Approximations for dynamics on graphs

Nicolas Gast (Inria, Grenoble)

joint work with Benny Van Houdt (Univ. Antwerp) and Sebastian Allmeier (Inria)
Paris, 8 Days on Network Mathematics, September 2023

Motivation: agents interacting on a graph

- N agents (e.g., servers, neurons, infected people)
- Steady-state properties (e.g., queue lengths, activation, \% infected)

Motivation: agents interacting on a graph

- N agents (e.g., servers, neurons, infected people)
- Steady-state properties (e.g., queue lengths, activation, \% infected)
"Theorem": If the graph is dense:

ODE (mean field) is asymptotically exact

What can we do for sparse graphs?

- N agents.
- $O(1)$ neighbors per node.

Open questions:

- Tractable and accurate approximations?
- Can we prove anything?

What can we do for sparse graphs?

- N agents.
- $O(1)$ neighbors per node.

Open questions:

- Tractable and accurate approximations?
- Can we prove anything?

I will use two examples:

- Dynamic random graph: pair/triplet-approximation.
- Information propagation with interference: refined replica.

Outline

(1) Dynamic graph and pair approximation

- Our example
- How to construct the approximation
- Numerical result: Accuracy of the approximations
(2) Refined replica (on a two time-scale model)
- Method overview and example
- The two-time scale replica model
- Elements of Proof (Stein's method)
(3) Conclusion

Motivation: parrallel systems with redundancy

"Simplest" setting:

- Poisson arrival $N \lambda$
- Independent replicas
- Exponential service 1
- Cancel on complete

We want to characterize the queue length distribution.

Motivation: parrallel systems with redundancy

"Simplest" setting:

- Poisson arrival $N \lambda$
- Independent replicas
- Exponential service 1
- Cancel on complete

We want to characterize the queue length distribution.

- With FCFS: "easy" (order-independent queues)
- With PS: ??? (only stability is known, $\lambda<1$)

Markovian representation: dynamic graph model

For each job shared by i and j, we add an edge (i, j) :

Markovian representation: dynamic graph model

For each job shared by i and j, we add an edge (i, j) :

- Each edge is created at rate $2 \lambda / N$
- Each node deletes one of its edge at rate 1.

We want to study the degree distribution (=queue length) for large N.

What approximations can we construct?

The graph shoud be simple and locally a tree (because N is large)

What approximations can we construct?

The graph shoud be simple and locally a tree (because N is large)

Approximations:

- Nodes are independent ($=$ mean field)
- Nodes only depend on neighbors (= pair-approximation)

Construction of the mean field approximation

If a node has degree x :

- $x \mapsto x+1$ at rate 2λ
- $x \mapsto x-1$ at rate $1+\sum_{i=1}^{x} \frac{1}{d_{i}}$, where d_{i} is the degree of the i th neighboor.

Construction of the mean field approximation

If a node has degree x :

- $x \mapsto x+1$ at rate 2λ
- $x \mapsto x-1$ at rate $1+\sum_{i=1}^{x} \frac{1}{d_{i}}$, where d_{i} is the degree of the ith neighboor.

$$
\mathbb{E}\left[\frac{1}{d_{i}}\right]=?
$$

Construction of the mean field approximation

If a node has degree x :

- $x \mapsto x+1$ at rate 2λ
- $x \mapsto x-1$ at rate $1+\sum_{i=1}^{x} \frac{1}{d_{i}}$, where d_{i} is the degree of the ith neighboor.

$$
\mathbb{E}\left[\frac{1}{d_{i}}\right]=\sum_{q \geq 1} \underbrace{}_{\approx \frac{q \mathbf{P}[\text { degreee }=q]}{\bar{q}}} \underbrace{\mathbf{P}\left[d_{i}=q\right]}_{\text {(mean field approximation) }} \quad \frac{1}{q}=\frac{1-q_{0}}{\bar{q}},
$$

where $\bar{q}=\sum_{q} q \mathbf{P}[$ degree $=q]$ is the average queue length of a node taken at random.

Pair-approximation

Degree of neighboors are not independent.

Pair-approximation

Degree of neighboors are not independent.

Pair-approximation

Degree of neighboors are not independent.
$\mathbf{P}[. \mid x, y]$
We need to track the proportion of pairs:
(x)-(y)-P $[. \mid y, x]$

$$
\pi(x, y)=\frac{1}{N} \#\{\text { connected pairs }(x, y)\}
$$

$\mathbf{P}[. \mid x, y]$

$$
\text { Approx: } \mathbf{P}[z \mid x, y] \approx \mathbf{P}[z \mid x]=\frac{\pi(x, z)}{\sum_{z^{\prime}} \pi\left(x, z^{\prime}\right)}
$$

Pair-approximation

Degree of neighboors are not independent.

$\mathbf{P}[. \mid x, y]$
We need to track the proportion of pairs:

$$
\pi(x, y)=\frac{1}{N} \#\{\text { connected pairs }(x, y)\}
$$

$\mathbf{P}[. \mid x, y]$

$$
\text { Approx: } \mathbf{P}[z \mid x, y] \approx \mathbf{P}[z \mid x]=\frac{\pi(x, z)}{\sum_{z^{\prime}} \pi\left(x, z^{\prime}\right)}
$$

If we zoom on one pair:

- Creation of pairs / destruction
- $(x, y) \mapsto(x+1, y)$: creation of a new neighboor of x
- $(x, y) \mapsto(x-1, y)$: departure of one of the $x-1$ neighboors of x.

Can we do triplet approximations?

Yes but... The complexity is large (computation + construction).

Are these approximations just approximations?

Example with $\lambda=0.7$ and $N=10^{6}$ servers.

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
Simu	0.29999	0.28283	0.20311	0.11820	0.05791	0.02451	0.00914

Are these approximations just approximations?

Example with $\lambda=0.7$ and $N=10^{6}$ servers.

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
Simu	0.29999	0.28283	0.20311	0.11820	0.05791	0.02451	0.00914
$\mathrm{~m}-\mathrm{f}$	0.30000	0.28471	0.20436	0.11795	0.05693	0.02361	0.00858

Are these approximations just approximations?

Example with $\lambda=0.7$ and $N=10^{6}$ servers.

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
Simu	0.29999	0.28283	0.20311	0.11820	0.05791	0.02451	0.00914
m-f	0.30000	0.28471	0.20436	0.11795	0.05693	0.02361	0.00858
Pair	0.30000	0.28288	0.20315	0.11820	0.05788	0.02449	0.00912

Are these approximations just approximations?

Example with $\lambda=0.7$ and $N=10^{6}$ servers.

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
Simu	0.29999	0.28283	0.20311	0.11820	0.05791	0.02451	0.00914
m-f	0.30000	0.28471	0.20436	0.11795	0.05693	0.02361	0.00858
Pair	0.30000	0.28288	0.20315	0.11820	0.05788	0.02449	0.00912
Triplet	0.30002	0.28279	0.20312	0.11821	0.05791	0.02451	0.00914

Error "Approx-simu":

Outline

(1) Dynamic graph and pair approximation

- Our example
- How to construct the approximation
- Numerical result: Accuracy of the approximations
(2) Refined replica (on a two time-scale model)
- Method overview and example
- The two-time scale replica model
- Elements of Proof (Stein's method)

Refined replica method

We consider N replicas of the same model. When one agent A interacts with B, it interact with one of the N replicas at random.

Refined replica method

We consider N replicas of the same model. When one agent A interacts with B, it interact with one of the N replicas at random.
"Theorem": For many systems:
$\mathbf{P}[$ Agent A is in state $i]=\underbrace{x_{\text {replica mf }}^{x_{A, i}}+\frac{1}{N} v_{A, i}}_{\text {refined replica }}+O\left(1 / N^{2}\right)$.

This is often very accurate, even for $N=1$.

Example: two-timescale "replica" mean field CSMA model from Cecchi et al. 2015

Objective: estimate steady-state.

$$
\mathbf{P}\left[S_{k}=i\right]
$$

Example: two-timescale "replica" mean field CSMA model from Cecchi et al. 2015

Objective: estimate steady-state.

$$
\mathbf{P}\left[S_{k}=i\right]
$$

Scaling: replica

- N severs per node
- Arrival rate $\times \frac{1}{N}$.

Illustration of the theorem

Illustration of the theorem

MF+correction is almost exact

Outline

(1) Dynamic graph and pair approximation

- Our example
- How to construct the approximation
- Numerical result: Accuracy of the approximations
(2) Refined replica (on a two time-scale model)
- Method overview and example
- The two-time scale replica model
- Elements of Proof (Stein's method)
(3) Conclusion

Two timescale mean field model

Population of N objects.

- Object k has a state $S_{k}(t) \in \mathcal{S}$.
- Shared resource $Y(t) \in \mathcal{Y}$.

$$
X_{i}=\text { fraction of objects in state } i .
$$

Two timescale mean field model

Population of N objects.

- Object k has a state $S_{k}(t) \in \mathcal{S}$.
- Shared resource $Y(t) \in \mathcal{Y}$.

$$
X_{i}=\text { fraction of objects in state } i .
$$

Model

- Object n jumps from i to j at rate $Q_{i, j}(\mathbf{X}, \mathbf{Y})$
- Resource \mathbf{Y} jumps from y to y^{\prime} at rate $K_{y, y^{\prime}}(\mathbf{X})$.

We use two approximations to construct a fluid limit.

We use two approximations to construct a fluid limit.

"Average" mean field approximation
Let $\pi_{y}(\mathbf{x})$ be the stationary distribution of $K(\mathbf{x})$. We define:

$$
\bar{Q}(\mathbf{x})=\sum_{y} \pi_{y}(\mathbf{x}) Q(\mathbf{x}, y)
$$

The mean field approximation is the solution of the ODE:

$$
\dot{\mathbf{x}}=\mathbf{x} \bar{Q}(\mathbf{x})
$$

The approximation is asymptocally exact. Its bias is v / N.

Assume that

- K is unichain for all \mathbf{x}.
- K and Q are twice differenciable
- $\dot{\mathbf{x}}=\mathbf{x} \bar{Q}(\mathbf{x})$ has a unique attractor x^{*}.

Theorem

There exists a computable V such that, in steady-state:

$$
\mathbf{P}\left[S_{k}=i\right]=\underbrace{\underbrace{x_{i}^{*}}_{\text {mean field approximation }}+\frac{1}{n} V_{i}}_{\text {refined approximation }}+O\left(1 / n^{2}\right)
$$

If Y is not here, we can directly use Stein's method

Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1) $G^{\text {sto }} h(X)=\sum_{i, j}\left(h\left(X+\frac{1}{n}\left(e_{j}-e_{i}\right)\right)-h(X)\right) n x_{i} Q_{i j}(x)$

If Y is not here, we can directly use Stein's method

Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1)

$$
\begin{aligned}
G^{\text {sto }} h(X) & =\sum_{i, j}\left(h\left(X+\frac{1}{n}\left(e_{j}-e_{i}\right)\right)-h(X)\right) n x_{i} Q_{i j}(x) \\
& =\underbrace{\nabla h \cdot x Q(X)}_{\text {Generator of ODE } \dot{x}=x Q(x) .}+\underbrace{O(1 / n)}_{\text {if } h \text { is } C^{1}} .
\end{aligned}
$$

(2) $\mathbb{E}\left[G^{\text {sto }} h(X)\right]=0$ if X is in steady-state.

If Y is not here, we can directly use Stein's method and introduce a Poisson equation for the slow system
Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1)

$$
\begin{aligned}
G^{\text {sto }} h(X) & =\sum_{i, j}\left(h\left(X+\frac{1}{n}\left(e_{j}-e_{i}\right)\right)-h(X)\right) n x_{i} Q_{i j}(x) \\
& =\underbrace{\nabla h \cdot x Q(X)}_{\text {Generator of ODE } \dot{x}=x Q(x)}+\underbrace{O(1 / n)}_{\text {if } h \text { is } C^{1}} .
\end{aligned}
$$

(2) $\mathbb{E}\left[G^{\text {sto }} h(X)\right]=0$ if X is in steady-state.

Let G be such that $\nabla G \cdot x Q(x)=x-x^{*}$ (Poisson equation). We have:

$$
\begin{align*}
\mathbb{E}\left[X-x^{*}\right] & =\mathbb{E}[\nabla G \cdot X Q(X)] \\
& =\mathbb{E}\left[\left(\nabla G-G^{\text {sto }}\right) \cdot X Q(X)\right] \tag{2}\\
& =O(1 / n) \tag{1}
\end{align*}
$$

When Y is here, we need to treat the fast system

Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be a test function. We have:

$$
\begin{aligned}
G^{\text {sto }} h(X, Y) & =\sum_{i, j}\left(h\left(X+\frac{1}{n}\left(e_{j}-e_{i}\right)\right)-h(X)\right) n x_{i} Q_{i j}(X, Y) \\
& =\underbrace{\nabla h \cdot X Q(X, Y)}_{\neq G^{\circ D E}=\nabla h \cdot \bar{Q}(x) .}+O(1 / n),
\end{aligned}
$$

When Y is here, we need to treat the fast system

Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be a test function. We have:

$$
\begin{aligned}
G^{\text {sto }} h(X, Y) & =\sum_{i, j}\left(h\left(X+\frac{1}{n}\left(e_{j}-e_{i}\right)\right)-h(X)\right) n x_{i} Q_{i j}(X, Y) \\
& =\underbrace{\nabla h \cdot X Q(X, Y)}_{\neq G^{\circ D E}=\nabla h \cdot \bar{Q}(x) .}+O(1 / n),
\end{aligned}
$$

We are left with $Q(X, Y)-\bar{Q}(X)$.

When Y is here, we need to treat the fast system and introduce a Poisson equation for the fast system.

Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be a test function. We have:

$$
\begin{aligned}
G^{\text {sto }} h(X, Y) & =\sum_{i, j}\left(h\left(X+\frac{1}{n}\left(e_{j}-e_{i}\right)\right)-h(X)\right) n x_{i} Q_{i j}(X, Y) \\
& =\underbrace{\nabla h \cdot X Q(X, Y)}_{\neq G^{\circ D E}=\nabla h \cdot \bar{Q}(x) .}+O(1 / n),
\end{aligned}
$$

We are left with $Q(X, Y)-\bar{Q}(X)$.
Lemma: There exists a K^{+}that is C^{2} such that for all $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$:

$$
h(X, Y)-\bar{h}(X)=K(x) K^{+}(x) h(X, Y)
$$

Rapping up the proof

Let $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a test function.

$$
G^{\text {sto }} h(X, Y)=\underbrace{n K(X) h(X, Y)}_{\text {fast }}+\underbrace{\nabla_{x} h \cdot X Q(X, Y)}_{\text {slow }}+O(1 / n)
$$

Hence, $K^{\text {fast }}-\frac{1}{n} G^{\text {sto }}=o(1 / n)$ if h is C^{1}.

Rapping up the proof

Let $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a test function.

$$
G^{\text {sto }} h(X, Y)=\underbrace{n K(X) h(X, Y)}_{\text {fast }}+\underbrace{\nabla_{x} h \cdot X Q(X, Y)}_{\text {slow }}+O(1 / n)
$$

Hence, $K^{\text {fast }}-\frac{1}{n} G^{\text {sto }}=o(1 / n)$ if h is C^{1}.
This shows that in steady-state:

$$
\begin{aligned}
\mathbb{E}[h(X)-\bar{h}(X)] & =\mathbb{E}\left[K(x) K^{+}(x) h(X, Y)\right] \\
& =\mathbb{E}\left[\left(K(x)-\frac{1}{n} G^{\text {sto }}\right) K^{+}(x) h(X, Y)\right] \\
& =O(1 / n)
\end{aligned}
$$

(steady-state).

Outline

(1) Dynamic graph and pair approximation

- Our example
- How to construct the approximation
- Numerical result: Accuracy of the approximations
(2) Refined replica (on a two time-scale model)
- Method overview and example
- The two-time scale replica model
- Elements of Proof (Stein's method)
(3) Conclusion

Conclusion

Interacting models on graphs are complicated.
We studied two heuristic methods:

- The pair approximation.
- The " refined replica" method.

Conclusion

Interacting models on graphs are complicated.
We studied two heuristic methods:

- The pair approximation.
- The " refined replica" method.

For both cases:

- No real guarantee of why it is so accurate.
- Help wanted!

Slides and references: http://polaris.imag.fr/nicolas.gast

References

Results on which the second part of this talk is based:

- Bias and Refinement of Multiscale Mean Field Models. Allmeier, Gast, 2022. Sigmetrics 2023.
- With a model from CSMA networks in a many-sources regime: A mean-field approach. Cecchi, Borst, van Leeuwaarden, Whiting. Infocom 2016.
(for first part, see upcoming preprint on arXiv).

Related refined mean-field approximation papers:

- Mean Field and Refined Mean Field Approximations for Heterogeneous Systems: It Works! by Allmeier and Gast. SIGMETRICS 2022.
- A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018.

