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Please justify carefully your answer (try to be concise and precise). The
grading scale is given as an indication.

Exercise 1 Bandit, 3 points

You consider a 3-arm Bernoulli bandit. We denote by pi the probability that the arm i provides a
reward 1 when chosen.

1. (2 points) You observe the episode:

Time 0 1 2 3 4 5 6 7 8 9
Choice 0 1 2 0 1 1 0 2 0 0
Reward 1 1 0 0 1 0 1 0 1 1

a) Express the expected regret at time t = 10 as a function of the pis.
b) Suppose that you are using ε-greedy with ε = 0.1. What is the probability of choosing

arms 0, 1 or 2 at time 10?
c) Suppose that you are using UCB with a bonus

√
2 ln t/Ni(t), where Ni(t) if the number

of time that you choose this arm before time t. What will UCB choose at time 10?
Indication: ln(10) ≈ 2.3.

2. (1 point) For both of the above policy, what is limt→∞ Ni(t)/t? Use it to explain the
fundamental difference (in terms of regret) between UCB and ε-greedy.

Exercise 2 Black-jack, 7 points

We consider a simplified version of the Blackjack. You draw cards one by one from an infinite
deck. The deck contains cards 2 to 10, J, Q, K and A. Each card is equally likely to be drawn each
time. The ”value” of a card is:

• The number shown on the card for cards 2 to 10.

• 10 for the cards J, Q and K.

• 11 for the cards A.

At each turn you may ”hit” or ”stay”. If you hit, you draw a new card (and receive no immediate
reward). If you stay, then you sum the values of your card. If this sum is 15, you earn 0. If it is
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between 16 and 21, you earn 10. If it is (strictly) lower than 15 or (strictly) larger than 21, your
reward is -10. Note that when the sum is larger than 21, the action “hit” is not available.

We propose to model the problem as a Markov decision process, with states S = {0, 2, 3 . . . , 21,≥
21, end}, where end is a terminal state that you enter after choosing the action “stay”. We consider
a discount factor γ.

1. (1 point) What are the reward R(s, a) and the transition probabilities P (s′|s, a) for s = 12,
a ∈ {hit, stay} and s′ ∈ S?

2. (2 points) Suppose that you initialize your value function V0(s) with the following table (for
s ∈ {12 . . . 21,≥ 21, end):

12 13 14 15 16 17 18 19 20 21 ≥ 21 end
0 0 0 0 0 0 0 10 10 10 0 0

a) What is the corresponding Q-table, assuming that γ = 0.5?
b) You perform one iteration of value iteration. Write down the table of V1(s).
c) What is the optimal policy? (please justify carefully). Note: you do not have to compute

its value.

3. (2 points) We now suppose that you do not know the transition probabilities. You are using
Q-learning with a learning rate α and a discount factor γ.
a) Recall the Q-learning update equation, and use it to explain how does Q-learning work.

At some point in time, your are in state 10, the Q-table has the following values, and
you observe the end of the episode (which contains 3 steps):

s 19 20 21 ≥ 21
stay 5 6 7 8
hit -5 -6 -7 N/A

S A R S A R S A R
19 hit 0 21 hit 0 ≥ 21 stay -10

Q-table Episode
b) Assume that α = 0.2, γ = 0.5. Write down the value of the Q-table at the end of the

episode. Indicate only the values of the table that changed (use the value “–” to indicate
a value that did not change).

* 4. (2 points) We now consider a two player games in which: you draw your cards as before and
stop as before. The difference is that when you decide to stay, you do not immediately earn
a reward but wait for the dealer to play. The later draws cards (the same way as you) and
wins +10 if they obtain a score strictly higher than you. As before, if a player obtains a sum
strictly larger than 21, then the game is lost for this player.
a) Explain how to design an algorithm that computes the optimal solution, assuming to

know the probability of drawing cards.
b) If you do not know the probabilities, could you use a Q-learning approach? Explain

how to do it.
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