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Overview of the course

Up to now:
1 Supervised / unsupervised learning.

↭ Data →↑ model

2 Online learning
↭ Decision →↑ Data →↑ Decisions

End of the course:
3 Reinforcement learning

↭ State →↑ Decision →↑ Reward and new state
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What is Reinforcement Learning?
And why it di!ers from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.

Nicolas Gast – 3 / 110



What is Reinforcement Learning?
And why it di!ers from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.

Nicolas Gast – 3 / 110



What is Reinforcement Learning?
And why it di!ers from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.

Nicolas Gast – 3 / 110



Applications

Games (Go, Atari, StarCraft,...) StarCraft

Auto-piloting vehicles Robots , Helicopter

Supply management, energy data-center

Trading, bidding Bidding

Toy models AIGym

. . .
The number of application is increasing.
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RL is about interacting with an environment

1 Get an observation of the state of the environment
2 Choose an action
3 Obtain a reward

You goal is to select actions to maximize the total reward.
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Reward signal

At time t, we observe St , take action At , and obtain a reward Rt+1.

S1,A1 R2, S2,A2 R3, S3,A3 . . . RT , ST

Impact of actions can be delayed.
On which actions does the
reward depend?

Impact of actions can be weak
or noisy
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Objective of this course

Theory Practice

↓

Theory

Practice

>

MDPs
Tabular RL

Algorithms guarantees
Regret minimization

Exercises
Deep RL

Policy gradient
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Personal work
Week November 26 Dec 10 Dec 17

Tuesday MDP Tabular RL “Modern” RL

Mini-exam (Dec 10 and/or Dec 17)
Final exam in January.

A few advice:
Question what you learn
Try to do some exercises.

↭ Program, go deeper, ask follow-up questions.

Ask questions during or after the course.

Read books (and/or research articles)
(Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.))

Algorithms for Reinforcement Learning (Szepesvari, 2010)

Deep Reinforcement learning: hands on (Maxim Lapan, 2020)
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Content of the course

1 Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)
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Outline

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)
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Illustrative example: the wheel of fortune

You can draw a wheel indefinitely. After time t:
If you draw, the wheel stops on
Xt ↔ {1 . . . 10} (uniformly).
You can draw again or stop and earn Xt .

You can draw the wheel up to T = 10 times. How do you play?
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The environement lives in a “space”

S – state space.
A – action space.
R – reward space.

Dynamics:
(possibly random) evolution of states
(possibly random) rewards
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Markov decision processes

A MDPs is defined by:
S state space
A action set
Evolution is driven by Markovian transitions

P(St+1 = s
→,Rt+1 = r | St = s,At = a) = P(s →, r | s, a).

MDP = Markov chain + decisions

Most reinforcement learning problems can be framed as MDPs.
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Graphical representation

St

At

St+1

Rt+1

. . .
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Some examples
Wind production problem

A Wind turbine produces (Wt)3 cos(ωt) where Wt is the wind speed
and ωt is your angle with respect to wind. Assume that:

↭ Wind direction changes of ±1 degree with probability 1/2.

↭ Turning your turbine costs you a > 0.

Write the MDP for di!erent models:
↭ Assuming that Wt is constant.

↭ Assuming that W (t) evolve over time

W (t + 1) = min(1,max(0,W (t)± b)).

↭ Assuming that the direction in which the wind changes stays the same

with probabilty 90%.

Frozen-lake Link (this is a gridworld example)
There also some deterministic MDPs

↭ Shortest paths probmems

↭ Deterministic games (e.g., go, chess)
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Some examples

Wind production problem
Frozen-lake Link (this is a gridworld example)

↭ Set space: {(0, 0), . . . , (3, 3)}.
↭ Actions: {L,R ,U,D}.
↭ Transitions: 1/3 in right direction.

↭ Rewards: there are Holes and a Goal.

↫ Jumping to the goal gives you "1".

There also some deterministic MDPs
↭ Shortest paths probmems

↭ Deterministic games (e.g., go, chess)
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Table of contents
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Policies
A (deterministic) policy specifies which action to take in a given state:

ε : S ↑ A.

It indicates which action to take in a given state: At = ε(St). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

ε : S ↗A ↑ [0, 1].

The agent takes At ↘ ε(·|St).

Deterministic Stochastic
It forces exploration

Optimal in general Useful in games / non-Markovian
Di!erentiable
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Example of a (deterministic) policy
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Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose At to optimize:
Rt+1? (no: too greedy)
RT ? (only final reward?)
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Return of a policy (finite horizon)

Sometimes, a problem has a known finite horizon T . In which case, the
return (a.k.a. gain) at time t is:

Gt = Rt+1 + Rt+2 + · · ·+ RT .

The return is random.
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Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [Gt ].
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Value function

The value function of a policy ε is

V
ω
t (s) = Eω [Gt | St = s],

where Eω [·] means E [· | At+k ↘ ε(St+k) (k ⇐ 0)].

It specifies the expected return. For each t, it is a vector of |S| values. If
S = {s1 . . . s4}

s1 s2 s3 s4
V
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Bellman’s Equation (policy evaluation, finite horizon)

We have V
ω
t (s) = Eω [Gt | St = s] and

Gt = Rt+1 + Rt+2 + . . .RT

= Rt+1 + Gt+1.

Hence:

V
ω
t (s) =

∑

s→,r →

(r + V
ω(s →))p(s →, r | s, a = ε(s)).

︸ ︷︷ ︸
=Qω

t+1(s,ω(s))

= r(s,ε(s)) +
∑

s→

V
ω
t+1(s

→)p(s → | s, a = ε(s)),

where r(s, a) =
∑

r → r
→
p(r → | s, a).
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Algorithm: backward induction

Nicolas Gast – 25 / 110



Example : Finite-horizon Bellman’s equation (evaluation)
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Example : Finite-horizon Bellman’s equation (evaluation)

t = 1 t = 2 t = 3

t = 4 t = 5 t = T = 6
Nicolas Gast – 26 / 110
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Action-Value function

The action-value function of a policy ε is

Q
ω(s, a) = Eω [Gt | St = s ⇒ At = a].

It is a table of |S|↗ |A| values. If S = {s1 . . . s4} and A = {a1, a2}:

Q a1 a2
s1
s2
s3
s4

From Q, we can define a greedy policy: at = argmaxa↑AQ(st , a).
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Optimal policy

We denote by V
↓
t (s) = maxω V ω

t (s) and Q
↓
t (s, a) = maxω Qω

t (s).
For a finite-horizon T , a policy is a function ε : S ↗ {1 . . .T} ↑ A.

V
↓
t (s) =

max
a

Qt(s, a)

Q
↓
t (s, a) =

∑

s→,a

(r + V
↓
t+1(s

→))P(s →, r | s, a)

Initial condition:

V
↓
T (s) =

max
a

r(s, a)
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Optimal policy (finite horizon): illustration

T = 6
Q

↓
5 ((2, 3),D) =

Q
↓
5 ((2, 3),R) =

Q
↓
5 ((2, 3), L) =

Q
↓
5 ((2, 3),U) =

Q
↓
4 ((2, 3),D) =

Q
↓
4 ((2, 3),R) =

Q
↓
4 ((2, 3), L) =

Q
↓
4 ((2, 3),U) =
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Optimal policy (finite horizon): illustration
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Which trajectory is best?

↑

↑

↑

≃

↑

↑

↑

≃

↑

↑

↑

≃

↑

↑

↑

≃
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Return of a policy (discounted infinite horizon)

When T is not specified, it is common to look at the discounted return:

Gt = Rt+1 + ϑRt+2 + ϑ2
Rt+3 + . . .

=
↔∑

k=0

ϑkRt+1+k ,

with ϑ ↔ [0, 1).

ϑ = 0: myopic (greedy).
ϑ = 1: total reward.
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Value of a policy and value iteration

Call T ω the operator that associates to a vector V the vector T ω
V :

T
ω
V (s) = r(s,ω(s)) + ε

∑

s→

V (s →)p(s → | s, a = ω(s))

The value of a policy is the unique vector V ω such that T ω
V

ω = V
ω.

Nicolas Gast – 33 / 110
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Value of a policy and value iteration

Call T ω the operator that associates to a vector V the vector T ω
V :

T
ω
V (s) = r(s,ω(s)) + ε

∑

s→

V (s →)p(s → | s, a = ω(s))

The value of a policy is the unique vector V ω such that T ω
V

ω = V
ω.

Proof. T
ω is contracting for the →v→ = maxs |v(s)|.
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How to compute V ω

Two solutions:
1 Solve the linear system.
2 Initialize V

(0) = 0 and apply V
(k+1) = T

ω
V

(k) until convergence.

Nicolas Gast – 34 / 110
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The optimal policy

We denote by V
↑(s) = maxω V ω(s) and Q

↑(s, a) = maxω Qω(s, a).

The optimal policy ω↑ is such that:

ω↑ = argmax
ω

V
ω(s) ↑s ↓ S

or equivalently:

ω↑ = argmax
ω

Q
ω(s, a) ↑s ↓ S, s ↓ A
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Iterative solutions

ω Qω

Evaluate ω

improve ω

If you know the transitions and reward: value iteration or policy iteration.

Value iteration:
Initialize V

0 (for instance to 0).
For k ↔ 0 and s ↓ S, do:

V
k+1(s) := maxa↓A

(
r(s, a) + ε

∑
s→ V

k(s →)p(s → | s, a)
)

“Theorem”: If ε < 1, then V
k ↗ V

↑ = O(εk).
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Illustration

ε = 0.8 ε = 0.9
Iteration k = 0
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Illustration

ε = 0.8 ε = 0.9
Iteration k = 1
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Illustration

ε = 0.8 ε = 0.9
Iteration k = 2
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Illustration

ε = 0.8 ε = 0.9
Iteration k = 3
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Illustration

ε = 0.8 ε = 0.9
Iteration k = 4
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Illustration

ε = 0.8 ε = 0.9
Iteration k = 90
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Policy iteration

Policy iteration:
Initialize ω0 (to some random value).
For k ↔ 0:

Compute Q
ωk (=linear system)

For all a ↓ A: ωk+1(s) := argmaxa↓AQ
ωk
(s, a).

“Theorem”: If ε < 1, then after a finite number of iterations: V
k = V

↑.
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Exercise: the wheel of fortune

You can draw a wheel indefinitely. After time t:
If you draw, the wheel stops on
Xt ↓ {1 . . . 10} (uniformly). You earn Xt .
You can draw again or keep Xt+1 := Xt .

How do you play knowing that you want to maximize your discounted

reward: E
[ ↔∑

t=1

ϑtXt

]
with ε = 0.9?

Compare value iteration and policy iteration algorithms.
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Important concepts

(to be filled by you!)
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