Firstname:						
Lastname:						
Please be concise and precise . All documents are allowed. Electronic devices are not allowed. Duration: 30min.						
We want to compute the optimal strategy of a gambler. Initially, the gambler starts with $S_0 \in \{1, 4\}$ euros. At each time step, he/she can bet up to S_t euros (bets are integer between 0 and S_t).						
If the gambler bets A_t , then with probability $p \in (0,1)$, he/she wins $2U_t$ and with probability $q = 1 - p$, the gambler looses A_t :						
$S_{t+1} = \begin{cases} S_t + 2A_t & \text{with probability } p \\ S_t - A_t & \text{with probability } q = 1 - p \end{cases}$						
1. We assume that the gambler wants to maximize the probability of reaching $S_t \geq 5$ euros within T bets. Explain why this can be modeled as a MDP and provide the state space, action space, reward and transition probabilities. Shall we use a finite-horizon or a discounted reward criterion?						
2. Let $V_t(s)$ be the probability that the gambler ends with 5 or more euros given that he/she started with s euros after t bets. We set $V_T(5) = 1$ and $V_T(s) = 0$ for $s < 5$. Write below a set of equations that link the values of $V_t(s)$, $V_{t+1}(s')$, p and q (for $t < T$):						
$\bullet \ V_t(0) = \dots$						
$\bullet \ V_t(1) = \dots$						
$\bullet \ V_t(2) = \dots$						
$\bullet V_t(3) = \dots$						

 $\bullet \ V_t(4) = \dots$

 \bullet $V_t(5) = \dots$

3. Assume that $T=1$. Compute the optimal strategy and its expected performance.														
									• • • • • • •	•••••				
4.		that $T = 4$ and $p = 1/t$ $t = 0$	$\frac{6}{2}. \text{ Complete the follows:} \\ t = 1$	owing table of $V_t(s)$ ($t = 2$		t = T = 4								
	V	$\iota = 0$	t = 1	t = 2	t=3	t = 1 = 4								
	s = 0	$V_0(0)=\ldots$												
	1													
	s = 1													
	s=2													
	s = 3													
	s=4													
	s = 5													
5.	Describe	e the optimal strategy	(for $p = 1/2$).											