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Overview of the course

Up to now:
1 Supervised / unsupervised learning.

▶ Data 7→ model

2 Online learning
▶ Decision 7→ Data 7→ Decisions

End of the course:
3 Reinforcement learning

▶ State 7→ Decision 7→ Reward and new state
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What is Reinforcement Learning?
And why it differs from supervised or unsupervised learning

No i.i.d. dataset, but an environmeent.
No labels, but observation of rewards.
We design an agent, that maps states to actions.

Challenges:
Many possible states, actions
Reward can be delayed, or sparse.
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Applications

Games (Go, Atari, StarCraft,...) StarCraft

Auto-piloting vehicles Robots , Helicopter

Supply management, energy data-center

Trading, bidding Bidding

Toy models AIGym

. . .
The number of application is increasing.
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https://www.youtube.com/watch?v=GgkmJDjeJtw
https://www.youtube.com/watch?v=ZhsEKTo7V04
https://www.youtube.com/watch?v=VCdxqn0fcnE
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://www0.cs.ucl.ac.uk/staff/K.Malialis/files/wsdm17.pdf
https://www.gymlibrary.dev/environments/toy_text/


RL is about interacting with an environment

1 Get an observation of the state of the environment
2 Choose an action
3 Obtain a reward

You goal is to select actions to maximize the total reward.
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Reward signal

At time t, we observe St , take action At , and obtain a reward Rt+1.

S1,A1 R2, S2,A2 R3, S3,A3 . . . RT , ST

Impact of actions can be delayed.
On which actions does the
reward depend?

Impact of actions can be weak
or noisy
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Objective of this course

Theory Practice

≈

Theory

Practice

>

MDPs
Tabular RL

Algorithms guarantees
Regret minimization

Exercises
Deep RL

Policy gradient
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Personal work, a few advice

Week December 5-6 Dec 12-13 Dec 19-20
Tuesday Course (MDP) Course Course

Wednesday Exos. (bring laptop) Course Course
No project. Final exam in January.

Question what you learn
Try to do some exercises.

▶ Program, go deeper, ask follow-up questions.

Ask questions during or after the course.

Read books (and/or research articles)
(Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.))

Algorithms for Reinforcement Learning (Szepesvari, 2010)

Deep Reinforcement learning: hands on (Maxim Lapan, 2020)
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Content of the course

1 Markov Decision Processes (MDPs)

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)
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Outline

1 Markov Decision Processes (MDPs)
Example and definition
Policies and Returns
Value Function and Bellman’s Equation (finite horizon)
Infinite-horizon discounted problems
Conclusion

2 Tabular reinforcement learning

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)
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Illustrative example: the wheel of fortune

You can draw a wheel indefinitely. After time t:
If you draw, the wheel stops on
Xt ∈ {1 . . . 10} (uniformly).
You can draw again or stop and earn Xt .

You can draw the wheel up to T = 10 times. How do you play?
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The environement lives in a “space”

S – state space.
A – action space.
R – reward space.

Dynamics:
(possibly random) evolution of states
(possibly random) rewards
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Markov decision processes

A MDPs is defined by:
S state space
A action set
Evolution is driven by Markovian transitions

P(St+1 = s ′,Rt+1 = r | St = s,At = a) = P(s ′, r | s, a).

MDP = Markov chain + decisions

Most reinforcement learning problems can be framed as MDPs.
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Graphical representation

St

At

St+1

Rt+1

. . .
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Some examples
Wind production problem (tomorrow’s exercise session)

A Wind turbine produces (Wt)
3 cos(θt) where Wt is the wind speed

and θt is your angle with respect to wind. Assume that:
▶ Wind direction changes of ±1 degree with probability 1/2.

▶ Turning your turbine costs you a > 0.

Write the MDP for different models:
▶ Assuming that Wt is constant.

▶ Assuming that W (t) evolve over time
W (t + 1) = min(1,max(0,W (t)± b)).

▶ Assuming that the direction in which the wind changes stays the same
with probabilty 90%.

Frozen-lake Link (this is a gridworld example)
There also some deterministic MDPs

▶ Shortest paths probmems
▶ Deterministic games (e.g., go, chess)
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▶ Set space: {(0, 0), . . . , (3, 3)}.
▶ Actions: {L,R,U,D}.
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Policies
A (deterministic) policy specifies which action to take in a given state:

π : S → A.

It indicates which action to take in a given state: At = π(St). This defines
the behavior of the agent.

A stochastic policy specifies a distribution over actions:

π : S ×A → [0, 1].

The agent takes At ∼ π(·|St).

Deterministic Stochastic
It forces exploration

Optimal in general Useful in games / non-Markovian
Differentiable
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Example of a (deterministic) policy
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Return of a policy

We want to compute the best policy... But what is the best policy?

Do we choose At to optimize:
Rt+1? (no: too greedy)
RT ? (only final reward?)
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Return of a policy (finite horizon)

Sometimes, a problem has a known finite horizon T . In which case, the
return (a.k.a. gain) at time t is:

Gt = Rt+1 + Rt+2 + · · ·+ RT .

The return is random.
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Return: example

Return(Red) = 0
Return(Green)=1
Return(Blue) = 1.

The return is random.

In practice, we will
look at the expected
return E [Gt ].
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Value function

The value function of a policy π is

V π
t (s) = Eπ [Gt | St = s],

where Eπ [·] means E [· | At+k ∼ π(St+k) (k ≥ 0)].

It specifies the expected return. For each t, it is a vector of |S| values. If
S = {s1 . . . s4}

s1 s2 s3 s4
V
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Bellman’s Equation (policy evaluation, finite horizon)

We have V π
t (s) = Eπ [Gt | St = s] and

Gt = Rt+1 + Rt+2 + . . .RT

= Rt+1 + Gt+1.

Hence:

V π
t (s) =

∑
s′,r ′

(r + V π(s ′))p(s ′, r | s, a = π(s)).

︸ ︷︷ ︸
=Qπ

t+1(s,π(s))

= r(s, π(s)) +
∑
s′

V π
t+1(s

′)p(s ′ | s, a = π(s)),

where r(s, a) =
∑

r ′ r
′p(r ′ | s, a).
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Algorithm: backward induction
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Example : Finite-horizon Bellman’s equation (evaluation)
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Example : Finite-horizon Bellman’s equation (evaluation)

t = 1 t = 2 t = 3

t = 4 t = 5 t = T = 6
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Action-Value function

The action-value function of a policy π is

Qπ(s, a) = Eπ [Gt | St = s ∧ At = a].

It is a table of |S| × |A| values. If S = {s1 . . . s4} and A = {a1, a2}:

Q a1 a2

s1
s2
s3
s4

From Q, we can define a greedy policy: at = argmaxa∈AQ(st , a).
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Optimal policy

We denote by V ∗
t (s) = maxπ V

π
t (s) and Q∗

t (s, a) = maxπ Q
π
t (s).

For a finite-horizon T , a policy is a function π : S × {1 . . .T} → A.

V ∗
t (s) =

max
a

Qt(s, a)

Q∗
t (s, a) =

∑
s′,a

(r + V ∗
t+1(s

′))P(s ′, r | s, a)

Initial condition:

V ∗
T (s) =

max
a

r(s, a)
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Optimal policy (finite horizon): illustration

T = 6
Q∗

5 ((2, 3),D) =
Q∗

5 ((2, 3),R) =
Q∗

5 ((2, 3), L) =
Q∗

5 ((2, 3),U) =

Q∗
4 ((2, 3),D) =

Q∗
4 ((2, 3),R) =

Q∗
4 ((2, 3), L) =

Q∗
4 ((2, 3),U) =
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Optimal policy (finite horizon): illustration
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Which trajectory is best?

→

→

→

↓

→

→

→

↓

→

→
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↓

→

→

→

↓
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Return of a policy (discounted infinite horizon)

When T is not specified, it is common to look at the discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

=
∞∑
k=0

γkRt+1+k ,

with γ ∈ [0, 1).

γ = 0: myopic (greedy).
γ = 1: total reward.
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Value of a policy and value iteration

Call Tπ the operator that associates to a vector V the vector TπV :

TπV (s) = r(s, π(s)) + γ
∑
s′

V (s ′)p(s ′ | s, a = π(s))

The value of a policy is the unique vector V π such that TπV π = V π.

Proof. Tπ is contracting for the ∥v∥ = maxs |v(s)|.
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How to compute V π

Two solutions:
1 Solve the linear system.
2 Initialize V (0) = 0 and apply V (k+1) = TπV (k) until convergence.
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The optimal policy

We denote by V ∗(s) = maxπ V
π(s) and Q∗(s, a) = maxπ Q

π(s, a).

The optimal policy π∗ is such that:

π∗ = argmax
π

V π(s) ∀s ∈ S

or equivalently:

π∗ = argmax
π

Qπ(s, a) ∀s ∈ S, s ∈ A
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Iterative solutions

π Qπ

Evaluate π

improve π

If you know the transitions and reward: value iteration or policy iteration.

Value iteration:
Initialize V 0 (for instance to 0).
For k ≥ 0 and s ∈ S, do:

V k+1(s) := maxa∈A
(
r(s, a) + γ

∑
s′ V

k(s ′)p(s ′ | s, a)
)

“Theorem”: If γ < 1, then V k − V ∗ = O(γk).
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Illustration

γ = 0.8 γ = 0.9
Iteration k = 0
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Illustration
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Illustration

γ = 0.8 γ = 0.9
Iteration k = 3
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Illustration

γ = 0.8 γ = 0.9
Iteration k = 4
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Illustration

γ = 0.8 γ = 0.9
Iteration k = 90
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Policy iteration

Policy iteration:
Initialize π0 (to some random value).
For k ≥ 0:

Compute Qπk
(=linear system)

For all a ∈ A: πk+1(s) := argmaxa∈AQπk
(s, a).

“Theorem”: If γ < 1, then after a finite number of iterations: V k = V ∗.
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Exercise: the wheel of fortune

You can draw a wheel indefinitely. After time t:
If you draw, the wheel stops on
Xt ∈ {1 . . . 10} (uniformly). You earn Xt .
You can draw again or keep Xt+1 := Xt .

How do you play knowing that you want to maximize your discounted

reward: E

[ ∞∑
t=1

δtXt

]
with γ = 0.9?

Compare value iteration and policy iteration algorithms.
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Important concepts

(to be filled by you!)
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Challenges and future courses

Learning transitions and reward? (course 2)

If the state space is too large?
▶ How do you store Q-values? (course 3)

Exploration or exploitation (course 4)

Nicolas Gast – 42 / 110



Some of the modern challenges

Limited samples, convergence guarantees.
Safety issues, explainable agents.
Multi-agents (ex: competitive objectives?)
Delayed or partial observations.
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Outline

1 Markov Decision Processes (MDPs)

2 Tabular reinforcement learning
Monte-Carlo methods
Temporal difference
Q-learning and SARSA
Conclusion

3 Large state-spaces and approximations

4 Monte-Carlo tree search (MCTS)
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Reminder: states, actions and policy

S, A = state/action spaces.

A (determinisitic) policy is a function
π : S → A

.
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Gain and value function

The gain is:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γGt+1,

where γ ∈ (0, 1) is the discount factor.

The value function V and action-value function Q are:

Vπ(s) = E [Gt+1 | St = s, π]

Qπ(s, a) = E [Gt+1 | St = s,At = a, π]

Nicolas Gast – 46 / 110



Gain and value function

The gain is:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γGt+1,

where γ ∈ (0, 1) is the discount factor.

The value function V and action-value function Q are:

Vπ(s) = E [Gt+1 | St = s, π]

Qπ(s, a) = E [Gt+1 | St = s,At = a, π]

Nicolas Gast – 46 / 110



Two problems

Policy evaluation

For a given policy π, find
V π(x) and Qπ(x , a).

Control problem / optimization

Find / use π∗ such that
V π∗

= maxπ V
π(x).
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Bellman’s equation

V ∗(s) =

max
a∈A

Q∗(s, a)

Q∗(s, a) =

r(s, π(s)) + γ
∑
s′

V ∗(s ′))p(s ′ | s, a)

Two problems:
Requires the knowledge of systems dynamics and rewards.

▶ We assume to have access to a simulator.

|S| can be large

▶ We assume |S| to be small for now.
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Monte Carlo methods
Class of algorithms where we replace a deterministic computation by an
estimation of E [X ]. We then sample many values of X and compute the
average (law of large numbers: 1

n

∑n
i=1 Xi ≈ E [X ]).

Example:

Source: wikipedia

Area is π/4. A point (x , y) is in the red zone if x2 + y2 ≤ 1.
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Monte Carlo for policy Evaluation

V π(St) = E [Gt | St = s, π] .

Monte-Carlo = sample Gt by using rollout.

Recipe:
Play many episodes with π

Record the return from the first visit to each state
Return the average as an approximation of V π(s).

Note: every-visit also works but the samples are not independent.
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Monte Carlo learning algorithm

First-visit Monte-Carlo
1: For all s: R(s):={}
2: while True do
3: Simulate an episode from 0 to T using π
4: Set GT := 0
5: for t = T to 0 (backward) do
6: Gt = Rt+1 + γGt+1.
7: If St does not appear in S0 . . . St−1, R(St).append(Gt).
8: end for
9: end while

10: V (s) = mean(R(s)).

If a state has been seen n times, the error is O(1/
√
n).
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Monte-Carlo optimization
Monte-Carlo can be used to evaluate the state-action function Q(s, a).

π Qπ

Evaluate π

improve π

Recall: improve can be done by using greedy:

π(s) = argmax
a∈A

Q(s, a).

Possible problems:
One may need many samples for all actions.
Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (course 4), importance
sampling.
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The temporal difference (TD) error
Bellman’s equation states:

V (St) = E [Rt+1 + γRt+2 + . . . ]

= E [Rt+1 + γV (St+1)] .

This is equivalent to

0 = E

Rt+1 + γV (St+1)− V (St)︸ ︷︷ ︸
TD error



The TD learning algorithm uses the updates:

V (St) := V (St) + αt(Rt+1 + γV (St+1)− V (St))),

where α is a learning rate.
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TD learning algorithm

TD(0) for evaluating V π

1: Initialize V (s) arbitrarily.
2: while True do
3: Initialize S
4: for While S ′ is not a terminal state do
5: Sample A ∼ π(S) and simulate a transition S ′,R ∼ p(· | S ,A).
6: V (S) := V (S) + αt(R + γV (S ′)− V (S)).
7: S := S ′

8: end for
9: end while

Nicolas Gast – 56 / 110



TD-learning: proof of convergence

TD-update:

V (St) := V (St) + αt(Rt+1 + γV (St+1)− V (St))).

Theorem
Fix a policy π that visits all states and let γ < 1.
Assume that we use the TD-update with αt be decreasing and such that:∑

t αt = +∞ and
∑

t α
2
t < +∞.

Then the TD-learning converges to V π almost surely.
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Proof

Let βt(s) be such that

βt(s) =

{
0 if s = St
αt otherwise

Let Vt be the V -table at time t. The definition of βt implies that for all s:

Vt+1(s) := Vt(s) + βt(s)

Rt+1 + γVt(St+1)︸ ︷︷ ︸
=TπVt+noise

−Vt(s)

 .

with
∑

t βt(s) = ∞ and
∑

t β
2
t (s) < ∞.

As Tπ is contracting, Theorem 1 of On the convergence of stochastic iterative dynamic

programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93 shows that this implies
limt→∞ Vt = V π almost surely.
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Relation between MC, TD and DP

V (St) = E [Gt ] MC

V (St) = E [Rt+1 + γV (St+1)] TD

V (St) = E [Rt+1] + γ
∑
s′

V (St+1)P(St+1 = s ′) DP

MC simulates a full trajectory
TD samples one-step and uses a previous estimation of V .
DP needs all possible values of V (s ′).
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TD vs MC comparison: general case

source: Sutton, Barto 2018. For a random-walk example.

Warning: this might very well depend on the choice of learning parameter
αt !
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TD v.s. MC and tradeoffs

One full trajectory for update Updates take time to propagate

Tradeoff:
Use n-step returns (see Sutton-Barto, chapter 7).

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γt+nV (St+n).

TD(λ) (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

Gt(λ) = (1 − λ)
T∑

n=1

λn−1Gt:t+n + λTGt .
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TD learning = policy evaluation. What about optimization?

Bellman’s equations are:

V π(St) = Eπ [Rt+1 + γV π(St+1)] to evaluate π

Q∗(St ,At) = E
[
Rt+1 + γmax

a
Q∗(St+1, a)

]
to find the best policy

This leads to two variant of:
Q-learning = off-policy learning.

▶ Choose At ∼ π.
▶ Apply TD-learning replacing V (s) by maxa Q(s, a).

SARSA = on-policy learning:
▶ Choose At+1 ∼ argmaxa∈A Q(St+1, a).
▶ Apply TD-learning replacing V (s) by Q(s,At+1).
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Q-learning and convergence guarantee

At ∼ π

Q(St ,At) := Q(St ,At) + αt

(
Rt+1 + γmax

a∈A
Q(St+1, a)− Q(St ,At)

)
.

Theorem
Assume that γ < 1 and that:

Any station-action pair (a, s) is visited infinitely often.∑
t αt = ∞ and

∑
t α

2
t < ∞.

Then: Q converges almost surely to the optimal Q∗-table as t goes to
infinity.

Proof: Identical to the proof of TD-learning.
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Q-Learning and SARSA

Q-learning, (one of the most popular RL algorithm):

At ∼ π

Q(St ,At) := Q(St ,At) + αt

(
Rt+1 + γmax

a∈A
Q(St+1, a)− Q(St ,At)

)
.

SARSA (name comes from St ,At ,Rt+1,St+1,At+1)

At+1 ∼ argmaxQ(St ,At) (or ε-greedy)
Q(St ,At) := Q(St ,At) + αt (Rt+1 + γQ(St+1,At+1)− Q(St ,At)) .
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Q-learning pseudo-code

The Q learning algorithm
1: Initialize Q(s, a) arbitrarily.
2: while True do
3: Initialize S
4: while S ′ is not a terminal state do
5: π = policy derived from Q (e.g. ε-greedy).
6: Sample A ∼ π(S) and simulate a transition S ′,R ∼ p(· | S ,A).
7: Q(S ,A) := Q(S ,A) + αt(R + γmaxaQ(S ′, a)− Q(S ,A)).
8: S := S ′

9: end while
10: end while
(in orange, the difference with TD-learning).
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SARSA

SARSA algorithm
1: Initialize Q(s, a) arbitrarily.
2: while True do
3: Initialize S and A
4: while S ′ is not a terminal state do
5: π = policy derived from Q (e.g. ε-greedy).
6: Simulate S ′,R ∼ p(· | S ,A) and A′ := π(S ′).
7: Q(S ,A) := Q(S ,A) + αt(R + γQ(S ′,A′)− Q(S , a)).
8: S := S ′,A := A′

9: end while
10: end while
(in orange, the difference with Q-learning).

Nicolas Gast – 67 / 110



SARSA vs Q-learning

Model is
deterministic.
Exploration policy
(π) is ε-greedy.

SARSA or Q-learning: what will be the difference?

For large ε, SARSA will
avoid the optimal shortest
path.
Q-learning will learn the
shortest path but will
often fall.
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How to choose the learning rate and guarantee exploration?

Recall: for Q learning, you are given an exploration policy π and apply:

At+1 ∼ π

Q(St ,At) := Q(St ,At) + αt

(
Rt+1 + γmax

a∈A
Q(St+1, a)− Q(St ,At)

)
.

Questions:
How to choose π?
How to choose αt?

Solution: exploration/exploitation tradeoff (course 4), and Q-learning with
UCB Exploration is Sample Efficient for Infinite-Horizon MDP by Dong et al 2019.
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Important notions

(your job here)
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TD and Q-learning are tabular method
They can be proven to converge.

S V (S)
(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)

.

.

.

S
A

N S E W

(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)

.

.

.

What about large state spaces?
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Reminder: Tabular MDP

We want to find Q(s, a) ≈ Q∗(s, a).

π(s) = argmax
a∈A

Q(s, a).

Two types of methods:
MC methods:

Qπ(s, a) =
1
K

K∑
k=1

G (k)

TD methods (SARSA / Q-learning)

Does it scale?
The complexity is Ω(|S||A|).

Q(s, a) a1 a2 a3 . . .
s1
s2
s3
s4
...
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What are typical state space sizes?
The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

|S| = 10010 = 1020.
A = possible orders (=10 × 100?)

Game of go
|S| = 319×19 (19 × 19 board game).
|A| = 19 × 19.

There are ≈ 10170 Q-values.
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What are typical state space sizes?
The curse of dimensionality

Breakout (1976) Atari games

|S| = 884×84 (84 × 84 screen, 8 colors).
|A| = 2 (left, right).

There are ≈ 102000 Q-values.

Starcraft alphastar

|S| ≫ |A| ≈ +∞??

We need approximations.
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TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:

V (St) := V (St) + α (Rt+1 + γV (St+1)− V (St))

Q(St ,At) := Q(St ,At) + α

(
Rt+1 + γmax

a∈A
Q(St+1, a)− Q(St ,At)

)
.

This does not scale if |S| (or |A|) are large.
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Function approximation
We replace the exact Q-table (or value function V ) by an approximation:

Q(S ,A) ≈ qw(S ,A),

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

Q(S ,A) = wTϕ(s, a),

where ϕ(s, a) is a feature vector.
("modern"): qw is a deep neural network.
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From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(St ,At) = E
[
Rt+1 +max

a∈A
Q(St+1, a)

]
.

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

≈ E
[
Rt+1 + γmax

a∈A
qw(St+1, a)

]
︸ ︷︷ ︸

target

.

Deep Q-learning minimizes the L2 norm and use gradient descent:

w := w + α

(
Rt+1 + γmax

a∈A
qw(St , a)− qw(St ,At)

)
∇w(qw(St ,At)).
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Example of breakout
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Why is vanilla unstable?

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

≈ E
[
Rt+1 + γmax

a∈A
qw(St+1, a)

]
︸ ︷︷ ︸

target

.

For that, we do:

w := w + α

(
Rt+1 + γmax

a∈A
qw(St , a)− qw(St ,At)

)
∇w(qw(St ,At)).

Problems:

Target and sources are highly correlated
Target changes as we learn.
Exploration is not guaranteed.

Learning algorithm can be unstable.
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Possible solution: replay buffer or separate target network

Vanilla Q-learning uses a
single network

DDQN uses a slow learning
target network and a fast
learning q-network.
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Applications of Deep RL

Resource management (energy)
Computer vision and robotics
Finance
. . .

Fundamental idea is simple but making the system stable and fast is an
issue. Also, delayed actions or sparse rewards is difficult.
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Policy search

We are given a family of policies πw parametrized by w ∈ W. Typically:

πw(a | s) ∝ exp(wTϕ(s, a)),

where ϕ(s, a) is a feature vector.

Let J(w) := V πw(s0) be its performance. We want to find w that
maximizes J(w).

Sometimes, this works well with direct methods (brute-force)
We can also use policy gradients:

w := w + α∇wJ(w).
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On an example https://www.youtube.com/watch?v=cQfOQcpYRzE
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How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is π(a|s).

∇π(a|s)E [G0] = P(attaining s)Q(s, a)

=
1

π(a|s)
P(observing (s, a))Q(s, a)

Algorithm: We want to compute gradient(S ,A) = ∇π(a|s)E [G0].
Run a trajectory and observe St ,At .
For each t:

̂gradient(St ,At) =
1

π(At |St)
Gt .

Theorem. For all s, a: E
[

̂gradient(s, a)
]
= ∇π(a|s)E [G ].
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The policy gradient theorem
Assume that π(a|s) = fw (s, a). We have:

∇wE [G0] =
∑
s,a

∇wπ(a|s)∇π(a|s)E [G0]

Hence, an unbiased estimate of the gradient ∇wE [G0] is∑
t

(∇wπ(At |St))
π(At |St)

Gt .

By using that ∇log(y) = ∇(y)/y , we get:

An unbiased estimate of the gradient is:

∇wE [G0] = E

[∑
t

(∇w log π(At |St))Gt

]
.
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Why is ∇ log π(a|s) easy to compute?

Reminder: if pi = eui/
∑

euj , then

∂

∂uj
log pi = 1{i=j} − pj .

If π(a|s) ∝ exp(wTϕ(s, a)), then it means that π(a|s) = exp(wTϕ(s,a))∑
a′ exp(w

Tϕ(s,a′))
.

As a consequence:

∇wπw (a|s) = ϕ(a, s)−
∑
a′

ϕ(a′|s)πw (a′|s).
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The REINFORCE algorithm

REINFORCE
1: Initialize w.
2: while True do
3: Simulate a trajectory (from t = 1 to T )
4: for t = T to t = 1 do
5: Gt :=

∑T
t′=t Rt′ .

6: ∇J := Gt∇ log π(At |St).
7: w := w + α∇J.
8: end for
9: end while

Recall that ∇ log π(a|s) is easy to compute when π(a|s) ∝ wTϕ(s, a).
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Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s, a1) = 8 ± 1 and Q(s, a2) = 8.5 ± 1, is a2 better than a1?

Solution: add a baseline h : S → R. Indeed, using the same log-trick:

E [h(st)∇ log π(at |st)] = E

[∑
a∈A

h(st)∇π(a|st)

]
= 0

This shows that for any function h, one has:

∇wJ(s0) ∝
∑
t

E [(Gt − h(st))∇ log π(at |st)]}.

Choosing a h close to Gt reduces the variance of the estimator.
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Classes of learning algorithms
We have seen two classes of RL methods:

Value-based (SARSA, Q-learning, Deep QL)

=Critic

Policy-based (Policy gradient, REINFORCE)

=Actor

Value-based learning can be unstable but uses samples efficiently.
Policy-based tend to be more robust.
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Actor Critic method

Basic Actor Critic
1: Initialize parameters w(a) (Actor) and w(c) (Critic)
2: while True do
3: Initialize S
4: for t = 1 to t = T do
5: At ∼ πw(S) and simulate R,S ′

6: w(c) := w(c) + α(c)(R + γvw(c)(S ′)− vw(c)(S)) # TD-update
7: w(a) := w(a) + α(a)vw(c)(S)∇ log π(at |st) # Policy-gradient
8: S:=S’.
9: end for

10: end while
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Going further

Extra-reading:
Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
Algorithms for Reinforcement Learning (Szepesvari, 2010)
Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Next course: some thoughts on exploration / exploitation.
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Reminder: exploration-exploitation dilemma and bandits

How useful is this for RL?
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Reminder: UCB algorithm
UCB computes a confidence bound UCBa(t) such that µa(t) ≤ UCBa(t)
with high probability. Example : UCB1 [Auer et al. 02] uses

UCBa(t) = µ̂a(t) +

√
α log t

2Na(t)
.

Choose At+1 ∈ argmaxa∈{1...n} UCBa(t) (optimism principle).
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Can we use optimism for MDPs?

Observe the empirical means R̂(s, a) and P̂(s ′ | s, a).

What bonus should one use?

UCRL2 (Jaksch 2010) or variant: use bonus on R and P . Let
δ(s, a) = C

√
t/Nt(s, a) where Nt(s, a) is the number of time that you

took action a in state s before time t.

R = {vector r such that for all s, a: |r(s, a)− r̂(s, a)| ≤ δ(s, a)}

P = {trans. matrix P s.t. for all s, a, a′
∣∣∣P(s, a, a′)− P̂(s, a, a′)

∣∣∣ ≤ δ(s, a)}

Optimism:
▶ Apply π that maximizes V π

r ,P∈R,P (by using extended value iteration)
and re-update the policy periodically.
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Tree search

For turn-based two players zero sum games

From a given position, takes the
best decision.

Generate a tree of
possibilities.
Explore this tree.

What if the tree is too big?
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You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

min (opponent)

If the tree is two big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.
For optimization, you can use alpha-beta pruning.
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Min-max and alpha-beta perform well (ex: Chess). . .
. . . but can be limited (ex: go)

Tree can still be very big (AD)

You need a good heuristic.
▶ Result is only available at the end

You might want to avoid the exploration
of not promising parts.

▶ For that you need a good heuristic.
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Simulate many games and compute how many were won.
Explore carefully which actions were best.

test
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

For each child, let S(c) be the number of success and N(c) be the number
of time you played c , and t =

∑
c ′ N(c ′).

Explore argmaxc
S(c)
N(c) + 2

√
log t
N(c) .

Open question: no guarantee with
√
log t/N(c). Is

√
t/N(c) better?

test
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Create one or multiple children of the leaf.
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Obtain a value of the node (e.g. rollout)
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Backpropagate to the root
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MCTS algorithm

MCTS
1: while Some time is left do
2: Select a leaf node #UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf #random sampling
5: Backpropagate to the root
6: end while
7: Return argmaxc∈children(root) N(c) #or S(c)/N(c).
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Demo / exercice
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Conclusion

Exploration v.s. exploitation is central in RL

Bandits and regret help formalizing this idea.

One important notion is the use of optimism to force exploration.
▶ Bayesian sampling can also be used

Theoretical tools guide practical implementations.
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