.org/wiki/Mthode_de_Monte-Carlo#Dtermination_
de_la_valeur_de_%CF%80

Figure 1: Estimation of π via Monte-Carlo.

2.1 Estimation via Monte-Carlo

See Figure 1. Area is π/4. A point (x, y) is in the red zone if x2 + y2 ≤ 1.
Estimation via rollout:

V π(St) = E [Gt | St = s, π] .

• Monte-Carlo = sample Gt by using rollout. Can use every-visit or first-visit.

• Converges in O(1/
√
n)

2.1.1 Monte-Carlo optimzation

π Qπ

Evaluate π

improve π

Recall: improve can be done by using greedy :

π(s) = argmax
a∈A

Q(s, a).

Possible problems:

• One may need many samples for all actions.

• Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (previous), importance sampling.
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2.2 TD-learning

Bellman’s equation states:

V (St) = E [Rt+1 + γRt+2 + . . . ]

= E [Rt+1 + γV (St+1)] .

This is equivalent to

0 = E

Rt+1 + γV (St+1)− V (St)︸ ︷︷ ︸
TD error



The TD learning algorithm uses the updates:

V (St) := V (St) + αt(Rt+1 + γV (St+1)− V (St))),

where α is a learning rate such that
∑

t αt = +∞ and
∑

t(αt)
2 < ∞.

Proof. Main proof: see later. for some ideas:
Let βt(s) be such that

βt(s) =

{
0 if s = St

αt otherwise

Let Vt be the V -table at time t. The definition of βt implies that for all s:

Vt+1(s) := Vt(s) + βt(s)

Rt+1 + γVt(St+1)︸ ︷︷ ︸
=TπVt+noise

−Vt(s)

 .

with
∑

t βt(s) = ∞ and
∑

t β
2
t (s) < ∞.

As Tπ is contracting, Theorem 1 of (On the convergence of stochastic iterative dynamic
programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93 ) shows that this implies
limt→∞ Vt = V π almost surely.

2.3 Relation between MC, TD and DP

V (St) = E [Gt] MC

V (St) = E [Rt+1 + γV (St+1)] TD

V (St) = E [Rt+1] + γ
∑
s′

V (St+1)P(St+1 = s′) DP
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(figure from Sutton and Barto)

• MC simulates a full trajectory

• TD samples one-step and uses a previous estimation of V .

• DP needs all possible values of V (s′).

MC: One full trajectory for update TD: Updates take time to propagate
The tradeoff comes by using TD(λ):

• Use n-step returns (see Sutton-Barto, chapter 7).

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γt+nV (St+n).

• TD(λ) (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

Gt(λ) = (1− λ)

T∑
n=1

λn−1Gt:t+n + λTGt.

2.4 Q-learning and SARSA

Bellman’s equations are:

V π(St) = Eπ [Rt+1 + γV π(St+1)] to evaluate π

Q∗(St, At) = E
[
Rt+1 + γmax

a
Q∗(St+1, a)

]
to find the best policy

This leads to two variant of:

• Q-learning = off-policy learning.

– Choose At ∼ π.
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– Apply TD-learning replacing V (s) by maxa Q(s, a).

• SARSA = on-policy learning:

– Choose At+1 ∼ argmaxa∈A Q(St+1, a).

– Apply TD-learning replacing V (s) by Q(s,At+1).

2.4.1 Q-learning

At ∼ π

Q(St, At) := Q(St, At) + αt

(
Rt+1 + γmax

a∈A
Q(St+1, a)−Q(St, At)

)
.

Theorem 1. Assume that γ < 1 and that:

• Any station-action pair (a, s) is visited infinitely often.

•
∑

t αt = ∞ and
∑

t α
2
t < ∞.

Then: Q converges almost surely to the optimal Q∗-table as t goes to infinity.

2.4.2 SARSA

SARSA (name comes from St, At, Rt+1, St+1, At+1)

At+1 ∼ argmaxQ(St, At) (or ε-greedy)

Q(St, At) := Q(St, At) + αt (Rt+1 + γQ(St+1, At+1)−Q(St, At)) .

Open questions:

• Does it converge (and why?)

• How to choose the step-size?

• How to explore?

3 Stochastic approximation

3.1 Introduction and example: the ODE method

xn+1 = xn + α(f(xn) + noise),

• TD-learning or Q-learning.
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• Stochastic gradient descent. We are given N couples (X1, Y1) . . . (XN , YN ) and a
parametric function gx. We want to find x such that gx(Xi) ≈ Yi for all i. We model
this as an empirical risk minimization by using a loss function ℓ:

F (x) =
1

N

N∑
k=1

ℓ(fx(Xk), Yk) = E [ℓ(fx(X), Y )] ,

where the expectation is taken uniformly over all data.

We want to do xn+1 = xn − an∇xF (x) but this is costly. The stochastic gradient
descent is:

– Pick (Xn, Yn) uniformly at random among all data points.

– Computes xn+1− = an∇xℓ(gxn(X), Y ).

This rewrites as:

xn+1 = xn + α(f(xn) + noise),

where f(x) = ∇xF (x).

In what follows, we want to show that the stochastic system behaves as the solutions
of the ẋ = f(x). This helps us to show where the iterates concentrate.

3.2 Constant step-size

xn+1 = xn + α(f(xn) +Mn+1),

We need the assumptions:

1. f : Rd → Rd is Lipschitz-continuous.

2. Mn Martingale difference sequence : E [Mn+1|Fn] = 0 and E
[
||Mn+1||2|Fn

]
≤ σ2.

3. xn stay bounded.

Let ϕt(x0) be the solution of the ODE ẋ = f(x). We have the result:

Theorem 2. Assume that the ODE has a unique fixed point to which every trajectory
converge (limt→∞ supx∈X ∥ϕt(x)− x∗∥ = 0). Then:

lim
α→0,n→∞

P(∥xn − x∗∥ ≥ ε) = 0.

The proof is based on the following lemma:

Lemma 1. For all T > 0, we have:

sup
n∈[0,T ]

∥ϕαn(x0)− xn∥ = O(
√
α).

Proof. Study the difference between the ODE and a Euler discretization of the ODE.
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3.2.1 Application to Q-learning

For Q-learning, we can rewrite the ODE in vector form as:

Q̇s,a = rs,a + γ
∑
s′

p(s′|s, a)max
a′∈A

Qs′,a′ −Qs,a︸ ︷︷ ︸
=:fs,a(Q)

The ODE is Q̇ = f(Q), the variable is Q.
We can verify that this satisfy all assumption for the finite case:

• f is Lipschitz-continuous (because max is.)

• Moreover, the noise is i.i.d. if

• – If we apply to “synchronous” Q-learning (for all state s, a); or

– If we apply to “asynchronous” Q-learning with a generative model (we pick one
(st, at)) at random each time.

If we want to treat the general case, the problem is that the noise is not i.i.d.. In
this case, we need to treat that we have a “Markovian” noise. This is out of scope of
this course.

For T = +∞, we have:

• f can be written as f(Q) = F (Q) −Q. We know that F is contracting for the ∥∥∞
(see first course on MDP). Hence, it has a unique fixed point Q∗.

• Proving that the ODE converges to Q∗ is more complicated. For that, let us denote
u(t) = Q(t) − Q∗ and assume for now that F is δ-contracting for the Lp norm. We
have:

d

dt
∥u(t)∥

=
d

dt
(
∑
i

|ui|p)1/p

=
1

p
(
∑
i

|ui|p)1/p−1 d

dt
(
∑
i

|ui|p)

= ∥u∥1−p
∑
i

sgn(ui)|ui|p−1(F (Q)−Q).

= ∥u∥1−p


∑
i

sgn(ui)|ui|p−1(Fi(Q)− Fi(Q
∗))−

∑
i

sgn(ui)|ui|p−1 (Qi −Q∗
i )︸ ︷︷ ︸

=ui︸ ︷︷ ︸
=∥u∥p
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Recall Hölder: if 1/p+ 1/q = 1, i.e., q = p/(p− 1), we have:∑
i

xiyi ≤ (
∑
i

|xi|p)1/p(
∑
i

|yi|q)1/q.

Using this with xi = Fi(Q)−Fi(Q
∗) and yi = sgn(ui)|ui|p−1, the first term is smaller

than:

∥F (Q)− F (Q∗)∥p (
∑
i

(|ui|p−1)p/(p−1))(p−1)/p = ∥F (Q)− F (Q∗)∥p ∥Q−Q∗∥p−1

≤ δ ∥Q−Q∗∥pp
= δ ∥u∥p

This shows that d
dt ∥u(t)∥ ≤ (δ − 1) ∥u(t)∥.

The proof for p = +∞ comes by continuity of the norm.

3.2.2 Fluctuations

Let us go back to xn+1 = xn + α(f(xn) +Mn+1) and we assume in addition that:

• E
[
Mn+1M

T
n+1|Fn

]
= Q(xn)

• f is twice differentiable.

• The ODE has a unique fixed point that is exponentially stable.

The main idea is to use generators. For n ≥ k, let yk,n be the hybrid term:

yk,k = xk

yk,n+1 = yk,n + αf(yk,n).

We have:

xn − yk = yn,n − y0,n

=

n−1∑
k=0

yk+1,n − yk,n.

Hence, if we can bound yk+1,n − yk,n, we are ”done”.
We can do that by showing that the function xk 7→ yk,n is smooth.
We can show that if there is a unique attractor of the ODE x∗, and we use a = α, then:

lim
α→0

lim
n→∞

P(dist(x(α)
n )− x∗) = 0

We can also obtain fluctuation results. In particular, if the function f is smooth, we get:

lim
n→∞

E
[
x(α)
n

]
= x∗ + Cα+O(α2),

with a constant C that is non-zero.
For decreasing steps-sizes where we replace α by αn = 1/(n+1), we can show that the

variance of order O(1/n).
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3.2.3 Averaging methods

We can do acceleration via averaging. Polyak & Juditsky 92. Ruppert [?].
Consider a sequence θn and let:

θ̄n =
1

n

n∑
k=1

θk = (1− 1

n
)θ̄n−1 +

1

n
θn.

Theorem 3 (Cesaro). Assume that limn→∞ θn = θ∗ with convergence rate ∥θn−θ∗∥ ≤ αn.
Then:

∥θn − θ∗∥ ≤ 1

n

n∑
k=1

αk =: ᾱn.

Can be better or less good than the original convergence rate. For instance, one may
loose exponential convergence.

One can also use:

θ̃n =
2

n(n− 1)

n∑
k=1

kθk.

3.2.4 Markovian noise

We can do the same with a two time-scale model:

xn+1 = xn + αf(xn, yn)

yn+1 ∼ P (·|xn, yn),

, where yn+1 is a “Markov chain that depends on xn”.
We obtain similar convergence results, O(

√
α) fluctuations and O(α) bias.

3.3 Decreasing step-size

xn+1 = xn + an(f(xn) +Mn+1),

We need the assumptions:

1. f : Rd → Rd is Lipschitz-continuous.

2. The step-sizes an ≥ 0 is such that
∑

n an = +∞ and
∑

n(an)
2 = +∞.

3. Mn Martingale difference sequence : E [Mn+1|Fn] = 0 and E
[
||Mn+1||2|Fn

]
≤ σ2.

4. supn ∥xn∥ remains bounded a.s.

We define tn =
∑n−1

k=0 ak and x̄ a piecewise linear function such that x̄(t(n)) = xn. We
also write xs(t) the solution of the ODE ẋ = f(x) with xs(s) = x̄(s).
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Theorem 4. For all T > 0, we have:

lim
s→∞

sup
t∈[s,s+T ]

∥x̄(t)− xs(t)∥ = 0 almost surely.

The sequence xn converges almost surely to the invariant sets of the ODE ẋ = f(x), that
is, the set A such that if x(0) ∈ A, then x(t) ∈ A for all t > 0. In particular, if the ODE
has a unique attractor x∗, then

lim
s→∞

xn = x∗.

Proof. For the first part, we consider s = 0 and use the following tools:

1. We compare the ODE and the discrete ODE yn+1 = yn + anf(xn): to show that at
t(n): ||yn − x̄n|| = O(

∑
k(ak)

2) by Gronwall’s inequality.

Recall the discrete-Gronwall’s lemma: if dn+1 = ε + L
∑n

k=0 akdk, then dn ≤ eLtnε
(proof = recurrence + log is convex).

2. Let Bn =
∑L

k=0 anMn+1. We have var(Bn) ≤
∑

n(an)
2σ2. In particular, P(||Bn|| ≥

ε) ≤
∑

n(an)
2σ2/ε2 (Chebyshev’s inequality). We can extend that to sup by using

Doob’s inequality and use the supermartingale B+
n = maxk≤b Bn?

3. Fix T . The idea is now to consider Kn = minK>n such that t(Kn) = tn + T . By

what the assumption on an, we have
∑Kn

k=1(ak)
2 → 0.

Similar to our way of defining yn, we can define a yk,n that starts at xk when n = k.

Let m(k) be such that
∑m(k)

ℓ=k ≈ T . We can show that:∥∥yk,k+m(k) − xk +m(k)
∥∥ ≤ eLT ε,

with probability at least
∑m(k)

ℓ=k (aℓ)
2σ2/ε2 <

∑∞
ℓ=k(aℓ)

2σ2/ε2.

This probability converges to 0 because
∑∞

ℓ=1(aℓ)
2 < ∞.

For t = +∞, we write A = ∩t≥0∪s≥t{x̄(t)}. If should be clear that xn → A a.s. A is
invariant by using the first part of the lemma and the fact that the flow is invariant.

Note: we can say more (A is chain transitive).

4 Two-player zero-sum games and Monte-Carlo Tree
Search

4.1 Two players zero sum games

Zero-sum game: On agent tries to maximize, one tries to minimize.
Many different notions: or turn-based games, perfect or imperfect information. For

instance:
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• “State-less” simultaneous moves: Rock-paper-scissors (extensive form games)

• Simultaneous moves + states: 007

• Deterministic turn-based games: chess, go,...

• Turn-based games with a stochastic component: backgammon.

• Imperfect information: Poker

Here: we will focus on perfect information turn-based games.

From a given position, takes the best decision. To do so, one can generate a tree of
possibilities and explore this tree (e.g.), min-max algorithm.

Example / exercise: Russian Roullette You have one weapon with 1 bullets out of
n slots. There are two actions:

• Try to shoot yourself, in which case you keep the weapon.

• Try to shoot your adversary, in which case you give the weapon to him.

1. What is the best strategy?

2. What changes if there are k weapons and you have more than one life?

4.2 Min-max and alpha-beta pruning

But: what if the tree is too big?
You can construct the tree of possibilities
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4

4

4

1 4

≥5

5 7

≤3

3

2 3

9

9 5

max (you)

min (opponent)

max (you)

heuristic

If the tree is two big, you stop at depth D and use a heuristic.

• You can backtrack with the min-max algorithm.

• For optimization, you can use alpha-beta pruning.

4.3 MCTS and exploration

4.3.1 Motivation for MCTS

Min-max and alpha-beta perform well (ex: Chess). . . but can be limited (ex: go).

• Tree can still be very big (AD)

• You need a good heuristic.

– Result is only available at the end

• You might want to avoid the exploration of not promising parts.

– For that you need a good heuristic.

4.3.2 MCTS algorithm

(figure from wikipedia)
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The algorithm:

• Creates one or multiple children of the leaf.

• Obtains a value of the node (e.g. rollout)

• Backpropagates to the root

For the exploration, one typically uses bandit-like formulas: For each child, let S(c) be
the number of success and N(c) be the number of time you played c, and t =

∑
c′ N(c′).

• Explore argmaxc
S(c)
N(c) + 2

√
log t
N(c) .

Open question: no guarantee with
√
log t/N(c). Is

√
t/N(c) better?

1: while Some time is left do
2: Select a leaf node #UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf #random sampling
5: Backpropagate to the root
6: end while
7: Return argmaxc∈children(root) N(c) #or S(c)/N(c).

4.3.3 Demo / exercice

See the file connect4.tar.gz on the website.
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