Outline

© Tabular reinforcement learning
@ Monte-Carlo methods
@ Temporal difference
@ Q-learning and SARSA
@ Conclusion

Nicolas Gast — 44 / 110

Reminder: states, actions and policy

\J

Agent
state reward action

S, R, A,
R

_S.. | Environment l':

S, A = state/action spaces.

A (determinisitic) policy is a function
7:S8— A J

Nicolas Gast — 45 / 110

Gain and value function
The gain is:

Gt = Rep1 + YReo2 + VP Regz + ...
= Riy1 + 776G,

where ~ € (0,1) is the discount factor.

Nicolas Gast — 46 / 110

Gain and value function
The gain is:

Gt = Rep1 +YReq2 + ’Y2Rt+3 + ...
= Ret1 +7Geg1,

where ~ € (0,1) is the discount factor.

The value function V' and action-value function @ are:

Vﬂ—(S) =E [Gt+1 | St =S, 7T]
Qr(s;a) =E[Ger1 | St = 5,Ar = a,7]

Nicolas Gast — 46 / 110

Two problems

@ Policy evaluation

For a given policy 7, find
V7(x) and Q™ (x, a). J

Nicolas Gast — 47 / 110

Two problems

@ Policy evaluation

For a given policy 7, find

V7(x) and Q™ (x, a).

e Control problem / optimization

Find / use 7* such that
V™ = max, V7(x).

Nicolas Gast — 47 / 110

Bellman's equation

Vi(s) =

Nicolas Gast — 48 / 110

Bellman's equation

Vi(s) = max Q*(s, a)
Q*(s,a) = r(s, +'yZV*(s p(s' | s, a)

Two problems:
@ Requires the knowledge of systems dynamics and rewards.

@ |S| can be large

Nicolas Gast — 48 / 110

Bellman's equation

INCOE f’_ﬂ' (' 50)

V*(s) = maxQ(a)
Q*(s,a) = r(s, —i—vZV*(s p(s' | s, a)

» We assume to have access to a simulator.

o {Steanbetarge

» We assume |S| to be small for now.

Nicolas Gast — 48 / 110

Table of contents

© Tabular reinforcement learning
@ Monte-Carlo methods

Nicolas Gast — 49 / 110

Monte Carlo methods

Class of algorithms where we replace a deterministic computation by an

estimation of E [X]. We then sample many values of X and compute the
average (law of large numbers: 25" | X; ~ E [X]).

Nicolas Gast — 50 / 110

Monte Carlo methods

Class of algorithms where we replace a deterministic computation by an

estimation of [E [X]. We then sample many values of X and compute the
average (law of large numbers: 2 3°7 | X; ~ E [X]).

Example:

04 g

Source:
o Area is /4. A point (x,y) is in the red zone if x* + y? < 1.

Nicolas Gast — 50 / 110

Monte Carlo for policy Evaluation

Vﬂ(St) =K [Gt ‘ 51_- = 5,7'('] .

Monte-Carlo = sample G; by using rollout.

Nicolas Gast — 51 / 110

Monte Carlo for policy Evaluation

VW(St) =K [Gt ‘ 51_- = 5,7'('] .
Monte-Carlo = sample G; by using rollout.
Recipe:
o Play many episodes with 7

@ Record the return from the first visit to each state

@ Return the average as an approximation of V7 (s).

Note: every-visit also works but the samples are not independent.

Nicolas Gast — 51 / 110

Monte Carlo learning algorithm

First-visit Monte-Carlo
1. For all s: R(s):={}
2. while True do
3: Simulate an episode from 0 to T using 7
4 Set Gr =0
5. for t =T to 0 (backward) do
6 Gt = Rev1 + Gy
7 If S; does not appear in Sp...S:—1, R(S:).append(Gy).
8: end for
9: end while
10: V(s) = mean(R(s)).

If a state has been seen n times, the error is O(1/+/n).

Nicolas Gast — 52 / 110

Monte-Carlo optimization
Monte-Carlo can be used to evaluate the state-action function Q(s, a).

Evaluate 7

improve T

Recall: improve can be done by using greedy:

7(s) = argmax Q(s, a).
acA

Nicolas Gast — 53 / 110

Monte-Carlo optimization

Monte-Carlo can be used to evaluate the state-action function Q(s, a).

Evaluate 7

improve T
Recall: improve can be done by using greedy:

7(s) = argmax Q(s, a).
acA

Possible problems:
@ One may need many samples for all actions.
@ Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (course 4), importance
sampling.

Nicolas Gast — 53 / 110

Table of contents

© Tabular reinforcement learning

@ Temporal difference

Nicolas Gast — 54 / 110

The temporal difference (TD) error

Bellman'’s equation states:

V(St) =K [Rt+1 + ’}/Rt+2 —+ ..]
=E[Res1 +7V(Se41)] -

V(s) = =(,7)+ xg V() ®(s 5, %6)

Nicolas Gast — 55 / 110

The temporal difference (TD) error

Bellman's equation states:

V(St) =K [Rt+1 + ’}/Rt+2 —+ ..]
=E[Res1 +7V(Se41)] -

OQMMY

This is equivalent to

0=E |Ret1 +7V(St41) — V(St)
TD error

The TD learning algorithm uses the updates:

V(Se) := V(St) + ae(Rep1 +7V(Sei1) — V(Sh))), |

where « is a learning rate.
Nicolas Gast — 55 / 110

&l Eornde €]
~S:n = 7|\— <m2<xi ﬁoo g" g HKJ (""g)

g*(: ‘S:n+ ;M\T(x’he(’g’;\>

m

En"(‘h“)&,\“: L Sm'G Xme, = (m—()fma- YW(, —.g,,,\

=

TD learning algorithm

TD(0) for evaluating V™

1. Initialize V/(s) arbitrarily.
2: while True do
3: Initialize S

4. for While S’ is not a terminal state do

B: Sample A ~ 7(S) and simulate a transition S, R ~ p(- | S, A).
6: V(S) = V(S)+ ar(R+~yV(S) — V(S)).

7: S=9

8: end for

9: end while

Nicolas Gast — 56 / 110

TD-learning: proof of convergence

TD-update:

V(St) == V(St) + ar(Resr + 7V(Seq1) — V(51)))-

Theorem

Fix a policy 7 that visits all states and let v < 1.

Assume that we use the TD-update with «; be decreasing and such that:
@ Y ,ar=+0c0and Y, a? < +o0.

Then the TD-learning converges to V™ almost surely.

Nicolas Gast — 57 / 110

Proof

Let B¢(s) be such that

Bt(s):{ 0 ifs=S5,

a; otherwise

Let V; be the V-table at time t. The definition of 3; implies that for all s:

Vir1(s) := Vi(s) + Be(s) | Rev1 + 7 Ve(Sev1) — Ve(s)

=TT Vi+noise

with Y, Bi(s) = oo and Y, 52(s) < <.

Nicolas Gast — 58 / 110

Proof

Let B¢(s) be such that

0 if s = St
a; otherwise

Be(s) = {

Let V; be the V-table at time t. The definition of 3; implies that for all s:

Vir1(s) := Vi(s) + Be(s) | Rev1 + 7 Ve(Sev1) — Ve(s)

=TT Vi+noise

with Y, Bi(s) = oo and Y, 52(s) < <.

As T™ is Contracting, Theorem 1 Of On the convergence of stochastic iterative dynamic
programming algorithms., Jaakkola, Jordan, Singh, NeurlPS 93 ShOWS that thls |mp||e5
lims oo Vi = V7 almost surely.

Nicolas Gast — 58 / 110

Relation between MC, TD and DP

V(St) = E[Re1 + 7V (Se41)] D
V(Se) =E[Real + 7Y V(Ser1)P(Ser1 = o) DP
sl
Monte-Carlo Temporal-Difference Dynamic Programming
V(S:) < V(S:) +a (G — V(S)) V(S:) V() + @ (Resa +9V(Ser) = V(S1)) V(S:) ¢ Ex [Resy + 7 V(Sea1)]

SI

LA RTE

@ MC simulates a full trajectory
@ TD samples one-step and uses a previous estimation of V.

@ DP needs all possible values of V/(s').
Nicolas Gast — 59 / 110

TD vs MC comparison: general case

.25

BATCH TRAINING

.2+

RMS error, .15
averaged
over states .1

.05

T T T 1
0 25 50 75 100

Walks / Episodes

source: Sutton, Barto 2018. For a random-walk example.

Warning: this might very well depend on the choice of learning parameter
Oét!

Nicolas Gast — 60 / 110

TD v.s. MC and tradeoffs

One full trajectory for update Updates take time to propagate

Nicolas Gast — 61 / 110

One full trajectory for update Updates take time to propagate

Tradeoff:

o Use n-step returns (see Sutton-Barto, chapter 7).

Grtin=Res1 +YReio+ -+ 7" ' Ren + 7 "V(Stin).

Nicolas Gast — 61 / 110

One full trajectory for update Updates take time to propagate
Tradeoff:

o Use n-step returns (see Sutton-Barto, chapter 7).

Gritan = Rep1 +YRepo + -+ 7" 'Repn + 411" V(St4n)-

@ TD(\) (see Sutton-Barto, chapter 12 or Szepesvari, Section 2.1.3).

;
Ge(\) =(1=X)D N Grryn+ AT G

n=1

Nicolas Gast — 61 / 110

Table of contents

© Tabular reinforcement learning

@ Q-learning and SARSA

Nicolas Gast — 62 / 110

TD learning = policy evaluation. What about optimization?

Bellman's equations are:

VT(S5:) = E™ [Rey1 + V™ (St41)] to evaluate 7

IQH(+ ¥V (S - V)

Nicolas Gast — 63 / 110

TD learning = policy evaluation. What about optimization?

Bellman's equations are:

VT(S5:) = E™ [Rey1 + V™ (St41)] to evaluate 7
Q*(5:,A:) =E |:Rt+]_ + v max Q*(S¢+1, a)] to find the best policy

V *(gl'.u)

O Aiffpe
RC‘ < ¥ /MOH(6’2(,@6(‘) Q(Q/AG)

S oy = Regy S =P

Nicolas Gast — 63 / 110

TD learning = policy evaluation. What about optimization?

Bellman's equations are:

VT(S5:) = E™ [Rey1 + V™ (St41)] to evaluate 7
Q" (St,At) = E |Rip1 + ymax Q*(S¢4+1,a)| to find the best policy

This leads to two variant of:
@ Q-learning = off-policy learning.
» Choose A; ~ .
» Apply TD-learning replacing V/(s) by max, Q(s, a).
@ SARSA = on-policy learning:
» Choose A1 ~ arg max,c 4 Q(Se41, a).
» Apply TD-learning replacing V(s) by Q(s, Asi1).

Nicolas Gast — 63 / 110

Q-learning and convergence guarantee

AtNTl'

Q(St, Ae) = Q(St, At) + <Rt+1 + 7y raneiii(Q(St41,a) — Q(S:, At)> .

Nicolas Gast — 64 / 110

Q-learning and convergence guarantee

AtNTF

Q(St, Ae) = Q(St, At) + ay <Rt+1 + Teaj Q(St41,a) — Q(S:, At)> .

Theorem

Assume that 7y < 1 and that:
e Any station-action pair (a, s) is visited infinitely often.
oY ,ar=00and a2 < oco.

Then: Q converges almost surely to the optimal Q*-table as t goes to

infinity.

Proof: Identical to the proof of TD-learning.

Nicolas Gast — 64 / 110

| A=
QX . O(é = /é-— 20((AN Qog(.'

i‘\

S - Sh <T‘

Q“

Wy = a2y ge (L)

Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):
At ~ T

Q(St, Ar) == Q(St, Ar) + at <Rt+1 + 7y TEEE‘(Q(St+1,a) — Q(S:, At)> .

Nicolas Gast — 65 / 110

Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):
At ~ T

Q(St, Ar) == Q(St, Ar) + at <Rt+1 + 7y TEEB‘(Q(St+1,a) — Q(S:, At)> .

SARSA (name comes from S;, As, Rey1, Sev1, Ary1)

Ats1 ~ argmax Q(St, A¢) (or e-greedy)
Q(St, At) = Q(St, At) + vt (Rev1 + 7Q(Se1, Arr1) — Q(St, Ar)) -

Nicolas Gast — 65 / 110

Q-learning pseudo-code

The Q learning algorithm
1. Initialize Q(s, a) arbitrarily.
2: while True do
3: Initialize S
while S’ is not a terminal state do
7 = pliey defived From QA€ g~ kreedy)-
Sample A ~ 7(S) and simulate a transition ', R ~ p(- | S, A).
Q(S,A) := Q(S,A) + ar(R +ymax,Q(S’, a) — Q(S, A)).
s:=5
9: end while
10: end while
(in orange, the difference with TD-learning).

CO TN

Nicolas Gast — 66 / 110

SARSA

SARSA algorithm

1. Initialize Q(s, a) arbitrarily.

2: while True do

3: Initialize S and A

4: while S’ is not a terminal state do

5: 7 = policy derived from Q (e.g. e-greedy).
6: Simulate S’ R ~ p(- | S, A) and A" := 7(5').
7 Q(S,A) = Q(S,A) + ar(R+~vQ(S",A) — Q(S, a)).
8 S=5 A=A

9: end while

10: end while

(in orange, the difference with Q-learning).

Nicolas Gast — 67 / 110

SARSA vs Q-learning

et o Model is

deterministic.

s The Cliff G @ Exploration policy
o () is e-greedy.

R=-100

SARSA or Q-learning: what will be the difference?

Nicolas Gast — 68 / 110

SARSA vs Q-learning

€3 The Cliff

R=-100

safe path

optimal path

o Model is
deterministic.

@ Exploration policy
(7) is e-greedy.

SARSA or Q-learning: what will be the difference?

Sarsa
-25-
Sumof 1L AN N
rew:-'lrds Q-learning
during
episode 754
-100 T T T T 1
0 100 200 300 400 500
Episodes

@ For large ¢, SARSA will
avoid the optimal shortest

path.

@ Q-learning will learn the
shortest path but will
often fall.

Nicolas Gast — 68 / 110

How to choose the learning rate and guarantee exploration?

Recall: for Q learning, you are given an exploration policy 7 and apply:

A1~ T

Q(St, Ar) == Q(St, Ar) + at <Rt+1 + Te?% Q(St+1,a) — Q(Se, At)> .

Questions:
@ How to choose 77

@ How to choose a7

Solution: exploration/exploitation tradeoff (course 4), and Q-learning with
UCB Exploration is Sample Efficient for Infinite-Horizon MDP by Dong et al 2019.

Nicolas Gast — 69 / 110

Table of contents

© Tabular reinforcement learning

@ Conclusion

Nicolas Gast — 70 / 110

Important notions

(your job here)

Nicolas Gast — 71 / 110

TD and Q-learning are tabular method

They can be proven to converge.

(0,0)
(0.1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)

Nicolas Gast — 72 / 110

TD and Q-learning are tabular method

They can be proven to converge.

5 V(S 7
©0) S N S w
(0.) ©0)
(0.2 (0.1)
(0.3 (0.2)
(L0) (0.3
(L) (L0)
(12) (L)
(3) 12)
What about large state spaces?

Nicolas Gast — 72 / 110

Outline

9 Large state-spaces and approximations
@ Value function approximation and Deep Q-Learning
@ Policy gradient
@ Conclusion and other methods

Nicolas Gast — 73 / 110

Reminder: Tabular MDP

We want to find Q(s, a) =~ Q*(s, a).

7(s) = argmax Q(s, a).
acA

Two types of methods:
@ MC methods:

1 K
Qﬂ'(s’ a) — R Z G(k)
k=1

e TD methods (SARSA / Q-learning)

Nicolas Gast — 74 / 110

Reminder: Tabular MDP

We want to find Q(s, a) =~ Q*(s, a).

7(s) = arg max Q(s,). Does it scale?

acA The complexity is Q(|S||Al).
Two types of methods: Q(s;a) [a1 a» a3
@ MC methods: °1
52
m L= o >
Q7(s,a) = X Z G sS4
k=1 .

e TD methods (SARSA / Q-learning)

Nicolas Gast — 74 / 110

What are typical state space sizes?

The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

e |S| = 10010 = 10%°.
e A = possible orders (=10 x 100?)

T - (e, pd - e o)
?: (s'st-S°

Nicolas Gast — 75 / 110

What are typical state space sizes?

The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

e |S| =100% =102,
e A = possible orders (=10 x 1007?)

Game of go
o |S| = 319%19 (19 x 19 board game).

o |Al =19 x 19.
0170

There are = 1 Q-values.

Nicolas Gast — 75 / 110

What are typical state space sizes?

The curse of dimensionality

Breakout (1976)
o |S| = 88484 (84 x 84 screen, 8 colors).
o |A| =2 (left, right).

There are =~ 1029 Q-values.

Nicolas Gast — 76 / 110

What are typical state space sizes?

The curse of dimensionality

— Breakout (1976)

o |S| = 88484 (84 x 84 screen, 8 colors).
o |A| =2 (left, right).
There are =~ 1029 Q-values.

Starcraft
o [S| > |A|l = +00??

We need approximations.)

Nicolas Gast — 76 / 110

Table of contents

e Large state-spaces and approximations
@ Value function approximation and Deep Q-Learning

Nicolas Gast — 77 / 110

TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:
V(St) = V(St) + « (Rt+1 -+ ’}/V(St+1) — V(St))

Q(St, At) = Q(5¢, At) + <Rt+1 + v Tea% Q(St+1,a) — Q(ShAt)) .

This does not scale if |S]| (or | A]) are large.

Nicolas Gast — 78 / 110

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S,A) = qu(S, A),

where w is a vector parameter to be found.

Nicolas Gast — 79 / 110

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S,A) = qu(S, A),

where w is a vector parameter to be found.

@ (classic): Use a linear approximation. For instance:
Q(S,A) =w'¢(s, a),

where ¢(s, a) is a feature vector.

Nicolas Gast — 79 / 110

Function approximation
We replace the exact Q-table (or value function V) by an approximation:
Q(S,A) = qu(S, A),

where w is a vector parameter to be found.

@ (classic): Use a linear approximation. For instance:
Q(S,A) =w'¢(s, a),

where ¢(s, a) is a feature vector.
e ("modern"): q,, is a deep neural network.

Convolutional Agent

input possible
image actions

28

Nicolas Gast — 79 / 110

b

J8U [BINBU [BUORN|OAUOD

From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(S:,At) =E |:Rt+1 + fan;i(Q(St+1, 3)] .

We want to find w such that gy (5S¢, A:) =~ E |:Rt+]_ + v max gw(St+1, a)})
—_—— acA

predictor
target

Nicolas Gast — 80 / 110

From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(S:,At) =E |:Rt+1 + ran;i(Q(St+1, 3)] .

We want to find w such that gy (5S¢, A:) =~ E |:Rt+]_ + v max gw(St+1, a)})
—_—— acA

predictor

target

Deep Q-learning minimizes the L, norm and use gradient descent:

wWi=Ww+ « <Rt+1 + ’YTEE% Gw(St, a) — qW(St)At)) Vw(gw(St, At))

Nicolas Gast — 80 / 110

Example of breakout

1st hidden
layer

8x8x4 filt

stride 4

84x84x4

20x20x16

2nd hidden 3rd hidden

layer layer output
Q(s¢,a")
Q(st,a')
fully fully Q(S' (12)

connected :connected :

4x4x16 filter .

stride 2 W
9x9x32 256 4~18

Nicolas Gast — 81 / 110

Why is vanilla unstable?

We want to find w such that gy (5S¢, Ar) =~ E |:Rt+1 + v max gw(St+1, a)} }
—_——— acA

predictor ~~
target

For that, we do:

Wi=Ww+ o <Rt+1 + 7 max qw(St, a) — qw(shAt)) Vuw(qw(St, Ar)).

Problems:

Nicolas Gast — 82 / 110

Why is vanilla unstable?

We want to find w such that gy (5S¢, Ar) =~ E |:Rt+1 + v max gw(St+1, a)} }
—_——— acA

predictor ~~
target

For that, we do:

WIi=W -+« (Rt+1 + ’YTE% qw(st, 3) - qw(shAt)) vw(qw(st; At))~

Problems:
@ Target and sources are highly correlated
@ Target changes as we learn.

@ Exploration is not guaranteed.

Learning algorithm can be unstable.

Nicolas Gast — 82 / 110

Possible solution: replay buffer or separate target network

Vanilla Q-learning uses a
c single network

I' DDQN uses a slow learning
g target network and a fast

learning g-network.

Nicolas Gast — 83 / 110

Applications of Deep RL

Resource management (energy)
Computer vision and robotics

Finance

Fundamental idea is simple but making the system stable and fast is an
issue. Also, delayed actions or sparse rewards is difficult.

Nicolas Gast — 84 / 110

Table of contents

© Large state-spaces and approximations

@ Policy gradient

Nicolas Gast — 85 / 110

Policy search

We are given a family of policies 7, parametrized by w € W. Typically:
mw(a | s) oc exp(w’ (s, a)),

where ¢(s, a) is a feature vector.

Nicolas Gast — 86 / 110

Policy search

We are given a family of policies 7, parametrized by w € W. Typically:
mw(a | s) oc exp(w’ (s, a)),
where ¢(s, a) is a feature vector.

Let J(w) := V™(sp) be its performance. We want to find w that
maximizes J(w).

Nicolas Gast — 86 / 110

Policy search

We are given a family of policies 7, parametrized by w € W. Typically:
mw(a | s) oc exp(w’ (s, a)),
where ¢(s, a) is a feature vector.

Let J(w) := V™(sp) be its performance. We want to find w that
maximizes J(w).

e Sometimes, this works well with direct methods (brute-force)

@ We can also use policy gradients:

w=w+ aVyJ(w).

Nicolas Gast — 86 / 110

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

2 obs = [2, 1]

<
policy(obs):
& []

@ +3 ~, @8

1 abs = 11, 0] 3| ws-3, 1

o reward = = | reward =

i Gone ™ Fatse done'? Trie
=
poticy(obe):
(\. ceny (\‘

4
o160 oo 63 sl © o
0 obs = [0, 0] 0 obs = [@, 0] 2 obs = [2, 0]

done = True done = 7 done = False
policy (obs):
® ® & Lo

e 9 - ~,

1 obs = [1, 0] 3| ws=r3, 0

Nicolas Gast — 87 / 110

O n an exam p | (S https://www.youtube.com/watch?v=cQf0QcpYRzE

2

obs = [2, 1]
b policy(obs):
/\‘ ! .
0.7 0.3
© +3 ~., © +10
1 obs = 1, 6] 3

reward =

i dane = False & Gone < True
=
poltcy(obs):
(\.) A.

@ -10

obs = [6, 0]
» reward =

obs = [6, 0] 2
» reward = s | . reward =
done = True

done = 7 done = False
policy (obs):
® ® & Lo

obs = [2, 0]

® o /0.8 0. 2\ © +10
1 obs = [1, 0] 3| os=13, 0
o reward - o reward -

Nicolas Gast — 87 / 110

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

Expected Return (G) =
(0.7) * (3) +
(0.3) * (10) +

2 obs = [2, 1]
e (0.7 * 0.4) * (-10) +

3
(\,‘ potiey(obe): (0.7 * 0.6 * 0.1) * (-10) +

(0.7 * 0.6 * 0.9) * (0) +

5 0.7 0.3 -
© +3 \ © +10 (0.7 % 0.6 * 0.9 % 0.8) * (0) +
1 obs = 3| bs-3 1 (0.7 % 0.6 * 0.9 *x 0.2) * (10)
| revard | reward =
. done = False done = True
<
policy(obs):
& e 4

0 abs = [0, 0] 0 abs = 0, 0] 2 obs = (2, 0]
o1 reward = o reward = o] rew
done = True done = False

policy(obs):
[0.8]

0.2

\ © +10

3| os=13 0

= | reward =

Gone = True
(\‘

Nicolas Gast — 87 / 110

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

©

§iS]

0.7

obs =
reward

2

Expected Return (G) =

(0.7) * (3) +
(0.3) * (10) +
obs = [2, 1]
(0.7 *x 0.4) * (-10) +
A‘ potiey(obe): (0.7 * 0.6 * 0.1) * (-10) +
(0.7 x 0.6 * 0.9) * (0) +
0.3 m
\ © +10 (0.7 x 0.6 * 0.9 * 0.8) * (0) +
3| bs-3 1 (0.7 % 0.6 * 0.9 *x 0.2) * (10)
| reward =

done = False

policy(obs) :
[0.4, 0.6]

obs = [0, 0]
reward =

2 obs = [2, 6]
reward =
done = False

policy(obs):
[0.8]

0‘2\ @ +10
3 obs = [3,
o revard -

Gone = True
(\‘

1

Nicolas Gast — 87 / 110

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

Expected Return (G) =

(0.
()
2 obs = [2, 1]
[(e.
AR "
()
0.7 0.3
© +3 \ @ +10 (0.
1 e 0 3| ws=13, 11 (e.
=] reward | reward =

v done = False done = True
<
policy(obs):
(4] et ()

0 abs = [0, 0] 0 abs = 0, 0] 2 obs = (2, 0]

o reward = o reward = s | o reward =

et g done' ™ Fatse
poticy (obs):
a a & co

@ © +10

obs = [3,

1

.7

7) * (3) +
.3) * (10) +
7 % 0.4) x (-10) +
7 % 0.6 % 0.1) * (-10) +
* 0.6 x 0.9) * (0) +
7 % 0.6 x 0.9 * 0.8) * (0) +
7 % 0.6 % 0.9 * 0.2) * (10)

Nicolas Gast — 87 / 110

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is 7(als).

Vr(als)E [Go] = P(attaining s)Q(s, a)
1

= P(observing (s, a))Q(s, a)

m(als)

Nicolas Gast — 88 / 110

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is 7(als).

Vr(als)E [Go] = P(attaining s)Q(s, a)
= 7r(‘;LS)]P’(observing (s,2))Q(s, a)

Algorithm: We want to compute gradient(S, A) = V() E [Go].
@ Run a trajectory and observe S;, A;.
@ For each t:

— 1
gradient(S¢, At) = ————G;.

W(At‘st)
Theorem. For all s,a: E [g@t(s, a)| = Vi) E [G].

Nicolas Gast — 88 / 110

The policy gradient theorem

Assume that 7(a|s) = f, (s, a). We have:

VwE [GO] = Z VWW(Q‘S)VW(Q‘S)E [GO]

s,a

Nicolas Gast — 89 / 110

The policy gradient theorem

Assume that 7(a|s) = f, (s, a). We have:

VwE [GO] = Z vwﬂ-(a‘s)vﬂ'(a\s)E [GO]

s,a

Hence, an unbiased estimate of the gradient V,,[E [Gy] is

Vur(A:S;
Z((Ae|St))

G;.
7T(At|5t) ¢

By using that Viog(y) = V(y)/y, we get:

An unbiased estimate of the gradient is:

VuE [Go] =E | Y (Vw log m(A:|St)) G | -

t

Nicolas Gast — 89 / 110

Why is V log (al|s) easy to compute?

Reminder: if p; = e /> e, then

0
87111- log pi =]-{i:j} - pj-

Nicolas Gast — 90 / 110

Why is V log (al|s) easy to compute?

Reminder: if p; = e /> e, then
i |og pl f— 1 . . —_— p
uj i {i=iy = Fi

exp(w ¢(s,a))
Yo exp(w’é(s,a))

m(als) oc exp(w ' é(s, a)), then it means that 7(als) =

As a consequence:

Vrw(als) Zqﬁ |s)mw(a

Nicolas Gast — 90 / 110

The REINFORCE algorithm

REINFORCE

1: Initialize w.
2: while True do
3: Simulate a trajectory (from t =1to T)

4. fort=Ttot=1do

5: G =3} _, Re.

6: VJ:= GV log m(A¢|St).
7 w:=w+ aVJ.

8: end for

9: end while

Recall that V log 7(als) is easy to compute when 7(als) oc w ' ¢(s, a).

Nicolas Gast — 91 / 110

Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s,a1) =8+ 1 and Q(s,a2) =8.5=+1, is a» better than a;7?

Nicolas Gast — 92 / 110

Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s,a1) =8+ 1 and Q(s,a2) =8.5=+1, is a» better than a;7?

Solution: add a baseline h: § — R. Indeed, using the same log-trick:

E [h(s:)V log m(at|st)] = E [Z h(st)VW(a]st)]

acA
=0

This shows that for any function h, one has:
VwJ(%0) ZE[(Gt — h(st))V log m(ae|s)]}-

Choosing a h close to G; reduces the variance of the estimator.

Nicolas Gast — 92 / 110

Table of contents

e Large state-spaces and approximations

@ Conclusion and other methods

Nicolas Gast — 93 / 110

Classes of learning algorithms

We have seen two classes of RL methods:
@ Value-based (SARSA, Q-learning, Deep QL)
@ Policy-based (Policy gradient, REINFORCE)

@ Value-based learning can be unstable but uses samples efficiently.
@ Policy-based tend to be more robust.

Nicolas Gast — 94 / 110

Classes of learning algorithms

We have seen two classes of RL methods:
o Value-based (SARSA, Q-learning, Deep QL) =Critic
Policy-based (Policy gradient, REINFORCE) =Actor

Value-based learning can be unstable but uses samples efficiently.

Policy-based tend to be more robust.

//" Value Funp‘iion P\'o\licy
\' |

Actor

Critic |

Value-Based | Policy-Based

Nicolas Gast — 94 / 110

Actor Critic method

Action

Values

Critic

Nicolas Gast — 95 / 110

Actor Critic method

Values

Critic

Basic Actor Critic

1: Initialize parameters w(?) (Actor) and w(¢) (Critic)
2: while True do
3: Initialize S
4: fort=1tot=T do
5: At ~ my(S) and simulate R, S’
6: w(©) = wl) 4 al)(R + v, (S") — V0 (S)) # TD-update
7 w(@ = wl(@ 1+ oy (S)V log n(a;ls:) # Policy-gradient
8 S:=S'.
9: end for
10: end while

y
Nicolas Gast — 95 / 110

Going further

Extra-reading:
@ Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
@ Algorithms for Reinforcement Learning (Szepesvari, 2010)

@ Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Next course: some thoughts on exploration / exploitation.

Nicolas Gast — 96 / 110

Outline

@ Monte-Carlo tree search (MCTS)
@ Min-max and alpha-beta pruning
@ MCTS and exploration
@ Conclusion

Nicolas Gast — 97 / 110

Reminder: exploration-exploitation dilemma and bandits

@ How useful is this for RL?

Nicolas Gast — 98 / 110

Reminder: UCB algorithm

UCB computes a confidence bound UCB,(t) such that p,(t) < UCB,(t)
with high probability. Example : UCB1 [Auer et al. 02] uses

UCB,(t) = pia(t) + /;\'I‘:it).

o Choose A¢i1 € argmax,c(y.. ,y UCB,(t) (optimism principle).

2.00

0.5 0.3 0.6 0.4 0.2
2/5 6/9 6/9 1/4 0/3

Nicolas Gast — 99 / 110

Can we use optimism for MDPs?

Observe the empirical means R(s, a) and P(s' | s, a).

What bonus should one use?)

Nicolas Gast — 100 / 110

Can we use optimism for MDPs?

Observe the empirical means R(s, a) and P(s' | s, a).

What bonus should one use?)

e UCRL2 (Jaksch 2010) or variant: use bonus on R and P. Let
0(s,a) = C\/t/N¢(s,a) where N(s, a) is the number of time that you
took action a in state s before time t¢.

o(s,a)}

(s,a,d)| < (s, 2

R = {vector r such that for all s, a:|r(s,a) — 7(s, a)| <
P = {trans. matrix P s.t. for all 5,a,a" |P(s,a,a") — P

Optimism:
» Apply 7 that maximizes Vp 1 (by using extended value iteration)
and re-update the policy periodically.

Nicolas Gast — 100 / 110

Tree search

For turn-based two players zero sum games

From a given position, takes the
best decision.

@ Generate a tree of
possibilities.

@ Explore this tree. - §63: Google DeepMind

Challenge Match

What if the tree is too big?

Nicolas Gast — 101 / 110

Table of contents

@ Monte-Carlo tree search (MCTS)
@ Min-max and alpha-beta pruning

Nicolas Gast — 102 / 110

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

' min (opponent)

Nicolas Gast — 103 / 110

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

OO DO OO ®
7\ AN 7\ A\ AN 7\ A\ AN

If the tree is two big, you stop at depth D and use a heuristic.
@ You can backtrack with the min-max algorithm.

Nicolas Gast — 103 / 110

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

OO DO OO ®
7\ AN 7\ A\ AN 7\ A\ AN

If the tree is two big, you stop at depth D and use a heuristic.
@ You can backtrack with the min-max algorithm.

Nicolas Gast — 103 / 110

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

OO DO OO ®
7\ AN 7\ A\ AN 7\ A\ AN

If the tree is two big, you stop at depth D and use a heuristic.
@ You can backtrack with the min-max algorithm.

Nicolas Gast — 103 / 110

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

OOODOOO® O
7\ AN 7\ A\ AN 7\ A\ AN

If the tree is two big, you stop at depth D and use a heuristic.
@ You can backtrack with the min-max algorithm.

o For optimization, you can use alpha-beta pruning.

Nicolas Gast — 103 / 110

Table of contents

@ Monte-Carlo tree search (MCTS)

@ MCTS and exploration

Nicolas Gast — 104 / 110

Min-max and alpha-beta perform well (ex: Chess). ..
... but can be limited (ex: go)

@ Tree can still be very big (AP)

@ You need a good heuristic.
» Result is only available at the end

@ You might want to avoid the exploration
of not promising parts.

» For that you need a good heuristic.

Nicolas Gast — 105 / 110

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Simulation

g s
&
()

01

@ Simulate many games and compute how many were won.
@ Explore carefully which actions were best.

Nicolas Gast — 106 / 110

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Selection

For each child, let S(c) be the number of success and N(c) be the number
of time you played ¢, and t =" _, N(c').

@ Explore arg max, N((‘é)) 192 Io(gct)

Open question: no guarantee with \/log t/N(c). Is v/t/N(c) better?

Nicolas Gast — 106 / 110

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

)
) @6
oRFOD BOFOB
® @
©

@ Create one or multiple children of the leaf.

Nicolas Gast — 106 / 110

MCTS (Monte Carlo Tree Search) uses simulation to

conduct the tree search

Selection Expansion Simulation

(=)
//@@ @ ®®

GO ® BOFeo

(9

o1
Rollout policy
(ex: random)

@ Obtain a value of the node (e.g. rollout)

Nicolas Gast — 106 / 110

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Selection Expansion Simulation Backpropagation

(=)
//@@ @ ®®

GO ® BOFeo

(9

01
Rollout policy
(ex: random)

@ Backpropagate to the root

Nicolas Gast — 106 / 110

MCTS algorithm

MCTS
1: while Some time is left do
2: Select a leaf node #UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf #random sampling
5 Backpropagate to the root
6: end while
7: Return arg MaXcechildren(root) N(C) #or S(C)/N(C)

Nicolas Gast — 107 / 110

Demo / exercice

Nicolas Gast — 108 / 110

Table of contents

@ Monte-Carlo tree search (MCTS)

@ Conclusion

Nicolas Gast — 109 / 110

Conclusion

Exploration v.s. exploitation is central in RL
o Bandits and regret help formalizing this idea.

@ One important notion is the use of optimism to force exploration.
» Bayesian sampling can also be used

@ Theoretical tools guide practical implementations.

Nicolas Gast — 110 / 110

