OPTIMAL STORAGE POLICIES WITH WIND FORCAST UNCERTAINTIES

Nicolas Gast

Joint work with Jean-Yves Le Boudec, Dan-Cristian Tomozei I&C EPFL

December 2012

1

EPFL «smart-grids» group

Two EPFL labs:

- LCA (Lab. of Communications and Applications), Prof. Jean-Yves Le Boudec
 - Communication systems / networking
 - Stochastic modeling, performance and security
- DESL (Distributed Electrical Systems Laboratory), Prof Mario Paolone
 - Distribution networks & micro-grids / storage mechanisms
 - Real time Simulation/Emulation

Projects: Active distribution networks

 Installation of a smart-grid on campus (20 PMU + communication infrastructure + remote control)

Ex: performance and security aspects (wired/wireless network, control)

 Generation control & Demand-response algorithms (energy balance and voltage control)

1. INTRODUCTION

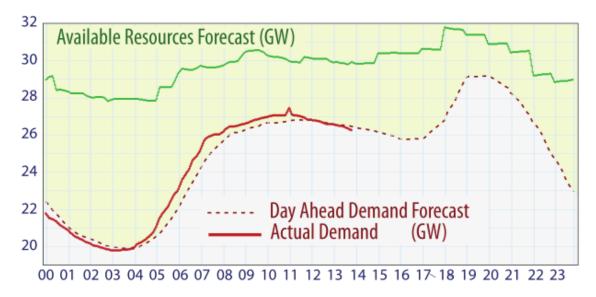
Renewable but non dispatchable

Wind and PV require some mechanisms to compensate non dispatchability

How Europe can go 100 % renewable and phase out dirty energy

Source: «Battle of the grids», Greenpeace, Report 2011.

Renewable Methods to Compensate for Fluctuations of PV and Wind


Dispatchable renewables

Storage **Demand Response**

Two main issues

- 1. Production exceeds demand
 - Long term storage
- 2. Deviations from forecast
 - Schedule of the rest of the production
 - Storage to compensate uncertain forecast

S. Meyn "Dynamic Models and Dynamic Markets for Electric Power Markets"

2.

USING STORAGE TO COPE WITH WIND VOLATILITY

Gast, Tomozei, Le Boudec. Optimal Storage Policies with Wind Forecast Uncertainties, *GreenMetrics 2012*

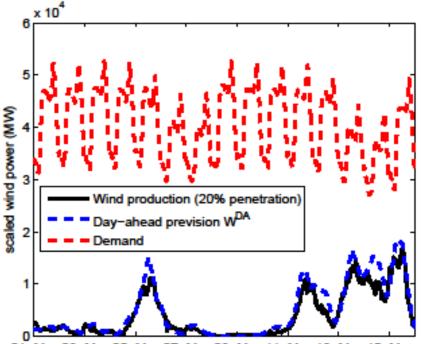
Schedule production and use storage

renewables

renewables + storage

Stationary batteries, pump hydro

load


Cycle efficiency $\approx 70 - 80\%$

We evaluate on data from the UK

Aggregate data from UK (BMRA data archive <u>https://www.elexonportal.co.uk/</u>)

01-Mar 03-Mar 05-Mar 07-Mar 09-Mar 11-Mar 13-Mar 15-Mar

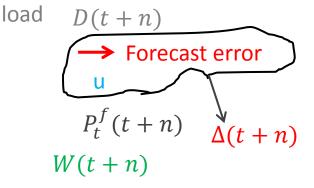
National data (wind production and demand)3 years data

Demand close to perfectly predictedWe normalized the wind production

Day ahead forecast = 24%Corrected day ahead forecast = 19%

Model: Schedule energy=dispatch storage

1. Schedule dispatchable production using forecast


We plan to use **u** from storage load $D_t^f(t+n)$ renewables $P_t^f(t+n)$

 $W_t^f(t+n)$

2. In real time: compensate deviations from forecast by charging / discharging Δ from storage

Storage compensates for **u** + forecast error

renewables

stored energy

Typically, n=6h (up to n=18h) stored energy

 $\Delta(t+n)$

Full compensation of fluctuations by storage may not be possible due to power / energy capacity constraints D(t+n)

- Fast ramping energy source $(CO_2 rich)$ is used when storage is not enough to compensate fluctuation
- Energy may be wasted when
 - Storage is full
 - Unnecessary storage (cycling efficiency < 100%)

Control problem: compute dispatched power schedule $P_t^f(t+n)$ to minimize energy waste and use of fast ramping renewables D(t+n) $\Delta(t+n)$ $P_t^f(t+n)$

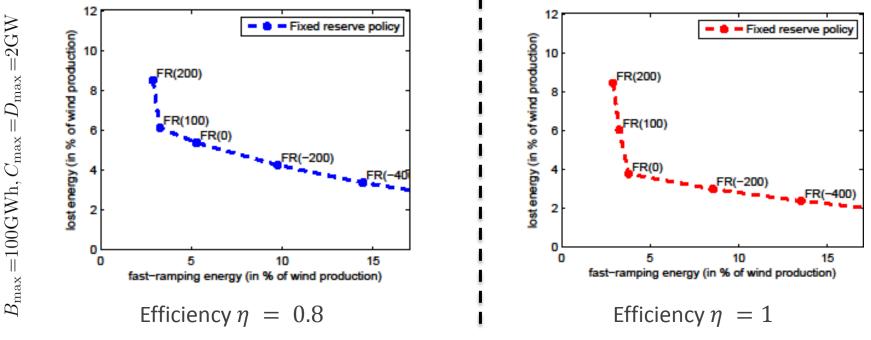
load

W(t+n)

D(t+n)

renewables

spilled energy


 $P_t^f(t+n)$ W(t+n)

Policy 1: The Fixed Reserve Policy

Set
$$P_t^f(t+n) = D_t^f(t+n) - W_t^f(t+n) + \xrightarrow{r^*}$$
 Charge or discharge a fixed quantity

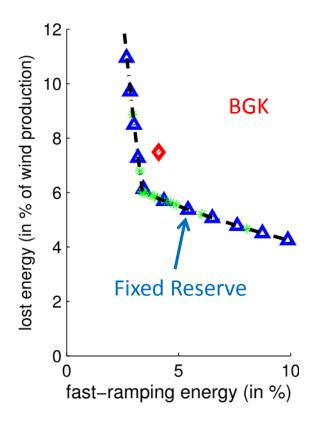
 $ightarrow r^*$ is fixed (positive or negative)

Metric: Fast-ramping energy used (x-axis) Lost energy (y-axis) = wind spill + storage inefficiencies

12

Policy 2: BGK policy [Bejan, Gibbens, Kelly 2012]

aims at keeping a constant level of stored energy


load
$$D_t^f(t+n)$$

renewables

$$P_t^f(t+n)$$
$$W_t^f(t+n)$$

stored energy

target level λ

Sub-optimal for large energy storage capacity

Fixed Reserve is asymptotically optimal

Let $\ell(u) := \mathbb{E}\left[(\varepsilon + u)^+ \right] - f(u) \\ g(u) := \mathbb{E}\left[(\varepsilon + u)^- \right] - f(u) \quad \text{with} \quad f(u) := \min\left(\eta \mathbb{E}\left[\min\left((\varepsilon + u)^+, C_{\max} \right) \right], \mathbb{E}\left[\min\left((\varepsilon + u)^-, D_{\max} \right) \right] \right)$

Theorem. Assume that the forecast error conditioned to \mathcal{F}_t is distributed as \mathcal{E} . Then:

1. (l,g) is a lower bound: for any policy π , there exists u such that:

2.

$$\bar{G}^{\pi}(T) \geq g(u) - \frac{B_{\max}}{T}$$

$$\bar{L}^{\pi}(T) \geq \ell(u) - \frac{B_{\max}}{T}$$

$$\bar{L}^{\pi}(T) \geq \ell(u) - \frac{B_{\max}}{T}$$

$$\bar{L}^{\pi}(T) \geq \ell(u) - \frac{B_{\max}}{T}$$

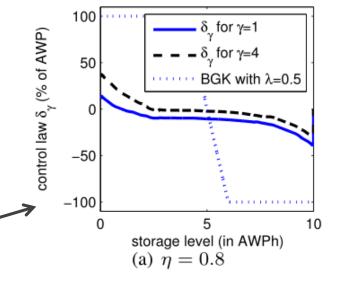
$$(\bar{L}^{\pi}, \bar{G}^{\pi}) \text{ for other policies}$$

$$\bar{L}^{\pi}(T) \leq \ell(u) + \delta$$

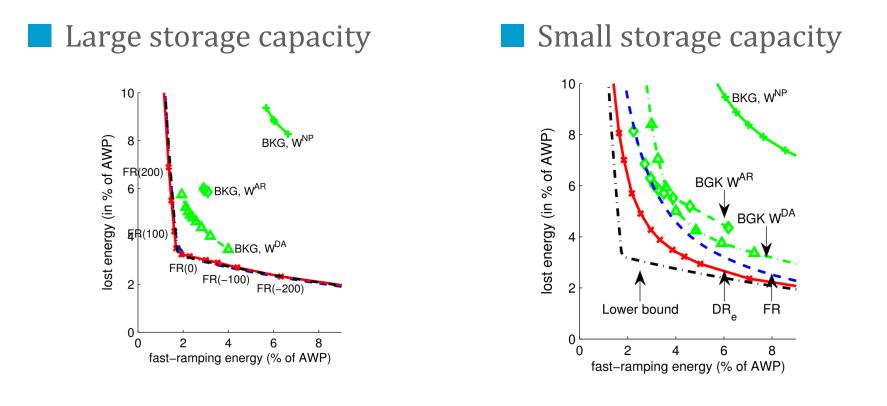
$$\bar{L}^{FR(u)} \leq \ell(u) + \delta$$

Fast-ramping generation \bar{G} (in % of AWP)

Scheduling Policies for Small Storage


Fixed Reserve: $u = r^*$

- BGK: compute u so as to let storage level be close to nominal value λ
- Dynamic Reserve: compute *u* so as to minimize average anticipated cost
 - Solved using an MDP model and policy iteration
 - Schedule reserve as a function of current storage level


renewables $D_t^f(t+n) - u$ $P_t^f(t+n)$

load

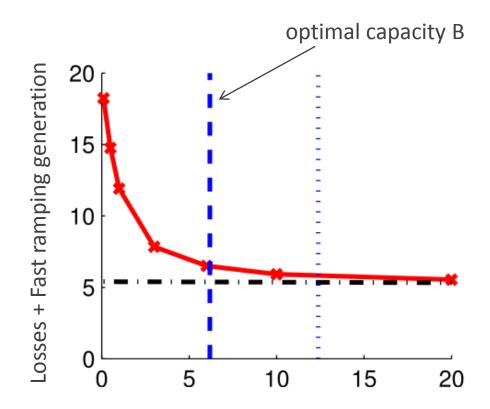
 $W_t^f(t+n)$

DR outperforms other heuristics

FR & DR optimal

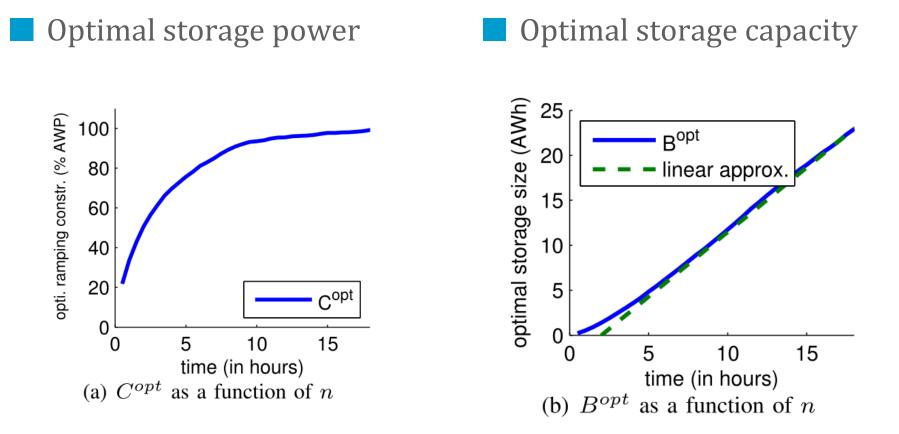
DR is the best heuristic

Maintaining storage at fixed level: not optimal There exist better heuristics


Computing the optimal storage

Losses & Gaz used decreases

- As capacity increases
- As maximum power increases


- Develop two rules-of-thumb to compute optimal storage characteristics:
 - Optimal power C is when P(forecast error >= C) < 1%.

Optimal capacity B, when
P(sum of errors over n slots >= B/2) < 1%.</p>

Storage capacity (in AverageWindPower-hour)

Optimal storage and time horizon

We schedule the base production **n hours** in advance

Conclusion

Mantain storage at fixed level is not optimal

- Statistics of forecast error are important
- ► We propose a close to optimal heuristics

Rule of thumb to compute optimal storage capacities

Future Work:

- Economic implications of storage
- Distributed storage systems in distribution networks (location, usage)

Questions ?

- [1] Cho, Meyn *Efficiency and marginal cost pricing in dynamic competitive markets with friction,* Theoretical Economics, 2010
- [2] David MacKay, *Sustainable Energy Without the Hot Air,* UIT Cambridge, 2009
- [3] Bejan, Gibbens, Kelly, *Statistical Aspects of Storage Systems Modelling in Energy Networks.* 46th Annual Conference on Information Sciences and Systems, 2012, Princeton University, USA.
- [4] Nicolas Gast, Dan-Christian Tomozei, Jean-Yves Le Boudec. *Optimal Storage Policies with Wind Forecast Uncertainties.* Greenmetrics 2012, London, UK.

[5] Le Boudec, Tomozei, *Satisfiability of Elastic Demand in the Smart Grid,* Energy 2011 and ArXiv.1011.5606