Outline

Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

- Monte-Carlo methods
- Temporal difference
- Q-learning and SARSA
- **Conclusion**

Large state-spaces and approximations

Monte-Carlo tree search (MCTS)

Reminder: states, actions and policy

 $S, A = state/action spaces.$

.

A (deterministic) policy is a function
\n
$$
\pi : S \to A
$$

Gain and value function

The gain is:

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots
$$

= $R_{t+1} + \gamma G_{t+1}$,

where $\gamma \in (0, 1)$ is the discount factor.

Gain and value function

The gain is:

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots
$$

= $R_{t+1} + \gamma G_{t+1}$,

where $\gamma \in (0,1)$ is the discount factor.

The value function *V* and action-value function *Q* are:

$$
V_{\pi}(s) = \mathbb{E}\left[G_{t+1} \mid S_t = s, \pi\right]
$$

$$
Q_{\pi}(s, a) = \mathbb{E}\left[G_{t+1} \mid S_t = s, A_t = a, \pi\right]
$$

Two problems

• Policy evaluation

For a given policy
$$
\pi
$$
, find
 $V^{\pi}(x)$ and $Q^{\pi}(x, a)$.

Two problems

• Policy evaluation

For a given policy
$$
\pi
$$
, find
 $V^{\pi}(x)$ and $Q^{\pi}(x, a)$.

• Control problem / optimization

Find / use π^* such that V^{π^*} = max_{π} $V^{\pi}(x)$.

Bellman's equation

$$
V^*(s) =
$$

$$
Q^*(s, a) =
$$

Bellman's equation

$$
V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a)
$$

$$
Q^*(s, a) = r(s, \mathbf{w}) + \gamma \sum_{s'} V^*(s')p(s' \mid s, a)
$$

Two problems:

- Requires the knowledge of systems dynamics and rewards.
- *|S|* can be large

Bellman's equation

$$
\mathfrak{D}(s,a) = \sum_{\mathfrak{D}'} n' P(n'|s,a)
$$

$$
V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a)
$$

$$
Q^*(s, a) = r(s, \mathbf{C} \setminus \mathbf{C} \setminus \mathbf{C}) + \gamma \sum_{s'} V^*(s') \cdot p(s' \mid s, a)
$$

Two problems:

- Requires the knowledge of systems dynamics and rewards.
	- \triangleright We assume to have access to a simulator.
- *|S|* can be large
	- \triangleright We assume $|S|$ to be small for now.

Table of contents

Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

- Monte-Carlo methods
- Temporal difference
- Q-learning and SARSA
- **Conclusion**

Large state-spaces and approximations

Monte-Carlo tree search (MCTS)

Monte Carlo methods

Class of algorithms where we replace a deterministic computation by an estimation of $\mathbb{E}[X]$. We then sample many values of X and compute the average (law of large numbers: $\frac{1}{n} \sum_{i=1}^{n} X_i \approx \mathbb{E}[X]$).

Monte Carlo methods

Class of algorithms where we replace a deterministic computation by an estimation of $\mathbb{E}[X]$. We then sample many values of X and compute the average (law of large numbers: $\frac{1}{n} \sum_{i=1}^{n} X_i \approx \mathbb{E}[X]$).

Example:

• Area is $\pi/4$. A point (x, y) is in the red zone if $x^2 + y^2 < 1$.

Nicolas Gast – 50 / 110

Monte Carlo for policy Evaluation

$$
V^{\pi}(S_t) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right].
$$

Monte-Carlo = sample G_t by using rollout.

Monte Carlo for policy Evaluation

$$
V^{\pi}(S_t) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right].
$$

Monte-Carlo $=$ sample G_t by using rollout.

Recipe:

- Play many episodes with π
- Record the return from the first visit to each state
- Return the average as an approximation of $V^{\pi}(s)$.

Note: every-visit also works but the samples are not independent.

Monte Carlo learning algorithm

If a state has been seen *n* times, the error is $O(1/\sqrt{n})$.

Monte-Carlo optimization

Monte-Carlo can be used to evaluate the state-action function *Q*(*s, a*).

Recall: improve can be done by using greedy:

 $\pi(s) = \arg \max Q(s, a).$ $a \in \mathcal{A}$

Monte-Carlo optimization

Monte-Carlo can be used to evaluate the state-action function *Q*(*s, a*).

Recall: improve can be done by using greedy:

 $\pi(s) = \arg \max Q(s, a).$ $a \in A$

Possible problems:

- One may need many samples for all actions.
- Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (course 4), importance sampling.

Table of contents

Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

- Monte-Carlo methods
- Temporal difference
- Q-learning and SARSA
- **Conclusion**

Large state-spaces and approximations

Monte-Carlo tree search (MCTS)

The temporal difference (TD) error

Bellman's equation states:

$$
V(S_t) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \dots\right]
$$

=
$$
\mathbb{E}\left[R_{t+1} + \gamma V(S_{t+1})\right].
$$

$$
\bigvee_{\mathcal{R}}(s) = \mathcal{R}(s, \pi(s)) + \gamma \sum_{S'} V_{\pi}(s') \mathbb{P}(s' | s, \star s)
$$

The temporal difference (TD) error

Bellman's equation states:

$$
V(S_t) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \dots\right]
$$

=
$$
\mathbb{E}\left[R_{t+1} + \gamma V(S_{t+1})\right].
$$

This is equivalent to

$$
0 = \mathbb{E}\left[\underbrace{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}_{\text{TD error}}\right]
$$

The TD learning algorithm uses the updates:

$$
V(S_t) := V(S_t) + \alpha_t (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))),
$$

where α is a learning rate.

Nicolas Gast – 55 / 110

TD learning algorithm

TD(0) for evaluating V^{π}

- 1: Initialize *V*(*s*) arbitrarily.
- 2: while True do
- 3: Initialize *S*
- 4: for While *S*→ is not a terminal state do
- 5: Sample $A \sim \pi(S)$ and simulate a transition $S', R \sim p(\cdot | S, A)$.
- 6: $V(S) := V(S) + \alpha_t (R + \gamma V(S') V(S)).$
- 7: $S := S'$
- 8: end for
- 9: end while

TD-learning: proof of convergence

TD-update:

$$
V(S_t) := V(S_t) + \alpha_t (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))).
$$

Theorem

Fix a policy π *that visits all states and let* $\gamma < 1$ *. Assume that we use the TD-update with* α_t *be decreasing and such that:*

 $\sum_t \alpha_t = +\infty$ and $\sum_t \alpha_t^2 < +\infty$.

Then the TD-learning converges to V^{π} *almost surely.*

Proof

Let $\beta_t(s)$ be such that

$$
\beta_t(s) = \begin{cases} 0 & \text{if } s = S_t \\ \alpha_t & \text{otherwise} \end{cases}
$$

Let V_t be the *V*-table at time *t*. The definition of β_t implies that for all *s*:

$$
V_{t+1}(s) := V_t(s) + \beta_t(s) \left(\underbrace{R_{t+1} + \gamma V_t(S_{t+1})}_{=T^{\pi} V_t + \text{noise}} - V_t(s) \right).
$$

with $\sum_t \beta_t(s) = \infty$ and $\sum_t \beta_t^2(s) < \infty$.

Proof

Let $\beta_t(s)$ be such that

$$
\beta_t(s) = \begin{cases} 0 & \text{if } s = S_t \\ \alpha_t & \text{otherwise} \end{cases}
$$

Let V_t be the V-table at time t. The definition of β_t implies that for all s:

$$
V_{t+1}(s) := V_t(s) + \beta_t(s) \left(\underbrace{R_{t+1} + \gamma V_t(S_{t+1})}_{=T^{\pi} V_t + \text{noise}} - V_t(s) \right).
$$

with $\sum_t \beta_t(s) = \infty$ and $\sum_t \beta_t^2(s) < \infty$.

As T^{π} is contracting, Theorem 1 of σ _{n the convergence of stochastic iterative dynamic} programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93 shows that this implies $\lim_{t\to\infty}V_t=V^{\pi}$ almost surely.

Relation between MC, TD and DP

$$
V(S_t) = \mathbb{E}\left[G_t\right]
$$

\n
$$
V(S_t) = \mathbb{E}\left[R_{t+1} + \gamma V(S_{t+1})\right]
$$

\n
$$
V(S_t) = \mathbb{E}\left[R_{t+1}\right] + \gamma \sum_{s'} V(S_{t+1}) \mathbb{P}(S_{t+1} = s')
$$

\n
$$
DP
$$

- MC simulates a full trajectory
- TD samples one-step and uses a previous estimation of *V*.
- DP needs all possible values of $V(s')$.

TD vs MC comparison: general case

source: Sutton, Barto 2018. For a random-walk example.

Warning: this might very well depend on the choice of learning parameter α_t ! Nicolas Gast – 60 / 110

TD v.s. MC and tradeoffs

One full trajectory for update Updates take time to propagate

TD v.s. MC and tradeoffs

One full trajectory for update Updates take time to propagate

Tradeoff:

Use *n*-step returns (see Sutton-Barto, chapter 7).

 $G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^{t+n} V(S_{t+n}).$

TD v.s. MC and tradeoffs

One full trajectory for update Updates take time to propagate

Tradeoff:

Use *n*-step returns (see Sutton-Barto, chapter 7).

$$
G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^{t+n} V(S_{t+n}).
$$

 \bullet $TD(\lambda)$ (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

$$
G_t(\lambda) = (1 - \lambda) \sum_{n=1}^T \lambda^{n-1} G_{t:t+n} + \lambda^T G_t.
$$

Table of contents

Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

- Monte-Carlo methods
- Temporal difference

Q-learning and SARSA

Conclusion

Large state-spaces and approximations

Monte-Carlo tree search (MCTS)

 TD learning $=$ policy evaluation. What about optimization?

Bellman's equations are:

 $V^{\pi}(S_t) = \mathbb{E}^{\pi} [R_{t+1} + \gamma V^{\pi}(S_{t+1})]$ to evaluate π

$$
\mathcal{R}_{t_{\mathfrak{t}+}} + \gamma \vee (S_{t_{\mathfrak{t}+}}) - \vee (S_{t})
$$

TD learning = policy evaluation. What about optimization?

Bellman's equations are:

*V*ω(*St*) = E^ω [*Rt*+¹ + ω*V*ω(*St*+1)] to evaluate ϑ *Q*↑(*St, At*) = E " *^Rt*+¹ ⁺ ^ω max *^a ^Q*↑(*St*+1*, ^a*) # to find the best policy - V * (St⁺ 1) TD difference for Q : RE+ ⁺ ^W maxQ(Ste , a) -Q (Stat) St -^A⁺ - > Re⁺ 1 Ste ->At +..

Nicolas Gast – 63 / 110

 TD learning $=$ policy evaluation. What about optimization?

Bellman's equations are:

$$
V^{\pi}(S_t) = \mathbb{E}^{\pi} [R_{t+1} + \gamma V^{\pi}(S_{t+1})]
$$
 to evaluate π

$$
Q^*(S_t, A_t) = \mathbb{E} \left[R_{t+1} + \gamma \max_{a} Q^*(S_{t+1}, a) \right]
$$
 to find the best policy

This leads to two variant of:

- \bullet Q-learning $=$ off-policy learning.
	- \blacktriangleright Choose $A_t \sim \pi$.
	- Apply TD-learning replacing $V(s)$ by max_a $Q(s, a)$.
- \bullet SARSA = on-policy learning:
	- ▶ Choose A_{t+1} \sim arg max_{*a∈A*} $Q(S_{t+1}, a)$.
	- Apply TD-learning replacing $V(s)$ by $Q(s, A_{t+1})$.

Q-learning and convergence guarantee

$$
A_t \sim \pi
$$

$$
Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right).
$$

Q-learning and convergence guarantee

$$
A_t \sim \pi
$$

$$
Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right).
$$

Theorem

Assume that γ < 1 *and that:*

Any station-action pair (*a,s*) *is visited infinitely often.*

•
$$
\sum_t \alpha_t = \infty
$$
 and $\sum_t \alpha_t^2 < \infty$.

Then: Q converges almost surely to the optimal Q↑*-table as t goes to infinity.*

Proof: Identical to the proof of TD-learning.

Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):

$$
A_t \sim \pi
$$

$$
Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right).
$$

Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):

$$
A_t \sim \pi
$$

$$
Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right).
$$

SARSA (name comes from S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1})

 $A_{t+1} \sim \arg \max Q(S_t, A_t)$ (or ε -greedy) $Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)).$

Q-learning pseudo-code

The Q learning algorithm

- 1: Initialize *Q*(*s, a*) arbitrarily.
- 2: while True do
- 3: Initialize *S*
- 4: while *S*↑ is not a terminal state do
- 5: $\pi =$ policy derived from Q (e.g. ε -greedy).
- 6: Initialize $Q(s, a)$ arbitrarily.

2: while True do

3: Initialize *S*

4: while *S'* is not a terminal state do

5: $\pi = \text{policy derived from Q (e.g., e-greedy).}$

6: Sample $A \sim \pi(S)$ and simulate a transition *S'*, $R \sim p(\cdot | S, A)$.
- 7: $Q(S, A) := Q(S, A) + \alpha_t (R + \gamma \max_a Q(S', a) Q(S, A)).$
- 8: $S := S'$
- 9: end while
- 10: end while

(in orange, the difference with TD -learning).

SARSA

SARSA algorithm

- 1: Initialize *Q*(*s, a*) arbitrarily.
- 2: while True do
- 3: Initialize *S* and *A*
- 4: while *S*↑ is not a terminal state do
- 5: $\pi =$ policy derived from *Q* (e.g. ε -greedy).
- 6: Simulate *S'*, $R \sim p(\cdot | S, A)$ and $A' := \pi(S')$.
- 7: $Q(S, A) := Q(S, A) + \alpha_t (R + \gamma Q(S', A') Q(S, a)).$
- 8: $S := S', A := A'$
- 9: end while
- 10: end while

(in orange, the difference with Q -learning).

SARSA vs Q-learning

- Model is deterministic.
- Exploration policy (π) is ε -greedy.

SARSA or Q-learning: what will be the difference?

SARSA vs Q-learning

- **•** Model is deterministic.
- Exploration policy (π) is ε -greedy.

SARSA or Q-learning: what will be the difference?

- For large ε , SARSA will avoid the optimal shortest path.
- *Q*-learning will learn the shortest path but will often fall.

How to choose the learning rate and guarantee exploration?

Recall: for *Q* learning, you are given an exploration policy π and apply:

$$
A_{t+1} \sim \pi
$$

$$
Q(S_t, A_t) := Q(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right).
$$

Questions:

- How to choose π ?
- How to choose α_t ?

Solution: exploration/exploitation tradeoff (course $\hat{\blacktriangle}$), and Q-learning with UCB Exploration is Sample Efficient for Infinite-Horizon MDP by Dong et al 2019.

Table of contents

Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

- Monte-Carlo methods
- Temporal difference
- Q-learning and SARSA
- **•** Conclusion

Large state-spaces and approximations

Monte-Carlo tree search (MCTS)

Important notions

(your job here)

TD and *Q*-learning are tabular method

They can be proven to converge.

TD and *Q*-learning are tabular method

They can be proven to converge.

What about large state spaces?

Outline

Markov Decision Processes (MDPs)

Tabular reinforcement learning

3 Large state-spaces and approximations

- Value function approximation and Deep Q-Learning
- Policy gradient
- **Conclusion and other methods**

Reminder: Tabular MDP

```
We want to find Q(s, a) \approx Q^*(s, a).
```
 $\pi(s) = \arg \max Q(s, a).$ $a \in \mathcal{A}$

Two types of methods:

• MC methods:

$$
Q^{\pi}(s, a) = \frac{1}{K} \sum_{k=1}^{K} G^{(k)}
$$

• TD methods (SARSA / Q-learning)

Reminder: Tabular MDP

We want to find $Q(s, a) \approx Q^*(s, a)$.

 $\pi(s) = \arg \max Q(s, a).$ *a*→*A*

Two types of methods:

MC methods:

$$
Q^{\pi}(s, a) = \frac{1}{K} \sum_{k=1}^{K} G^{(k)}
$$

• TD methods (SARSA / Q-learning)

Does it scale? The complexity is $\Omega(|\mathcal{S}||\mathcal{A}|)$.

What are typical state space sizes? The curse of dimensionality

Managing a portfolio of 10 types of product, with 100 product each max.

- $|S| = 100^{10} = 10^{20}$.
- $A =$ possible orders $(=10 \times 100?)$

 \vec{S} = (#pod \vec{r} , #prod 2 ... #prod 10) \vec{S} = $(S^1, S^2, ... S^{10})$

What are typical state space sizes? The curse of dimensionality

Managing a portfolio of 10 types of product, with 100 product each max.

- $|S| = 100^{10} = 10^{20}$.
- $A =$ possible orders $(=10 \times 100?)$

Game of go • $|S| = 3^{19 \times 19}$ (19 × 19 board game). $|A| = 19 \times 19$. There are $\approx 10^{170}$ *Q*-values.

What are typical state space sizes?

The curse of dimensionality

Breakout (1976) \rightarrow Atari games • $|S| = 8^{84 \times 84}$ (84 × 84 screen, 8 colors). • $|\mathcal{A}| = 2$ (left, right). There are $\approx 10^{2000}$ *Q*-values.

What are typical state space sizes?

The curse of dimensionality

Breakout (1976) \rightarrow Atari games • $|S| = 8^{84 \times 84}$ (84 × 84 screen, 8 colors). \bullet $|\mathcal{A}| = 2$ (left, right). There are $\approx 10^{2000}$ *Q*-values.

Starcraft alphastar $|\mathcal{S}| \gg |\mathcal{A}| \approx +\infty$??

We need approximations.

Table of contents

1 Markov Decision Processes (MDPs)

Tabular reinforcement learning

3 Large state-spaces and approximations • Value function approximation and Deep Q-Learning • Policy gradient

- **Conclusion and other methods**
- Monte-Carlo tree search (MCTS)

TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:

$$
V(S_t) := V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))
$$

$$
Q(S_t, A_t) := Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t)\right).
$$

This does not scale if *|S|* (or *|A|*) are large.

Function approximation

We replace the exact *Q*-table (or value function *V*) by an approximation:

 $Q(S, A) \approx q_w(S, A)$,

where w is a vector parameter to be found.

Function approximation

We replace the exact *Q*-table (or value function *V*) by an approximation:

 $Q(S, A) \approx q_w(S, A)$

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

 $Q(S, A) = w^T \phi(s, a)$

where $\phi(s, a)$ is a feature vector.

Function approximation

We replace the exact *Q*-table (or value function *V*) by an approximation:

 $Q(S, A) \approx q_w(S, A)$

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

 $Q(S, A) = w^T \phi(s, a)$

where $\phi(s, a)$ is a feature vector.

 \bullet ("modern"): q_w is a deep neural network.

Convolutional Agent

From *Q*-learning to deep *Q*-learning

The original *Q*-learning uses that:

$$
Q(S_t, A_t) = \mathbb{E}\left[R_{t+1} + \max_{a \in \mathcal{A}} Q(S_{t+1}, a)\right].
$$

We want to find w such that $q_{\sf w}(S_t,A_t)$ predictor $\approx \mathbb{E}$ $\sqrt{ }$ $R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_{t+1}, a)$ 1 $\overbrace{\text{target}}$.

From *Q*-learning to deep *Q*-learning

The original *Q*-learning uses that:

$$
Q(S_t, A_t) = \mathbb{E}\left[R_{t+1} + \max_{a \in \mathcal{A}} Q(S_{t+1}, a)\right].
$$

Deep Q -learning minimizes the L_2 norm and use gradient descent:

$$
w := w + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_t, a) - q_w(S_t, A_t) \right) \nabla_w(q_w(S_t, A_t)).
$$

Example of breakout

Why is vanilla unstable?

We want to find w such that $q_{\sf w}(S_t,A_t)$ predictor $\approx \mathbb{E}$ $\sqrt{ }$ $R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_{t+1}, a)$ 1 $\overline{t \text{arget}}$.

For that, we do:

$$
w:= w + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_t, a) - q_w(S_t, A_t) \right) \nabla_w (q_w(S_t, A_t)).
$$

Why is vanilla unstable?

We want to find w such that $q_{\sf w}(S_t,A_t)$ predictor $\approx \mathbb{E}$ $\sqrt{ }$ $R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_{t+1}, a)$ 1 $\overline{t \text{arget}}$.

For that, we do:

$$
w:= w + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_t, a) - q_w(S_t, A_t) \right) \nabla_w (q_w(S_t, A_t)).
$$

Problems:

- **Target and sources are highly correlated**
- Target changes as we learn.
- Exploration is not guaranteed.

Learning algorithm can be unstable.

Possible solution: replay buffer or separate target network

Vanilla *Q*-learning uses a single network

DDQN uses a slow learning target network and a fast learning *q*-network.

Applications of Deep RL

- Resource management (energy)
- Computer vision and robotics
- **•** Finance
- \bullet

Fundamental idea is simple but making the system stable and fast is an issue. Also, delayed actions or sparse rewards is difficult.

Table of contents

Markov Decision Processes (MDPs)

Tabular reinforcement learning

3 Large state-spaces and approximations • Value function approximation and Deep Q-Learning • Policy gradient **Conclusion and other methods**

Monte-Carlo tree search (MCTS)

Policy search

We are given a family of policies π_w parametrized by $w \in \mathcal{W}$. Typically:

```
\pi_w(a \mid s) \propto \exp(w^T \phi(s, a))
```
where $\phi(s, a)$ is a feature vector.

Policy search

We are given a family of policies π_w parametrized by $w \in \mathcal{W}$. Typically:

```
\pi_w(a \mid s) \propto \exp(w^T \phi(s, a))
```
where $\phi(s, a)$ is a feature vector.

Let $J(w) := V^{\pi_w}(s_0)$ be its performance. We want to find w that maximizes *J*(w).

Policy search

We are given a family of policies π_w parametrized by $w \in \mathcal{W}$. Typically:

 $\pi_w(a \mid s) \propto \exp(w^T \phi(s, a))$,

where $\phi(s, a)$ is a feature vector.

Let $J(w) := V^{\pi_w}(s_0)$ be its performance. We want to find w that maximizes *J*(w).

• Sometimes, this works well with direct methods (brute-force)

• We can also use policy gradients:

 $w := w + \alpha \nabla_w J(w)$.

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

 (0.7) * (3) + (0.3) * (10) + $(0.7 \times 0.4) \times (-10) +$ $(0.7 * 0.6 * 0.1) * (-10) +$ $(0.7 * 0.6 * 0.9) * (0) +$ $(0.7 * 0.6 * 0.9 * 0.8) * (0) +$ $(0.7 * 0.6 * 0.9 * 0.2) * (10)$

Expected Return (G) =

Nicolas Gast – 87 / 110

 (0.7) * (3) + (0.3) * (10) + $(0.7 \times 0.4) \times (-10) +$ $(0.7 * 0.6 * 0.1) * (-10) +$ $(0.7 * 0.6 * 0.9) * (0) +$ $(0.7 * 0.6 * 0.9 * 0.8) * (0) +$ $(0.7 * 0.6 * 0.9 * 0.2) * (10)$

Expected Return (G) =

Nicolas Gast – 87 / 110

 (0.3) * (10) + $(0.7 \times 0.4) \times (-10) +$ $(0.7 * 0.6 * 0.1) * (-10) +$ $(0.7 * 0.6 * 0.9) * (0) +$ $(0.7 * 0.6 * 0.9 * 0.8) * (0) +$ $(0.7 * 0.6 * 0.9 * 0.2) * (10)$

Expected Return (G) = (0.7) * (3) +

Nicolas Gast – 87 / 110

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once. The probability of choosing *a* in state *s* is $\pi(a|s)$.

$$
\nabla_{\pi(a|s)} \mathbb{E}\left[G_0\right] = \mathbb{P}(\text{attaining } s) Q(s, a)
$$

$$
= \frac{1}{\pi(a|s)} \mathbb{P}(\text{observing } (s, a)) Q(s, a)
$$

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once. The probability of choosing *a* in state *s* is $\pi(a|s)$.

$$
\nabla_{\pi(a|s)} \mathbb{E}\left[G_0\right] = \mathbb{P}(\text{attaining } s) Q(s, a)
$$

$$
= \frac{1}{\pi(a|s)} \mathbb{P}(\text{observing } (s, a)) Q(s, a)
$$

Algorithm: We want to compute gradient $(S, A) = \nabla_{\pi(a|s)} \mathbb{E} [G_0].$

- Run a trajectory and observe S_t , A_t .
- For each *t*:

$$
\widehat{\mathit{gradient}(S_t, A_t)} = \frac{1}{\pi(A_t|S_t)} G_t.
$$

 $\text{Theorem. For all } s, a: \mathbb{E}\left[\widehat{gradient}(s, a)\right] = \nabla_{\pi(a|s)}\mathbb{E}\left[G\right].$

The policy gradient theorem

Assume that $\pi(a|s) = f_w(s, a)$. We have:

$$
\nabla_{\boldsymbol{\mathsf{w}}}\mathbb{E}\left[\mathit{G}_{0}\right]=\sum_{s,a}\nabla_{\boldsymbol{\mathsf{w}}}\pi(a|s)\nabla_{\pi(a|s)}\mathbb{E}\left[\mathit{G}_{0}\right]
$$

The policy gradient theorem

Assume that $\pi(a|s) = f_w(s, a)$. We have:

$$
\nabla_{\mathsf{w}}\mathbb{E}\left[G_{0}\right]=\sum_{s,a}\nabla_{\mathsf{w}}\pi(a|s)\nabla_{\pi(a|s)}\mathbb{E}\left[G_{0}\right]
$$

Hence, an unbiased estimate of the gradient $\nabla_{w}\mathbb{E}[G_0]$ is

$$
\sum_t \frac{(\nabla_w \pi(A_t|S_t))}{\pi(A_t|S_t)} G_t.
$$

By using that $\nabla log(y) = \nabla(y)/y$, we get:

An unbiased estimate of the gradient is:

$$
\nabla_{\mathsf{w}} \mathbb{E}\left[G_0\right] = \mathbb{E}\left[\sum_t (\nabla_{\mathsf{w}} \log \pi(A_t|S_t)) G_t\right].
$$

Why is ∇ log $\pi(a|s)$ easy to compute?

Reminder: if $p_i = e^{u_i} / \sum e^{u_j}$, then

$$
\frac{\partial}{\partial u_j}\log p_i=1_{\{i=j\}}-p_j.
$$

Why is ∇ log $\pi(a|s)$ easy to compute?

Reminder: if $p_i = e^{u_i} / \sum e^{u_j}$, then

$$
\frac{\partial}{\partial u_j}\log p_i=1_{\{i=j\}}-p_j.
$$

If $\pi(a|s) \propto \exp(w^{\mathsf{T}}\phi(s,a))$, then it means that $\pi(a|s) = \frac{\exp(w^{\mathsf{T}}\phi(s))}{\sum_{s'}\exp(v)}$ $\frac{\exp(w' \phi(s,a))}{a' \exp(w' \phi(s,a'))}$.

As a consequence:

$$
\nabla_w \pi_w(a|s) = \phi(a,s) - \sum_{a'} \phi(a'|s) \pi_w(a'|s).
$$

The REINFORCE algorithm

REINFORCE

- 1: Initialize w.
- 2: while True do
- 3: Simulate a trajectory (from $t = 1$ to T)
- 4: for $t = T$ to $t = 1$ do
- 5: $G_t := \sum_{t'=t}^T R_{t'}$.
- 6: $\nabla J := G_t \nabla \log \pi(A_t | S_t).$
7: $w := w + \alpha \nabla J.$
- 7: $w := w + \alpha \nabla J$.
8: **end for**
- end for

9: end while

Recall that $\nabla \log \pi(a|s)$ is easy to compute when $\pi(a|s) \propto w^T \phi(s, a)$.

Variance reduction

Problem: Monte-Carlo sampling can have a large variance. Ex: if $Q(s, a_1) = 8 \pm 1$ and $Q(s, a_2) = 8.5 \pm 1$, is a_2 better than a_1 ?

Variance reduction

Problem: Monte-Carlo sampling can have a large variance. Ex: if $Q(s, a_1) = 8 \pm 1$ and $Q(s, a_2) = 8.5 \pm 1$, is a_2 better than a_1 ?

Solution: add a baseline $h : \mathcal{S} \to \mathbb{R}$. Indeed, using the same log-trick:

$$
\mathbb{E}\left[h(s_t)\nabla \log \pi(a_t|s_t)\right] = \mathbb{E}\left[\sum_{a \in \mathcal{A}} h(s_t)\nabla \pi(a|s_t)\right]
$$

= 0

This shows that for any function *h*, one has:

$$
\nabla_{\mathsf{w}} J(s_0) \propto \sum_t \mathbb{E} \left[(G_t - h(s_t)) \nabla \log \pi(a_t|s_t) \right] \}.
$$

Choosing a *h* close to *G^t* reduces the variance of the estimator.

Table of contents

Markov Decision Processes (MDPs)

Tabular reinforcement learning

3 Large state-spaces and approximations • Value function approximation and Deep Q-Learning

- Policy gradient
- **Conclusion and other methods**

Classes of learning algorithms

We have seen two classes of RL methods:

- Value-based (SARSA, Q-learning, Deep QL)
- Policy-based (Policy gradient, REINFORCE)
- Value-based learning can be unstable but uses samples efficiently.
- Policy-based tend to be more robust.

Classes of learning algorithms

We have seen two classes of RL methods:

- Value-based (SARSA, Q-learning, Deep QL) $=$ Critic
- Policy-based (Policy gradient, REINFORCE) $=$ Actor
- Value-based learning can be unstable but uses samples efficiently.
- Policy-based tend to be more robust.

Actor Critic method

Actor Critic method

Basic Actor Critic

- 1: Initialize parameters $w^{(a)}$ (Actor) and $w^{(c)}$ (Critic)
- 2: while True do
- 3: Initialize *S*

4: for
$$
t = 1
$$
 to $t = T$ do

- 5: $A_t \sim \pi_w(S)$ and simulate R, S'
6: $w^{(c)} := w^{(c)} + \alpha^{(c)}(R + \gamma_{V \cup c})$
- 6: $w^{(c)} := w^{(c)} + \alpha^{(c)}(R + \gamma v_{w^{(c)}}(S') v_{w^{(c)}}(S))$ # TD-update
- $\mathcal{W}^{(a)} := \mathsf{w}^{(a)} + \alpha^{(a)} \mathsf{v}_{\mathsf{w}^{(c)}}(\mathsf{S}) \nabla \log \pi(a_t | s_t) \quad \mathsf{\#} \ \mathsf{Policy}\text{-}\mathsf{gradient}$ $8: S:=S'.$
-

- 9: end for
- 10: end while

Going further

Extra-reading:

- Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
- Algorithms for Reinforcement Learning (Szepesvari, 2010)
- Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Next course: some thoughts on exploration / exploitation.

Outline

Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

- Min-max and alpha-beta pruning
- MCTS and exploration
- **•** Conclusion

Reminder: exploration-exploitation dilemma and bandits

• How useful is this for RL?

Reminder: UCB algorithm

UCB computes a confidence bound $UCB_a(t)$ such that $\mu_a(t) \leq UCB_a(t)$ with high probability. Example : *UCB*1 [Auer et al. 02] uses

$$
UCB_a(t) = \hat{\mu}_a(t) + \sqrt{\frac{\alpha \log t}{2N_a(t)}}.
$$

• Choose $A_{t+1} \in \arg \max_{a \in \{1...n\}} UCB_a(t)$ (optimism principle).

Can we use optimism for MDPs?

Observe the empirical means $\hat{R}(s, a)$ and $\hat{P}(s' | s, a)$.

What bonus should one use?

Can we use optimism for MDPs?

Observe the empirical means $\hat{R}(s, a)$ and $\hat{P}(s' | s, a)$.

What bonus should one use?

- UCRL2 (Jaksch 2010) or variant: use bonus on *R* and *P*. Let $\delta(s,a) = C\sqrt{t/N_t(s,a)}$ where $N_t(s,a)$ is the number of time that you took action *a* in state *s* before time *t*.
	- $\mathcal{R} = \{ \text{vector } r \text{ such that for all } s, a: |r(s, a) \hat{r}(s, a)| \leq \delta(s, a) \}$

 $\mathcal{P} = \{\text{trans. matrix} \; P \; \text{s.t. for all} \; s, a, a' \left| P(s, a, a') - \hat{P}(s, a, a') \right| \leq \delta(s, a')$

Optimism:

Apply π that maximizes $V_{r,P\in\mathcal{R},\mathcal{P}}^{\pi}$ (by using extended value iteration) and re-update the policy periodically.

Tree search

For turn-based two players zero sum games

From a given position, takes the best decision.

- **•** Generate a tree of possibilities.
- Explore this tree.

What if the tree is too big?

Table of contents

- 1 Markov Decision Processes (MDPs)
- Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

- Min-max and alpha-beta pruning
- MCTS and exploration
- Conclusion

You can backtrack with the min-max algorithm.

You can backtrack with the min-max algorithm.

You can backtrack with the min-max algorithm.

- You can backtrack with the min-max algorithm.
- For optimization, you can use alpha-beta pruning.

Table of contents

- 1 Markov Decision Processes (MDPs)
- Tabular reinforcement learning

3 Large state-spaces and approximations

- Min-max and alpha-beta pruning
- MCTS and exploration
- Conclusion

Min-max and alpha-beta perform well (ex: Chess). but can be limited (ex: go)

- **•** Tree can still be very big (A^D)
- You need a good heuristic.
	- \triangleright Result is only available at the end
- You might want to avoid the exploration of not promising parts.
	- \triangleright For that you need a good heuristic.

MCTS (Monte Carlo Tree Search) uses simulation to conduct the tree search

- Simulate many games and compute how many were won.
- Explore carefully which actions were best.

MCTS (Monte Carlo Tree Search) uses simulation to conduct the tree search

For each child, let *S*(*c*) be the number of success and *N*(*c*) be the number of time you played *c*, and $t = \sum_{c'} N(c').$

Explore arg max_{*c*} $\frac{S(c)}{N(c)} + 2\sqrt{\frac{\log t}{N(c)}}$.

Open question: no guarantee with $\sqrt{\log t/N(c)}$. Is $\sqrt{t}/N(c)$ better? Nicolas Gast – 106 / 110

MCTS (Monte Carlo Tree Search) uses simulation to conduct the tree search

• Create one or multiple children of the leaf.
MCTS (Monte Carlo Tree Search) uses simulation to conduct the tree search

Obtain a value of the node (e.g. rollout)

MCTS (Monte Carlo Tree Search) uses simulation to conduct the tree search

• Backpropagate to the root

MCTS algorithm

Demo / exercice

Table of contents

- 1 Markov Decision Processes (MDPs)
- Tabular reinforcement learning
- 3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

- Min-max and alpha-beta pruning
- MCTS and exploration
- **Conclusion**

Conclusion

Exploration v.s. exploitation is central in RL

- Bandits and regret help formalizing this idea.
- One important notion is the use of optimism to force exploration.
	- ▶ Bayesian sampling can also be used
- Theoretical tools guide practical implementations.