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1 Stochastic approximation

1.1 Generalized Polya urn

We consider an urn that contains N balls that are black or red. At each time step, we pick
three balls from the bin (at random, with replacement1) and observe their color: If there
are two or more balls of the same color (say red), we add another ball of the same color
and replace all balls in the urn.

Let xn be the fraction of red balls after n such events.

1. Show that xn can be written as a stochastic approximation algorithm: xn+1 = xn +
αn(f(xn) +Mn+1). What is the step-size n and the function f?

2. Describe the trajectories of the ODE ẋ = f(x) (i.e., its limits points).

3. Use that to describe the long term behavior of xn when n goes to infinity.

To go further: Limit distributions for large Pólya urns by Brigitte Chauvin, Nicolas
Pouyanne, Reda Sahnoun. Ann. Appl. Probab.

1.2 Stochastic gradient descent and Kiefer–Wolfowitz Procedure

Let f : Rd → R where f(θ) = E [F (θ,X)] for some random variable X, and let us assume
that F is differentiable with a continuous derivative. Let xn+1 be defined as:

xn+1 = xn + αn∇F (xn, Zn), (1)

where Zn is a sequence of i.i.d. noise.

1. Show that (1) can be represented as a stochastic approximation algorithm.

1A more natural model would be to pick the balls with replacement. This would complexify the
computations because instead of f , one would have xn+1 = xn+αn(f(xn)+Mn+1+εn) with εn = O(1/n).
One could show that it does not change much the analysis.
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2. Assume that f is strictly convex, and has a local minimum x∗. Show that all trajec-
tories of the ODE ẋ = ∇f(x) converge to x∗.

3. Assume in addition that xn stays bounded almost surely and that αn satisfy the
Robins-Monroe conditions, and that the co-variance of ∇F () is bounded. Show that
xn+1 converge almost surely to x∗.

The Kiefer–Wolfowitz Procedure. We suppose now that we do not have access to
∇F . We consider the following procedure:

Gn+1,i =
1

2ϵn
[F (yn + ϵnei, Zn)− F (yn − ϵnei, Zn)] ,

yn+1 = yn + αnGn+1.

where ei is a the unit-vector with a 1 on the ith coordinate.

4. Show that Gn+1 is a noisy estimate of the gradient ∇f(yn). Compute its bias and is
variance.

5. Assume that ϵn = n−1/3 and αn = n−1/2. Show that xn+1 converge to x∗ almost
surely.

To go further: Book of Kunsher-Yin (Stochastic approximation and recursive algo-
rithms.)

2 Concentration inequalities

2.1 An unbiased estimators with limited observations

Let X1 . . . Xn be a sequence of n random variables and let p = (p1 . . . pn) be a probability
distribution over n variables (i.e. pi > 0 and

∑n
i=1 pi = 1). Consider the following

procedure:

• Sample I according to the distribution p and observe XI .

• Set X̃k as:

X̃k =

{
XI

pI
if k = I

0 otherwise.

1. Show that X̃k is an unbiased estimator of E [Xk] for all k.

2. Assume that 0 ≤ Xk ≤ 1 for all k. Compute a bound on the variance of the estimator,
i.e., var(X̃k).

Going further: This exercise show that one can bound an estimator of n variables by
observing one variable. See the lecture about bandits.
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2.2 Hoeffding inequality

Let (Xn)n≥0 be a sequence of i.i.d. random variable such that Xn ∈ [−1, 1] almost surely
and that E [Xn] = 0. Let Sn =

∑n
k=1 Xk. We want to show that for all x > 0:

P(Sn > t) ≤ exp(− t

2n
)

1. Prove that P(Sn > x) ≤ e−λt(E
[
eλX1

]
)n.

2. By using convexity2, prove that E
[
eλX1

]
≤ eλ

2/2.

3. Conclude (hint: find the best λ)

Going further: https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

2.3 Markov / Chebyshev inequality for Martingale

Let Xn be a sequence of random variables such that E [Xn+1|Fn] = 0 and var(Xn+1|Fn) =
σ2
n < ∞. Let Sn =

∑n
k=1 Xk.

Let a > 0 and define

Mk+1 =

{
Sk +Xk if Mk ≥ a
a if Mk = a

1. Show that P(sup1≤k≤n Sk ≥ a) = P(Mk ≥ a).

2. Show that E [max(Mn, 0)] ≤ E [max(Sn, 0)].

3. Use to conclude that P(sup1≤k≤n Sk ≥ a) ≤ E [max(Sn, 0)] /a.

4. Prove that var(Sn) =
∑n

k=1 σ
2
k and use it to conclude thématique

P( sup
1≤k≤n

Sk ≥ a) ≤
∑n

k=1 σ
2
k

a2
.

3 MDPs

3.1 A game of dice: “stop or continue”

Consider an unbiased d face dice with faces numbered from 1 to d. You can throw the dice
up to d times (each time with a random throw). You gain money as follows:

• After any throw, you can stop and earn the sum of the values that you obtained.

• If, after a throw, you obtain a value that you have already observed, you earn nothing.

2This is quite technical. To show that, one can show that E
[
eλX1

]
≤ (eλ − e−λ)/2 by convexity, and

that g(λ) = log((eλ − e−λ)/2) ≤ λ2/2 by showing that g′′(λ) ≤ 1.
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For instance, if your sequence of throws is “1, 3”, you can stop and earn 4 or throw again.
If you throw again: if you obtain a “2”, you can stop and earn 6 or throw again, but if you
obtain “3”, you have to stop and earn nothing.

1. Consider d = 3. Formulate the problem as a MDP, compute the optimal policy.

2. Can you guess the optimal policy for any d? Hint: you can show that the problem
is monotone (i.e., show that if it is optimal to stop in a given state, then it is also
optimal to stop in any state that is “larger” for a good definition of “larger”).

3.2 Optimal grid movement and Q-learning

+4

+2

Figure 1: Grid

Consider a robot moving in the grid represented in Figure 1.

• If you are in one of the white cases, you can move in either of the four directions. This
costs 0. Actions that would let you out of the grid leave your position unchanged
but would cost you −1.

• If you are in a gray case, there is no actions to take and you move directly to the
cases indicated by the arrow. The reward that you obtain is the one of the arrow.

You objective is to maximize the total reward with discount factor γ.

1. Compute the value of the RANDOM policy, that move randomly in any of the direc-
tion (with probability 1/4).

2. Write a program that uses value iteration and computes an optimal policy (consider
γ = 0.9).

3. Write a program that uses policy iteration and computes the optimal policy.

4. (*) Write a program that uses the Q-learning update to compute the optimal policy.
How many iteration does it take?
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