
MFML: MDP and Reinforcement Learning

Nicolas Gast

November 25, 2024

Nicolas Gast – 1 / 110

Overview of the course

Up to now:
1 Supervised / unsupervised learning.

↭ Data →↑ model

2 Online learning
↭ Decision →↑ Data →↑ Decisions

End of the course:
3 Reinforcement learning

↭ State →↑ Decision →↑ Reward and new state

Nicolas Gast – 2 / 110

Overview of the course

Up to now:
1 Supervised / unsupervised learning.

↭ Data →↑ model

2 Online learning
↭ Decision →↑ Data →↑ Decisions

End of the course:
3 Reinforcement learning

↭ State →↑ Decision →↑ Reward and new state

Nicolas Gast – 2 / 110

What is Reinforcement Learning?
And why it di!ers from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.

Nicolas Gast – 3 / 110

What is Reinforcement Learning?
And why it di!ers from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.

Nicolas Gast – 3 / 110

What is Reinforcement Learning?
And why it di!ers from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.

Nicolas Gast – 3 / 110

Applications

Games (Go, Atari, StarCraft,...) StarCraft

Auto-piloting vehicles Robots , Helicopter

Supply management, energy data-center

Trading, bidding Bidding

Toy models AIGym

. . .
The number of application is increasing.

Nicolas Gast – 4 / 110

RL is about interacting with an environment

1 Get an observation of the state of the environment
2 Choose an action
3 Obtain a reward

You goal is to select actions to maximize the total reward.

Nicolas Gast – 5 / 110

RL is about interacting with an environment

1 Get an observation of the state of the environment
2 Choose an action
3 Obtain a reward

You goal is to select actions to maximize the total reward.

Nicolas Gast – 5 / 110

Reward signal

At time t, we observe St , take action At , and obtain a reward Rt+1.

S1,A1 R2, S2,A2 R3, S3,A3 . . . RT , ST

Impact of actions can be delayed.
On which actions does the
reward depend?

Impact of actions can be weak
or noisy

Nicolas Gast – 6 / 110

Reward signal

At time t, we observe St , take action At , and obtain a reward Rt+1.

S1,A1 R2, S2,A2 R3, S3,A3 . . . RT , ST

Impact of actions can be delayed.
On which actions does the
reward depend?

Impact of actions can be weak
or noisy

Nicolas Gast – 6 / 110

Objective of this course

Theory Practice

↓

Theory

Practice

>

MDPs
Tabular RL

Algorithms guarantees
Regret minimization

Exercises
Deep RL

Policy gradient

Nicolas Gast – 7 / 110

Objective of this course

Theory Practice

↓

Theory

Practice

>

MDPs
Tabular RL

Algorithms guarantees
Regret minimization

Exercises
Deep RL

Policy gradient

Nicolas Gast – 7 / 110

Personal work
Week November 26 Dec 10 Dec 17

Tuesday MDP Tabular RL “Modern” RL

Mini-exam (Dec 10 and/or Dec 17)
Final exam in January.

A few advice:
Question what you learn
Try to do some exercises.

↭ Program, go deeper, ask follow-up questions.

Ask questions during or after the course.

Read books (and/or research articles)
(Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.))

Algorithms for Reinforcement Learning (Szepesvari, 2010)

Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Nicolas Gast – 8 / 110

Personal work
Week November 26 Dec 10 Dec 17

Tuesday MDP Tabular RL “Modern” RL

Mini-exam (Dec 10 and/or Dec 17)
Final exam in January.

A few advice:
Question what you learn
Try to do some exercises.

↭ Program, go deeper, ask follow-up questions.

Ask questions during or after the course.

Read books (and/or research articles)
(Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.))

Algorithms for Reinforcement Learning (Szepesvari, 2010)

Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Nicolas Gast – 8 / 110

Personal work
Week November 26 Dec 10 Dec 17

Tuesday MDP Tabular RL “Modern” RL

Mini-exam (Dec 10 and/or Dec 17)
Final exam in January.

A few advice:
Question what you learn
Try to do some exercises.

↭ Program, go deeper, ask follow-up questions.

Ask questions during or after the course.

Read books (and/or research articles)
(Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.))

Algorithms for Reinforcement Learning (Szepesvari, 2010)

Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Nicolas Gast – 8 / 110

Content of the course

1 Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 9 / 110

Outline

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 10 / 110

Illustrative example: the wheel of fortune

You can draw a wheel indefinitely. After time t:
If you draw, the wheel stops on
Xt ↔ {1 . . . 10} (uniformly).
You can draw again or stop and earn Xt .

You can draw the wheel up to T = 10 times. How do you play?

Nicolas Gast – 11 / 110

·A

The environement lives in a “space”

S – state space.
A – action space.
R – reward space.

Dynamics:
(possibly random) evolution of states
(possibly random) rewards

Nicolas Gast – 12 / 110

S = 41 ,..., 10 , Stop

C = SSTOP , DRAW]
RE

Markov decision processes

A MDPs is defined by:
S state space
A action set
Evolution is driven by Markovian transitions

P(St+1 = s
→,Rt+1 = r | St = s,At = a) = P(s →, r | s, a).

MDP = Markov chain + decisions

Most reinforcement learning problems can be framed as MDPs.

Nicolas Gast – 13 / 110

rande

Statue Ree
,
Set

transitin

P(St =R = -Ses ,A+= aand history up
to "At".

Graphical representation

St

At

St+1

Rt+1

. . .

Nicolas Gast – 14 / 110

⑳

Graphical representation

St

At

St+1

Rt+1

. . .

Nicolas Gast – 14 / 110

Some examples
Wind production problem

A Wind turbine produces (Wt)3 cos(ωt) where Wt is the wind speed
and ωt is your angle with respect to wind. Assume that:

↭ Wind direction changes of ±1 degree with probability 1/2.

↭ Turning your turbine costs you a > 0.

Write the MDP for di!erent models:
↭ Assuming that Wt is constant.

↭ Assuming that W (t) evolve over time

W (t + 1) = min(1,max(0,W (t)± b)).

↭ Assuming that the direction in which the wind changes stays the same

with probabilty 90%.

Frozen-lake Link (this is a gridworld example)
There also some deterministic MDPs

↭ Shortest paths probmems

↭ Deterministic games (e.g., go, chess)

Nicolas Gast – 15 / 110

Some examples

Wind production problem
Frozen-lake Link (this is a gridworld example)

↭ Set space: {(0, 0), . . . , (3, 3)}.
↭ Actions: {L,R ,U,D}.
↭ Transitions: 1/3 in right direction.

↭ Rewards: there are Holes and a Goal.

↫ Jumping to the goal gives you "1".

There also some deterministic MDPs
↭ Shortest paths probmems

↭ Deterministic games (e.g., go, chess)

Nicolas Gast – 15 / 110

↳
Un

Table of contents

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 16 / 110

Policies
A (deterministic) policy specifies which action to take in a given state:

ε : S ↑ A.

It indicates which action to take in a given state: At = ε(St). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

ε : S ↗A ↑ [0, 1].

The agent takes At ↘ ε(·|St).

Deterministic Stochastic
It forces exploration

Optimal in general Useful in games / non-Markovian
Di!erentiable

Nicolas Gast – 17 / 110

Policies
A (deterministic) policy specifies which action to take in a given state:

ε : S ↑ A.

It indicates which action to take in a given state: At = ε(St). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

ε : S ↗A ↑ [0, 1].

The agent takes At ↘ ε(·|St).

Deterministic Stochastic
It forces exploration

Optimal in general Useful in games / non-Markovian
Di!erentiable

Nicolas Gast – 17 / 110

M(a(s)

Policies
A (deterministic) policy specifies which action to take in a given state:

ε : S ↑ A.

It indicates which action to take in a given state: At = ε(St). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

ε : S ↗A ↑ [0, 1].

The agent takes At ↘ ε(·|St).

Deterministic Stochastic
It forces exploration

Optimal in general Useful in games / non-Markovian
Di!erentiable

Nicolas Gast – 17 / 110

Example of a (deterministic) policy

↑

↑

↑

↑

↑

↑

↑

↑ ↑

≃ ≃

↑

↑

↑

↑

↑

↑

↑

↑ ↑

≃ ≃

↑

↑

↑

↑

↑

↑

↑

↑ ↑

≃ ≃

↑

↑

↑

↑

↑

↑

↑

↑ ↑

≃ ≃

Nicolas Gast – 18 / 110

Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose At to optimize:
Rt+1? (no: too greedy)
RT ? (only final reward?)

Nicolas Gast – 19 / 110

Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose At to optimize:
Rt+1? (no: too greedy)

RT ? (only final reward?)

Nicolas Gast – 19 / 110

Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose At to optimize:
Rt+1? (no: too greedy)
RT ? (only final reward?)

Nicolas Gast – 19 / 110

Return of a policy (finite horizon)

Sometimes, a problem has a known finite horizon T . In which case, the
return (a.k.a. gain) at time t is:

Gt = Rt+1 + Rt+2 + · · ·+ RT .

The return is random.

Nicolas Gast – 20 / 110

Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [Gt].

Nicolas Gast – 21 / 110

Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [Gt].

Nicolas Gast – 21 / 110

Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [Gt].

Nicolas Gast – 21 / 110

Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [Gt].

Nicolas Gast – 21 / 110

Table of contents

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 22 / 110

Value function

The value function of a policy ε is

V
ω
t (s) = Eω [Gt | St = s],

where Eω [·] means E [· | At+k ↘ ε(St+k) (k ⇐ 0)].

It specifies the expected return. For each t, it is a vector of |S| values. If
S = {s1 . . . s4}

s1 s2 s3 s4
V

Nicolas Gast – 23 / 110

↓_
state

i
time

Value function

The value function of a policy ε is

V
ω
t (s) = Eω [Gt | St = s],

where Eω [·] means E [· | At+k ↘ ε(St+k) (k ⇐ 0)].

It specifies the expected return. For each t, it is a vector of |S| values. If
S = {s1 . . . s4}

s1 s2 s3 s4
V

Nicolas Gast – 23 / 110

Bellman’s Equation (policy evaluation, finite horizon)

We have V
ω
t (s) = Eω [Gt | St = s] and

Gt = Rt+1 + Rt+2 + . . .RT

= Rt+1 + Gt+1.

Hence:

V
ω
t (s) =

∑

s→,r →

(r + V
ω(s →))p(s →, r | s, a = ε(s)).

︸ ︷︷ ︸
=Qω

t+1(s,ω(s))

= r(s,ε(s)) +
∑

s→

V
ω
t+1(s

→)p(s → | s, a = ε(s)),

where r(s, a) =
∑

r → r
→
p(r → | s, a).

Nicolas Gast – 24 / 110

-

ERt+ + C++ 1 1 St = S]
= ERtelSt =s]+[Gtx /St

= s]
= m(StA+) + SEGEISs]SEES

St= S)
= n(St

,
i(St))+ VE(s)P(s/s, in(ss)

= ELRt (St= s , At = a]

Bellman’s Equation (policy evaluation, finite horizon)

We have V
ω
t (s) = Eω [Gt | St = s] and

Gt = Rt+1 + Rt+2 + . . .RT

= Rt+1 + Gt+1.

Hence:

V
ω
t (s) =

∑

s→,r →

(r + V
ω(s →))p(s →, r | s, a = ε(s)).

︸ ︷︷ ︸
=Qω

t+1(s,ω(s))

= r(s,ε(s)) +
∑

s→

V
ω
t+1(s

→)p(s → | s, a = ε(s)),

where r(s, a) =
∑

r → r
→
p(r → | s, a).

Nicolas Gast – 24 / 110

*Bell

Algorithm: backward induction

Nicolas Gast – 25 / 110

Example : Finite-horizon Bellman’s equation (evaluation)

Nicolas Gast – 26 / 110

Example : Finite-horizon Bellman’s equation (evaluation)

t = 1 t = 2 t = 3

t = 4 t = 5 t = T = 6
Nicolas Gast – 26 / 110

⑪

-06 6006 000 0
-
d & O O G

c oly C 00 000

Y3y YY3
Yg 4/% O 134 S O

Y3

Action-Value function

The action-value function of a policy ε is

Q
ω(s, a) = Eω [Gt | St = s ⇒ At = a].

It is a table of |S|↗ |A| values. If S = {s1 . . . s4} and A = {a1, a2}:

Q a1 a2
s1
s2
s3
s4

From Q, we can define a greedy policy: at = argmaxa↑AQ(st , a).

Nicolas Gast – 27 / 110

Action-Value function

The action-value function of a policy ε is

Q
ω(s, a) = Eω [Gt | St = s ⇒ At = a].

It is a table of |S|↗ |A| values. If S = {s1 . . . s4} and A = {a1, a2}:

Q a1 a2
s1
s2
s3
s4

From Q, we can define a greedy policy: at = argmaxa↑AQ(st , a).

Nicolas Gast – 27 / 110

Optimal policy

We denote by V
↓
t (s) = maxω V ω

t (s) and Q
↓
t (s, a) = maxω Qω

t (s).
For a finite-horizon T , a policy is a function ε : S ↗ {1 . . .T} ↑ A.

V
↓
t (s) =

max
a

Qt(s, a)

Q
↓
t (s, a) =

∑

s→,a

(r + V
↓
t+1(s

→))P(s →, r | s, a)

Initial condition:

V
↓
T (s) =

max
a

r(s, a)

Nicolas Gast – 28 / 110

Ea)

max Q(s,
m(s,a) + [V(s)P(s(s,a)

V(s) = 0 .

Optimal policy

We denote by V
↓
t (s) = maxω V ω

t (s) and Q
↓
t (s, a) = maxω Qω

t (s).
For a finite-horizon T , a policy is a function ε : S ↗ {1 . . .T} ↑ A.

V
↓
t (s) = max

a
Qt(s, a)

Q
↓
t (s, a) =

∑

s→,a

(r + V
↓
t+1(s

→))P(s →, r | s, a)

Initial condition:

V
↓
T (s) = max

a
r(s, a)

Nicolas Gast – 28 / 110

Optimal policy (finite horizon): illustration

T = 6
Q

↓
5 ((2, 3),D) =

Q
↓
5 ((2, 3),R) =

Q
↓
5 ((2, 3), L) =

Q
↓
5 ((2, 3),U) =

Q
↓
4 ((2, 3),D) =

Q
↓
4 ((2, 3),R) =

Q
↓
4 ((2, 3), L) =

Q
↓
4 ((2, 3),U) =

Nicolas Gast – 29 / 110

en
V=* ((2, 3)) = 55
RE((2 ,3) EGD, R , u3

Optimal policy (finite horizon): illustration

T = 6
Q

↓
5 ((2, 3),D) =

Q
↓
5 ((2, 3),R) =

Q
↓
5 ((2, 3), L) =

Q
↓
5 ((2, 3),U) =

Q
↓
4 ((2, 3),D) =

Q
↓
4 ((2, 3),R) =

Q
↓
4 ((2, 3), L) =

Q
↓
4 ((2, 3),U) =

Nicolas Gast – 29 / 110

i
v &((2,3))=

,en
(xz) X & ((2, 37) = 4/g

ie(2 , 3) - &D, R]

Optimal policy (finite horizon): illustration

Nicolas Gast – 29 / 110

Table of contents

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 30 / 110

Which trajectory is best?

↑

↑

↑

≃

↑

↑

↑

≃

↑

↑

↑

≃

↑

↑

↑

≃

Nicolas Gast – 31 / 110

Return of a policy (discounted infinite horizon)

When T is not specified, it is common to look at the discounted return:

Gt = Rt+1 + ϑRt+2 + ϑ2
Rt+3 + . . .

=
↔∑

k=0

ϑkRt+1+k ,

with ϑ ↔ [0, 1).

ϑ = 0: myopic (greedy).
ϑ = 1: total reward.

Nicolas Gast – 32 / 110

-

Gy = R++ + VE+

-(s
,(s)) + SVEn(s)P(s'(,n(s)

Discout:
VI(s) = 1(s,m(s)) + UEVE(s)P(s'(s,m(s)

G+ = R
+t
+ G

Value of a policy and value iteration

Call T ω the operator that associates to a vector V the vector T ω
V :

T
ω
V (s) = r(s,ω(s)) + ε

∑

s→

V (s →)p(s → | s, a = ω(s))

The value of a policy is the unique vector V ω such that T ω
V

ω = V
ω.

Nicolas Gast – 33 / 110

Vt (s) + (TVey) (s)

Value of a policy and value iteration

Call T ω the operator that associates to a vector V the vector T ω
V :

T
ω
V (s) = r(s,ω(s)) + ε

∑

s→

V (s →)p(s → | s, a = ω(s))

The value of a policy is the unique vector V ω such that T ω
V

ω = V
ω.

Proof. T
ω is contracting for the →v→ = maxs |v(s)|.

Nicolas Gast – 33 / 110

11 +Ev -TV) - 2 IIV-v'll

How to compute V ω

Two solutions:
1 Solve the linear system.
2 Initialize V

(0) = 0 and apply V
(k+1) = T

ω
V

(k) until convergence.

Nicolas Gast – 34 / 110

c ...Ve V
V() =- v() = V()

The optimal policy

We denote by V
↑(s) = maxω V ω(s) and Q

↑(s, a) = maxω Qω(s, a).

The optimal policy ω↑ is such that:

ω↑ = argmax
ω

V
ω(s) ↑s ↓ S

or equivalently:

ω↑ = argmax
ω

Q
ω(s, a) ↑s ↓ S, s ↓ A

Nicolas Gast – 35 / 110

Iterative solutions

ω Qω

Evaluate ω

improve ω

If you know the transitions and reward: value iteration or policy iteration.

Value iteration:
Initialize V

0 (for instance to 0).
For k ↔ 0 and s ↓ S, do:

V
k+1(s) := maxa↓A

(
r(s, a) + ε

∑
s→ V

k(s →)p(s → | s, a)
)

“Theorem”: If ε < 1, then V
k ↗ V

↑ = O(εk).

Nicolas Gast – 36 / 110

Iterative solutions

ω Qω

Evaluate ω

improve ω

If you know the transitions and reward: value iteration or policy iteration.
Value iteration:

Initialize V
0 (for instance to 0).

For k ↔ 0 and s ↓ S, do:
V

k+1(s) := maxa↓A
(
r(s, a) + ε

∑
s→ V

k(s →)p(s → | s, a)
)

“Theorem”: If ε < 1, then V
k ↗ V

↑ = O(εk).

Nicolas Gast – 36 / 110

11 Il

(V=P

Illustration

ε = 0.8 ε = 0.9
Iteration k = 0

Nicolas Gast – 37 / 110

Illustration

ε = 0.8 ε = 0.9
Iteration k = 1

Nicolas Gast – 37 / 110

Illustration

ε = 0.8 ε = 0.9
Iteration k = 2

Nicolas Gast – 37 / 110

Illustration

ε = 0.8 ε = 0.9
Iteration k = 3

Nicolas Gast – 37 / 110

Illustration

ε = 0.8 ε = 0.9
Iteration k = 4

Nicolas Gast – 37 / 110

Illustration

ε = 0.8 ε = 0.9
Iteration k = 90

Nicolas Gast – 37 / 110

e

Policy iteration

Policy iteration:
Initialize ω0 (to some random value).
For k ↔ 0:

Compute Q
ωk (=linear system)

For all a ↓ A: ωk+1(s) := argmaxa↓AQ
ωk
(s, a).

“Theorem”: If ε < 1, then after a finite number of iterations: V
k = V

↑.

Nicolas Gast – 38 / 110

Exercise: the wheel of fortune

You can draw a wheel indefinitely. After time t:
If you draw, the wheel stops on
Xt ↓ {1 . . . 10} (uniformly). You earn Xt .
You can draw again or keep Xt+1 := Xt .

How do you play knowing that you want to maximize your discounted

reward: E
[↔∑

t=1

ϑtXt

]
with ε = 0.9?

Compare value iteration and policy iteration algorithms.

Nicolas Gast – 39 / 110

Table of contents

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)

Nicolas Gast – 40 / 110

Important concepts

(to be filled by you!)

Nicolas Gast – 41 / 110

