MFML: MDP and Reinforcement Learning

Nicolas Gast

November 25, 2024

Nicolas Gast — 1 / 110

Overview of the course

Up to now:

© Supervised / unsupervised learning.

» Data — model

@ Online learning
» Decision — Data — Decisions

Nicolas Gast — 2 / 110

Overview of the course

Up to now:
© Supervised / unsupervised learning.
» Data — model

@ Online learning
» Decision — Data — Decisions

End of the course:
© Reinforcement learning
» State — Decision — Reward and new state

Nicolas Gast — 2 / 110

What is Reinforcement Learning?

And why it differs from supervised or unsupervised learning

Nicolas Gast — 3 / 110

What is Reinforcement Learning?

And why it differs from supervised or unsupervised learning

@ No i.i.d. dataset, but an environmeent.
@ No labels, but observation of rewards.

o We design an agent, that maps states to actions.

Nicolas Gast — 3 / 110

What is Reinforcement Learning?

And why it differs from supervised or unsupervised learning

@ No i.i.d. dataset, but an environmeent.
@ No labels, but observation of rewards.

o We design an agent, that maps states to actions.

Challenges:
@ Many possible states, actions

@ Reward can be delayed, or sparse.

Nicolas Gast — 3 / 110

Applications

o Games (Go, Atari, StarCraft,...)
@ Auto-piloting vehicles @D,
e Supply management, energy

e Trading, bidding @EEEID

@ Toy models

° ...

The number of application is increasing.

Nicolas Gast — 4 / 110

RL is about interacting with an environment

state

';l Agent |

reward

Rl+l (

)

\ A

S)‘+l

\

Environment]4—

action
A

Nicolas Gast — 5 / 110

RL is about interacting with an environment

state

';l Agent |

reward
R,

)

. SH-I

>
\

L Rl+l (
<

Environment]4—

@ Get an observation of the state of the environment

@ Choose an action
© Obtain a reward

action
A

You goal is to select actions to maximize the total reward.)

Nicolas Gast — 5 / 110

Reward signal

At time t, we observe S;, take action A;, and obtain a reward R;.1.

517’41 R27527A2 R3753>A3 RT>5T

Nicolas Gast — 6 / 110

Reward signal

At time t, we observe S;, take action A;, and obtain a reward R;.1.

S17’41 R27527A2 R3753>A3 RT>5T

Impact of actions can be delayed.

@ On which actions does the
reward depend?

Impact of actions can be weak

@ or noisy

Nicolas Gast — 6 / 110

Objective of this course

Theory Practice
MDPs
Tabular RL Deep RL Everci
Algorithms guarantees Policy gradient Xercises

Regret minimization

Nicolas Gast — 7 / 110

Objective of this course

Practice
Theory
MDPs
Tabular RL Deep RL Everci
Algorithms guarantees Policy gradient Xercises

Regret minimization

Nicolas Gast — 7 / 110

Personal work

Week

November 26

Dec 10

Dec 17

Tuesday

MDP

Tabular RL

“Modern” RL

@ Mini-exam (Dec 10 and/or Dec 17)
@ Final exam in January.

Nicolas Gast — 8 / 110

Personal work

Week November 26 Dec 10 Dec 17
Tuesday MDP Tabular RL “Modern” RL

@ Mini-exam (Dec 10 and/or Dec 17)
@ Final exam in January.

A few advice:

@ Question what you learn
@ Try to do some exercises.
» Program, go deeper, ask follow-up questions.

@ Ask questions during or after the course.

Nicolas Gast — 8 / 110

Personal work

Week November 26 Dec 10 Dec 17
Tuesday MDP Tabular RL “Modern” RL

@ Mini-exam (Dec 10 and/or Dec 17)
@ Final exam in January.

A few advice:

@ Question what you learn
@ Try to do some exercises.
» Program, go deeper, ask follow-up questions.

@ Ask questions during or after the course.

Read books (and/or research articles)
@ (Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.))
@ Algorithms for Reinforcement Learning (Szepesvari, 2010)

@ Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Nicolas Gast — 8 / 110

Content of the course

@ Markov Decision Processes (MDPs)
© Tabular reinforcement learning

9 Large state-spaces and approximations

@ Monte-Carlo tree search (MCTS)

Nicolas Gast — 9 / 110

Outline

@ Markov Decision Processes (MDPs)
@ Example and definition
@ Policies and Returns
@ Value Function and Bellman’s Equation (finite horizon)
@ Infinite-horizon discounted problems
@ Conclusion

Nicolas Gast — 10 / 110

lllustrative example: the vvheel of fortune
Pohica > “BITP B (4 S'TOP) 7&5(?‘%6@

Lo

1o(S\ S)'\ ‘-(‘!
R o))

You can draw a wheel indefinitely. After time t:

o If you draw, the wheel stops on
Xy € {1...10} (uniformly).

@ You can draw again or stop and earn X;.

- -

@ You can draw the wheel up to T = 10 times. How do you play?

Nicolas Gast — 11 / 110

The environement lives in a “space”

@ § — state space.

Salt
e A — action space. (& - { STof | D@ﬁ'\klj

@ R — reward space. R R

Dynamics:
@ (possibly random) evolution of states

@ (possibly random) rewards

Nicolas Gast — 12 / 110

Markov decision processes

A MDPs is defined by:
@ S state space
@ A action set

e Evolution is driven by Markovian transitions

(5t+1—s Riyi=r|Si=s,Ar=a)=P(s,r]s,a).

Pl ’5"@*‘"“{ Seos Ae=e o @ > hiskny wp ‘A"

MDP = Markov chain + decisions)

Most reinforcement learning problems can be framed as MDPs.

Nicolas Gast — 13 / 110

Graphical representation

Nicolas Gast — 14 / 110

Graphical representation

E-’ Ret1

Nicolas Gast — 14 / 110

Some examples
@ Wind production problem

A Wind turbine produces (W;)3 cos(6;) where W; is the wind speed
and 60; is your angle with respect to wind. Assume that:
» Wind direction changes of +1 degree with probability 1/2.
» Turning your turbine costs you a > 0.
Write the MDP for different models:
» Assuming that W; is constant.

» Assuming that W(t) evolve over time
W(t+ 1) = min(1, max(0, W(t) £ b)).

» Assuming that the direction in which the wind changes stays the same
with probabilty 90%.

Nicolas Gast — 15 / 110

Some examples f

@ Wind production problem
o Frozen-lake (this is a gridworld example)

» Set space: {(0,0),...,(3,3)}
» Actions: {L,R, U, D}.
» Transitions: 1/3zn-vight

» Rewards: there are Holes and a Goal.

rection.

* Jumping to the goal gives you "1".

@ There also some deterministic MDPs

» Shortest paths probmems
» Deterministic games (e.g., go, chess)

Nicolas Gast — 15 / 110

Table of contents

@ Markov Decision Processes (MDPs)

@ Policies and Returns

Nicolas Gast — 16 / 110

Policies
A (deterministic) policy specifies which action to take in a given state:

T:S — A

It indicates which action to take in a given state: Ay = 7(S¢). This defines
the behavior of the agent.

Nicolas Gast — 17 / 110

Policies

A (deterministic) policy specifies which action to take in a given state:

T:S — A

It indicates which action to take in a given state: Ay = 7(S¢). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

7:SxA—[0,1]. J

The agent takes A; ~ 7(+|S;). /IZ[Q l S)

Nicolas Gast — 17 / 110

Policies

A (deterministic) policy specifies which action to take in a given state:

T:S — A

It indicates which action to take in a given state: Ay = 7(S¢). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

7:SxA—[0,1]. J

The agent takes A; ~ 7(+|S;).

Deterministic ‘ Stochastic
It forces exploration
Optimal in general | Useful in games / non-Markovian
Differentiable

Nicolas Gast — 17 / 110

Example of a (deterministic) policy

— — — —
I 3
— — —

— —

Nicolas Gast — 18 / 110

Return of a policy

We want to compute the best policy... But what is the best policy?

Nicolas Gast — 19 / 110

Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose A; to optimize:

@ Ri117? (no: too greedy)

Nicolas Gast — 19 / 110

Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose A; to optimize:
@ Ri117? (no: too greedy)
e R7? (only final reward?)

Nicolas Gast — 19 / 110

Return of a policy (finite horizon)

Sometimes, a problem has a known finite horizon T. In which case, the
return (a.k.a. gain) at time t is:

Gt = Rey1+ Reyo + -+ Ry

The return is random.

Nicolas Gast — 20 / 110

Return: example

Nicolas Gast — 21 / 110

Return: example

-+ = =
— > —
{ I

Nicolas Gast — 21 / 110

Return: example

L

Nicolas Gast — 21 / 110

Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [G].

L

Nicolas Gast — 21 / 110

Table of contents

@ Markov Decision Processes (MDPs)

@ Value Function and Bellman’s Equation (finite horizon)

Nicolas Gast — 22 / 110

Value function

sk

The value function of a policy 7 is

VETF(S =[E" [Gt | St = S],

AJ

where E™ [means E [- | Arik ~ 7(Stk) (k> 0)].

t

Nicolas Gast — 23 / 110

Value function

The value function of a policy 7 is

Vi(s) =E"[G: | St = s],)

where E™ [means E [- | Aryk ~ 7(Stk) (k> 0)].

It specifies the expected return. For each t, it is a vector of |S| values. If
S = {51 e 54}

S1 S22 S3 S

Nicolas Gast — 23 / 110

Land

Bellman's Equation (policy evaluation, finite horizon)

We have V[(s) =E" [G; | St = s] and

Gt =Riy1+ Rejo+ ... RT
= Rey1 + Gega.

E[Rea+ Gewe | Sev7J
%[zmm-ﬂ €[Ceq %=
CaGsih) ¢ 2 ELGenlSoeeIRGas]
IR Z\/ ()R [s7G2) i
where r(s,a) = X, /p(r' | s,a)= E[Km \Se= s @q—ﬂ

Hence:

Nicolas Gast — 24 / 110

Bellman's Equation (policy evaluation, finite horizon)

We have V[(s) =E" [G; | St = s] and

Gt =Riy1+ Rejo+ ... RT
= Rit1+ Geya.

Hence:

Z(r + V™())p(s',r | s,a=m(s)).

—Qr,, (s7(s)) @?ﬂé"”"f

(e, 7+ 2 ViRl | 5.2 = ()

where r(s,a) = >, r'p(r' | s, a).

Nicolas Gast — 24 / 110

Algorithm: backward induction

Nicolas Gast — 25 / 110

Example : Finite-horizon Bellman's equation (evaluation)

Nicolas Gast — 26 / 110

Example : Finite-horizon Bellman's equation (evaluation)

{ ;_::-— K"‘Pl { d 4) 1 3 4)
5 E, —> 0 5 E, ., O 5 E, = O
t=1 t=2 t=3
2l el (6|6 elc| |60 &
& 0 6 0 & 0 O 6 O oo
&0 & % a) e g, ° & @@ 0
o gl 4 o O K74 QOY’
t=4 t=5 t—T—6

Nicolas Gast — 26 / 110

Action-Value function

The action-value function of a policy 7 is

Q™(s,2) =E"[Ge| S =sAA=a]. |

Nicolas Gast — 27 / 110

Action-Value function

The action-value function of a policy 7 is

QW(S,Q):EW[Gt’.St:S/\At:a]. J

It is a table of |S| x |A] values. If S = {s1...54} and A = {a1,a}:

Qlar a
S1
52
53
54

From Q, we can define a greedy policy: a; = arg max,c 4 Q(st, a).

Nicolas Gast — 27 / 110

Optimal policy

We denote by V;(s) = max, V(s) and Q;(s,a) = max, Q7 (s}, a.,)
For a finite-horizon T, a policy is a function 7: S x {1... T} — A.

X
Vi(s) = Mix Q{, (§/¢->
Q(s.9)= a(sa) + sz V. (s) P(s’15a)

\/Tr[s>: O

Nicolas Gast — 28 / 110

Optimal policy
We denote by V/(s) = max,; V7 (s) and Q/(s,a) = max, Q(s).
For a finite-horizon T, a policy is a function 7: S x {1... T} — A.
Vi (s) = max Q(s, a)
Qi(s.a)=) (r+ Via(s)P(s',r | s a)

s’.a

Initial condition:

V7(s) = maxr(s,a)

Nicolas Gast — 28 / 110

Optimal policy (finite horizon): illustration

o o o o
T—6
Q((2.3),0)= V3
Q:((2.3),R) = Y73

»l« J l/ ! Q;((273)5L): O
Q;((273)7U): y}

— — — o V: ((2,3)) - J;

5 ((23)) € (DR, U]

Nicolas Gast — 29 / 110

Optimal policy (finite horizon): illustration

Il
o

.
Q:((2.3.0)= /3
Q:((2,3),R)= V3
l/ Q;((273)7U): Y3
vi((17) = "3
Q:((2,3),D0) = Y5
£ = — = Qi(2.3),R) = /5
Qi((2.3),L)= "5
QZ((273)7U): '/3
- —

b B
(%) \/’Z((m?):“/j
() €45 &

Nicolas Gast — 29 / 110

Optimal policy (finite horizon): illustration

oo

S d a0
oo e
oo dddd

SeSS dddd

[[R R |

dd a0
(SRS S e R . 4
oo dJdo d

P R R
oo e
e dddo

SeSS dddd

—d a0
oenNN~NSe
oo x JdJo o

e JdDd

dd a0
oS
e dJdo o

SSSS

Nicolas Gast — 29 / 110

Table of contents

@ Markov Decision Processes (MDPs)

@ Infinite-horizon discounted problems

Nicolas Gast — 30 / 110

Which trajectory is best?

- — —
\J |
> —
— L 5

Nicolas Gast — 31 / 110

Return of a policy (discounted infinite horizon)

W/ @(3/’(54_

—0C 2= ‘3'<
: g e gf e e ",
When T is not specified, it is common to look at the discounted return:

Gt = Rey1 +YRey2 + ¥’ Regz + ...
oo
SR
= Y Rtti+k,
k=0

with v € [0,1).

6& = ﬁt_ﬂ{- Yé‘é‘ﬂ

e 7 = 0: myopic (greedy).
e v = 1: total reward.

Nicolas Gast — 32 / 110

P&J_\(c (et

\/t‘ (s) = a(s,(s)) « Z/ VZ((s) P(s' [s,ls))
\/(/(S> = 4(3,?(5))(— XZ/ Vs‘ (s') P(s’/s,’l?(s)>

66 = Qt&(< \6 66&-\

Value of a policy and value iteration

Call T™ the operator that associates to a vector V the vector T™V:

TV(s) =r(+vz $)p(s' | s,a = 7(s))

The value of a policy is the unique vector V™ such that T"V™ = VT,

Nicolas Gast — 33 / 110

Value of a policy and value iteration

Call T™ the operator that associates to a vector V the vector TV

T™V(s) =r(+72V p(s' | s,a=mn(s))

The value of a policy is the unique vector V™ such that T"V™ = VT,

Proof. T7 is contracting for the ||v| = maxs |v(s)].

| T T TV < T ffv-v'll

Nicolas Gast — 33 / 110

How to compute V™
—
< \/T—z

(v
VY

Two solutions:

@ Solve the linear system.

@ Initialize V(9 =0 and apply V(1) = T7 V() until convergence.

Nicolas Gast — 34 / 110

The optimal policy

We denote by V*(s) = max, V™(s) and Q*(s,a) = max, Q™ (s, a).

The optimal policy 7* is such that:
" = arg max V" (s) Vse S
™

or equivalently:

" = argmax Q" (s, a) VseS,sec A

™

Nicolas Gast — 35 / 110

lterative solutions

Evaluate 7

improve T

If you know the transitions and reward: value iteration or policy iteration.

Nicolas Gast — 36 / 110

lterative solutions

Evaluate 7

improve T

If you know the transitions and reward: value iteration or policy iteration.
Value iteration:

o Initialize V© (for instance to 0).
@ For k>0and s €S, do:
VKFL(s) := maxaea (r(s,a) + 7>y VA(s)p(s | s, a))

“Theorem”: If v < 1, then| V¥ — V= O(+%).

Nicolas Gast — 36 / 110

[[lustration

-
RS R [|
e dddd
SeSS dddd

oS e
e dddd

oo dddd

v=0.9

v=20.8
Iteration k =0

Nicolas Gast — 37 / 110

[[lustration

e e
o0 e
. s e
oS
eoeoem
oeoem
o0 e
oSS
o0
R T I I R |
o0 e

- d a0
o0
o dddd

SeSS dddd

oS
oS

o
oo em
oo m
oo e
o0 e
oo e
L [[s |
oo e
—d a0
oS e
e dddd

oo dddd

—

v=0.9

v=20.8
Iteration k =1

Nicolas Gast — 37 / 110

[[lustration

SRR

o

= = =

o

oeem

SO -

oo e

oS

(SIS SR

R TRRC R R [R R |

oo e
—_aano

oS

e dddo

SSSS ddd

(SR
o0

o e
oo onN
[SESRS IS
oo e
oo
oo
L TR [R |
oo
PR [[
o0
e dJddo

oo . dddd

-

v=0.9

v=20.8
Iteration k = 2

Nicolas Gast — 37 / 110

[[lustration

LR R S [|
(SIS
R [[
oSS
el

oo dddd

v=0.9

v=20.8
Iteration kK = 3

Nicolas Gast — 37 / 110

[[lustration

e
oS
.« s e
oS

NWO NS
oo nN;m

oo e
- ® < 0
SRR
« s o «Dddd
SESEEKS)
dd a0
®S=HIN®
e Joo

SeSssSsoJdD4

SRS
o e
= = =
o e
=T ~AN
(SIS Ve
o0 e
o0«
0012
DA d4d
0000
Sddd0

(o
OOQORLDR

OOQODLUL

v=0.9

v=20.8
Iteration kK = 4

Nicolas Gast — 37 / 110

[[lustration

O e
SRS K
« e+ & aD A
oo
dd a0
~NoOne
oo dHeEDJ0x

e dJdDd

NMO S
eoeeeeeOdoox

e dDd

v=0.9

v
Iteration kK = 90

Nicolas Gast — 37 / 110

Policy iteration

Policy iteration:
o Initialize 7° (to some random value).

@ For k > 0:
Compute Q™ (=linear system)
For all a € A: 7K+1(s) := arg max, 4 Q™ (s, a).
“Theorem™: If v < 1, then after a finite number of iterations: vk = v*,

Nicolas Gast — 38 / 110

Exercise: the wheel of fortune

You can draw a wheel indefinitely. After time t:

@ If you draw, the wheel stops on
X € {1...10} (uniformly). You earn X:.

@ You can draw again or keep X;11 := X:.

- -

How do you play knowing that you want to maximize your discounted
oo

reward: E [Z 8t X: | with v = 0.9?
t=1
@ Compare value iteration and policy iteration algorithms.

Nicolas Gast — 39 / 110

Table of contents

@ Markov Decision Processes (MDPs)

@ Conclusion

Nicolas Gast — 40 / 110

Important concepts

(to be filled by you!)

Nicolas Gast — 41 / 110

