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Reminder: states, actions and policy

S, A = state/action spaces.

A (determinisitic) policy is a function
ω : S → A

.
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Gain and value function

The gain is:

Gt = Rt+1 + εRt+2 + ε2
Rt+3 + . . .

= Rt+1 + εGt+1,

where ε ↑ (0, 1) is the discount factor.

The value function V and action-value function Q are:

Vω(s) = E [Gt+1 | St = s,ω]

Qω(s, a) = E [Gt+1 | St = s,At = a,ω]
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Two problems

Policy evaluation

For a given policy ω, find
V

ω(x) and Q
ω(x , a).

Control problem / optimization

Find / use ω→ such that
V

ω→
= maxω V ω(x).
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Bellman’s equation

V
→(s) =

max
a↑A

Q
→(s, a)

Q
→(s, a) =

r(s,ω(s)) + ε
∑

s↑

V
→(s ↓))p(s ↓ | s, a)

Two problems:
Requires the knowledge of systems dynamics and rewards.

↭ We assume to have access to a simulator.

|S| can be large

↭ We assume |S| to be small for now.
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Monte Carlo methods
Class of algorithms where we replace a deterministic computation by an
estimation of E [X ]. We then sample many values of X and compute the
average (law of large numbers: 1

n

∑n
i=1 Xi ↓ E [X ]).

Example:

Source: wikipedia

Area is ω/4. A point (x , y) is in the red zone if x2 + y
2 ↔ 1.
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Monte Carlo for policy Evaluation

V
ω(St) = E [Gt | St = s,ω] .

Monte-Carlo = sample Gt by using rollout.

Recipe:
Play many episodes with ω

Record the return from the first visit to each state
Return the average as an approximation of V ω(s).

Note: every-visit also works but the samples are not independent.
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Monte Carlo learning algorithm

First-visit Monte-Carlo

1: For all s: R(s):={}
2: while True do
3: Simulate an episode from 0 to T using ω
4: Set GT := 0
5: for t = T to 0 (backward) do
6: Gt = Rt+1 + εGt+1.
7: If St does not appear in S0 . . . St↔1, R(St).append(Gt).
8: end for
9: end while

10: V (s) = mean(R(s)).

If a state has been seen n times, the error is O(1/
↗
n).
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Monte-Carlo optimization
Monte-Carlo can be used to evaluate the state-action function Q(s, a).

ω Qω

Evaluate ω

improve ω

Recall: improve can be done by using greedy:

ω(s) = argmax
a↑A

Q(s, a).

Possible problems:
One may need many samples for all actions.
Some action-pair might not be visited.

Solutions: exploration/exploitation tradeo! (course 4), importance
sampling.
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The temporal di!erence (TD) error
Bellman’s equation states:

V (St) = E [Rt+1 + εRt+2 + . . . ]

= E [Rt+1 + εV (St+1)] .

This is equivalent to

0 = E



Rt+1 + εV (St+1)↘ V (St)︸ ︷︷ ︸
TD error





The TD learning algorithm uses the updates:

V (St) := V (St) + ϑt(Rt+1 + εV (St+1)↘ V (St))),

where ϑ is a learning rate.
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Ed : Estimate E[X]

Su=i him Sn = ELX] Cas

Sn
+ i

= Su + it(Xn+ - Sn)

Y= (n + 1)Sa+ 1 = nSn + Xn+ 1
= (n+1)Sn + Yn+ -Sa



TD learning algorithm

TD(0) for evaluating V ω

1: Initialize V (s) arbitrarily.
2: while True do
3: Initialize S

4: for While S
→ is not a terminal state do

5: Sample A → ω(S) and simulate a transition S
→,R → p(· | S ,A).

6: V (S) := V (S) + εt(R + ϑV (S →)↑ V (S)).
7: S := S

→

8: end for
9: end while
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TD-learning: proof of convergence

TD-update:

V (St) := V (St) + εt(Rt+1 + ϑV (St+1)↑ V (St))).

Theorem

Fix a policy ω that visits all states and let ϑ < 1.
Assume that we use the TD-update with εt be decreasing and such that:

∑
t εt = +↓ and

∑
t ε

2
t < +↓.

Then the TD-learning converges to V
ω almost surely.

Nicolas Gast – 57 / 110



Proof

Let ϖt(s) be such that

ϖt(s) =

{
0 if s = St

εt otherwise

Let Vt be the V -table at time t. The definition of ϖt implies that for all s:

Vt+1(s) := Vt(s) + ϖt(s)



Rt+1 + ϑVt(St+1)︸ ︷︷ ︸
=TωVt+noise

↑Vt(s)



 .

with
∑

t ϖt(s) = ↓ and
∑

t ϖ
2
t (s) < ↓.

As T
ω is contracting, Theorem 1 of On the convergence of stochastic iterative dynamic

programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93 shows that this implies
limt↑↓ Vt = V

ω almost surely.

Nicolas Gast – 58 / 110



Proof

Let ϖt(s) be such that

ϖt(s) =

{
0 if s = St

εt otherwise

Let Vt be the V -table at time t. The definition of ϖt implies that for all s:

Vt+1(s) := Vt(s) + ϖt(s)



Rt+1 + ϑVt(St+1)︸ ︷︷ ︸
=TωVt+noise

↑Vt(s)



 .

with
∑

t ϖt(s) = ↓ and
∑

t ϖ
2
t (s) < ↓.

As T
ω is contracting, Theorem 1 of On the convergence of stochastic iterative dynamic

programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93 shows that this implies
limt↑↓ Vt = V

ω almost surely.

Nicolas Gast – 58 / 110



Relation between MC, TD and DP

V (St) = E [Gt ] MC

V (St) = E [Rt+1 + ϑV (St+1)] TD

V (St) = E [Rt+1] + ϑ
∑

s→

V (St+1)P(St+1 = s
→) DP

MC simulates a full trajectory
TD samples one-step and uses a previous estimation of V .
DP needs all possible values of V (s →).
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TD vs MC comparison: general case

source: Sutton, Barto 2018. For a random-walk example.

Warning: this might very well depend on the choice of learning parameter
εt !
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TD v.s. MC and tradeo!s

One full trajectory for update Updates take time to propagate

Tradeo!:
Use n-step returns (see Sutton-Barto, chapter 7).

Gt:t+n = Rt+1 + ωRt+2 + · · ·+ ωn→1
Rt+n + ωt+n

V (St+n).

TD(ε) (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

Gt(ε) = (1 → ε)
T∑

n=1

εn→1
Gt:t+n + εT

Gt .
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TD learning = policy evaluation. What about optimization?

Bellman’s equations are:

V
ω(St) = Eω [Rt+1 + ωV ω(St+1)] to evaluate ϑ

Q
↑(St ,At) = E

[
Rt+1 + ωmax

a
Q

↑(St+1, a)
]

to find the best policy

This leads to two variant of:
Q-learning = o!-policy learning.

↭ Choose At ↑ ϑ.

↭ Apply TD-learning replacing V (s) by maxa Q(s, a).

SARSA = on-policy learning:
↭ Choose At+1 ↑ argmaxa→A Q(St+1, a).
↭ Apply TD-learning replacing V (s) by Q(s,At+1).
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Q-learning and convergence guarantee

At ↑ ϑ

Q(St ,At) := Q(St ,At) + ϖt

(
Rt+1 + ωmax

a↓A
Q(St+1, a)→ Q(St ,At)

)
.

Theorem

Assume that ω < 1 and that:
Any station-action pair (a, s) is visited infinitely often.
∑

t ϖt = ↓ and
∑

t ϖ
2
t < ↓.

Then: Q converges almost surely to the optimal Q↑-table as t goes to
infinity.

Proof: Identical to the proof of TD-learning.
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Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):

At → ω

Q(St ,At) := Q(St ,At) + εt

(
Rt+1 + ϑmax

a→A
Q(St+1, a)↑ Q(St ,At)

)
.

SARSA (name comes from St ,At ,Rt+1, St+1,At+1)

At+1 → argmaxQ(St ,At) (or ϖ-greedy)
Q(St ,At) := Q(St ,At) + εt (Rt+1 + ϑQ(St+1,At+1)↑ Q(St ,At)) .

Nicolas Gast – 65 / 110



Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):

At → ω

Q(St ,At) := Q(St ,At) + εt

(
Rt+1 + ϑmax

a→A
Q(St+1, a)↑ Q(St ,At)

)
.

SARSA (name comes from St ,At ,Rt+1, St+1,At+1)

At+1 → argmaxQ(St ,At) (or ϖ-greedy)
Q(St ,At) := Q(St ,At) + εt (Rt+1 + ϑQ(St+1,At+1)↑ Q(St ,At)) .

Nicolas Gast – 65 / 110



Q-learning pseudo-code

The Q learning algorithm

1: Initialize Q(s, a) arbitrarily.
2: while True do
3: Initialize S

4: while S
↑ is not a terminal state do

5: ω = policy derived from Q (e.g. ϖ-greedy).
6: Sample A → ω(S) and simulate a transition S

↑,R → p(· | S ,A).
7: Q(S ,A) := Q(S ,A) + εt(R + ϑmaxaQ(S ↑, a)↑ Q(S ,A)).
8: S := S

↑

9: end while
10: end while
(in orange, the di!erence with TD-learning).
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SARSA

SARSA algorithm

1: Initialize Q(s, a) arbitrarily.
2: while True do
3: Initialize S and A

4: while S
↑ is not a terminal state do

5: ω = policy derived from Q (e.g. ϖ-greedy).
6: Simulate S

↑,R → p(· | S ,A) and A
↑ := ω(S ↑).

7: Q(S ,A) := Q(S ,A) + εt(R + ϑQ(S ↑,A↑)↑ Q(S , a)).
8: S := S

↑,A := A
↑

9: end while
10: end while
(in orange, the di!erence with Q-learning).
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SARSA vs Q-learning

Model is
deterministic.
Exploration policy
(ω) is ϖ-greedy.

SARSA or Q-learning: what will be the di!erence?

For large ϖ, SARSA will
avoid the optimal shortest
path.
Q-learning will learn the
shortest path but will
often fall.
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How to choose the learning rate and guarantee exploration?

Recall: for Q learning, you are given an exploration policy ω and apply:

At+1 → ω

Q(St ,At) := Q(St ,At) + εt

(
Rt+1 + ϑmax

a→A
Q(St+1, a)↑ Q(St ,At)

)
.

Questions:
How to choose ω?
How to choose εt?

Solution: exploration/exploitation tradeo! (course 4), and Q-learning with

UCB Exploration is Sample E!cient for Infinite-Horizon MDP by Dong et al 2019.
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Important notions

(your job here)
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TD and Q-learning are tabular method
They can be proven to converge.

S V (S)
(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)

...

S
A

N S E W

(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)

...

What about large state spaces?

Nicolas Gast – 72 / 110



TD and Q-learning are tabular method
They can be proven to converge.

S V (S)
(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)

...

S
A

N S E W

(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)

...

What about large state spaces?

Nicolas Gast – 72 / 110



Outline

1 Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

3 Large state-spaces and approximations
Value function approximation and Deep Q-Learning
Policy gradient
Conclusion and other methods

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 73 / 110



Reminder: Tabular MDP

We want to find Q(s, a) ↓ Q
↓(s, a).

ω(s) = argmax
a→A

Q(s, a).

Two types of methods:
MC methods:

Q
ω(s, a) =

1
K

K∑

k=1

G
(k)

TD methods (SARSA / Q-learning)

Does it scale?
The complexity is !(|S||A|).

Q(s, a) a1 a2 a3 . . .
s1
s2
s3
s4
...
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What are typical state space sizes?
The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

|S| = 10010 = 1020.
A = possible orders (=10 ↔ 100?)

Game of go
|S| = 319↔19 (19 ↔ 19 board game).
|A| = 19 ↔ 19.

There are ↓ 10170
Q-values.
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What are typical state space sizes?
The curse of dimensionality

Breakout (1976) Atari games

|S| = 884↔84 (84 ↔ 84 screen, 8 colors).
|A| = 2 (left, right).

There are ↓ 102000
Q-values.

Starcraft alphastar

|S| ↗ |A| ↓ +↘??

We need approximations.
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TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:

V (St) := V (St) + ε (Rt+1 + ϑV (St+1)↑ V (St))

Q(St ,At) := Q(St ,At) + ε

(
Rt+1 + ϑmax

a→A
Q(St+1, a)↑ Q(St ,At)

)
.

This does not scale if |S| (or |A|) are large.
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Function approximation
We replace the exact Q-table (or value function V ) by an approximation:

Q(S ,A) ↓ qw(S ,A),

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

Q(S ,A) = wTϱ(s, a),

where ϱ(s, a) is a feature vector.
("modern"): qw is a deep neural network.
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From Q-learning to deep Q-learning
The original Q-learning uses that:

Q(St ,At) = E
[
Rt+1 +max

a→A
Q(St+1, a)

]
.

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

↓ E
[
Rt+1 + ϑmax

a→A
qw(St+1, a)

]

︸ ︷︷ ︸
target

.

Deep Q-learning minimizes the L2 norm and use gradient descent:

w := w + ε

(
Rt+1 + ϑmax

a→A
qw(St , a)↑ qw(St ,At)

)
≃w(qw(St ,At)).
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Example of breakout
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Why is vanilla unstable?

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

↓ E
[
Rt+1 + ϑmax

a→A
qw(St+1, a)

]

︸ ︷︷ ︸
target

.

For that, we do:

w := w + ε

(
Rt+1 + ϑmax

a→A
qw(St , a)↑ qw(St ,At)

)
≃w(qw(St ,At)).

Problems:

Target and sources are highly correlated
Target changes as we learn.
Exploration is not guaranteed.

Learning algorithm can be unstable.
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Possible solution: replay bu!er or separate target network

Vanilla Q-learning uses a
single network

DDQN uses a slow learning
target network and a fast
learning q-network.
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Applications of Deep RL

Resource management (energy)
Computer vision and robotics
Finance
. . .

Fundamental idea is simple but making the system stable and fast is an
issue. Also, delayed actions or sparse rewards is di"cult.
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Policy search

We are given a family of policies ωw parametrized by w ⇐ W. Typically:

ωw(a | s) ⇒ exp(wTϱ(s, a)),

where ϱ(s, a) is a feature vector.

Let J(w) := V
ωw(s0) be its performance. We want to find w that

maximizes J(w).

Sometimes, this works well with direct methods (brute-force)
We can also use policy gradients:

w := w + ε≃wJ(w).
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On an example https://www.youtube.com/watch?v=cQfOQcpYRzE
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How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is ω(a|s).

≃ω(a|s)E [G0] = P(attaining s)Q(s, a)

=
1

ω(a|s)P(observing (s, a))Q(s, a)

Algorithm: We want to compute gradient(S ,A) = ≃ω(a|s)E [G0].
Run a trajectory and observe St ,At .
For each t:

⊋gradient(St ,At) =
1

ω(At |St)
Gt .

Theorem. For all s, a: E
[

⊋gradient(s, a)
]
= ≃ω(a|s)E [G ].
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The policy gradient theorem
Assume that ω(a|s) = fw (s, a). We have:

≃wE [G0] =
∑

s,a

≃wω(a|s)≃ω(a|s)E [G0]

Hence, an unbiased estimate of the gradient ≃wE [G0] is

∑

t

(≃wω(At |St))
ω(At |St)

Gt .

By using that ≃log(y) = ≃(y)/y , we get:

An unbiased estimate of the gradient is:

≃wE [G0] = E
[
∑

t

(≃w log ω(At |St))Gt

]
.
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Why is ≃ log ω(a|s) easy to compute?

Reminder: if pi = e
ui/

∑
e
uj , then

ς

ςuj
log pi = 1{i=j} ↑ pj .

If ω(a|s) ⇒ exp(wTϱ(s, a)), then it means that ω(a|s) = exp(wTε(s,a))∑
a→ exp(w

Tε(s,a→))
.

As a consequence:

≃wωw (a|s) = ϱ(a, s)↑
∑

a→

ϱ(a↑|s)ωw (a↑|s).
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The REINFORCE algorithm

REINFORCE

1: Initialize w.
2: while True do
3: Simulate a trajectory (from t = 1 to T )
4: for t = T to t = 1 do
5: Gt :=

∑T
t→=t Rt→ .

6: ≃J := Gt≃ log ω(At |St).
7: w := w + ε≃J.
8: end for
9: end while

Recall that ≃ log ω(a|s) is easy to compute when ω(a|s) ⇒ w
Tϱ(s, a).
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Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s, a1) = 8 ± 1 and Q(s, a2) = 8.5 ± 1, is a2 better than a1?

Solution: add a baseline h : S ⇑ R. Indeed, using the same log-trick:

E [h(st)≃ log ω(at |st)] = E
[
∑

a→A
h(st)≃ω(a|st)

]

= 0

This shows that for any function h, one has:

≃wJ(s0) ⇒
∑

t

E [(Gt ↑ h(st))≃ log ω(at |st)]}.

Choosing a h close to Gt reduces the variance of the estimator.
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Classes of learning algorithms
We have seen two classes of RL methods:

Value-based (SARSA, Q-learning, Deep QL)

=Critic

Policy-based (Policy gradient, REINFORCE)

=Actor

Value-based learning can be unstable but uses samples e"ciently.
Policy-based tend to be more robust.
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Actor Critic method

Basic Actor Critic

1: Initialize parameters w(a) (Actor) and w(c) (Critic)
2: while True do
3: Initialize S

4: for t = 1 to t = T do
5: At → ωw(S) and simulate R , S ↑

6: w(c) := w(c) + ε(c)(R + ϑvw(c)(S ↑)↑ vw(c)(S)) # TD-update
7: w(a) := w(a) + ε(a)

vw(c)(S)≃ log ω(at |st) # Policy-gradient
8: S:=S’.
9: end for

10: end while
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Going further

Extra-reading:
Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
Algorithms for Reinforcement Learning (Szepesvari, 2010)
Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Next course: some thoughts on exploration / exploitation.
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Reminder: exploration-exploitation dilemma and bandits

How useful is this for RL?
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Reminder: UCB algorithm
UCB computes a confidence bound UCBa(t) such that µa(t) ⇓ UCBa(t)
with high probability. Example : UCB1 [Auer et al. 02] uses

UCBa(t) = µ̂a(t) +

√
ε log t

2Na(t)
.

Choose At+1 ⇐ argmaxa→{1...n} UCBa(t) (optimism principle).
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Can we use optimism for MDPs?

Observe the empirical means R̂(s, a) and P̂(s ↑ | s, a).

What bonus should one use?

UCRL2 (Jaksch 2010) or variant: use bonus on R and P . Let
φ(s, a) = C


t/Nt(s, a) where Nt(s, a) is the number of time that you

took action a in state s before time t.

R = {vector r such that for all s, a: |r(s, a)↑ r̂(s, a)| ⇓ φ(s, a)}

P = {trans. matrix P s.t. for all s, a, a↑
P(s, a, a↑)↑ P̂(s, a, a↑)

 ⇓ φ(s, a)}

Optimism:
↭ Apply ω that maximizes V

ω
r ,P→R,P (by using extended value iteration)

and re-update the policy periodically.
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Tree search

For turn-based two players zero sum games

From a given position, takes the
best decision.

Generate a tree of
possibilities.
Explore this tree.

What if the tree is too big?
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You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

min (opponent)

If the tree is two big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.
For optimization, you can use alpha-beta pruning.
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Min-max and alpha-beta perform well (ex: Chess). . .
. . . but can be limited (ex: go)

Tree can still be very big (AD)

You need a good heuristic.
↭ Result is only available at the end

You might want to avoid the exploration
of not promising parts.

↭ For that you need a good heuristic.
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Simulate many games and compute how many were won.
Explore carefully which actions were best.

test
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

For each child, let S(c) be the number of success and N(c) be the number
of time you played c , and t =

∑
c → N(c ↑).

Explore argmaxc
S(c)
N(c) + 2


log t
N(c) .

Open question: no guarantee with

log t/N(c). Is

↖
t/N(c) better?

test
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Create one or multiple children of the leaf.
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Backpropagate to the root
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MCTS algorithm

MCTS

1: while Some time is left do
2: Select a leaf node #UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf #random sampling
5: Backpropagate to the root
6: end while
7: Return argmaxc→children(root) N(c) #or S(c)/N(c).
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Demo / exercice
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Conclusion

Exploration v.s. exploitation is central in RL

Bandits and regret help formalizing this idea.

One important notion is the use of optimism to force exploration.
↭ Bayesian sampling can also be used

Theoretical tools guide practical implementations.
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