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Motivation: agents interacting on a graph

e N agents (e.g., servers, neurons,
infected people)

o Steady-state properties (e.g.,
queue lengths, activation, %
infected)
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Motivation: agents interacting on a graph

e N agents (e.g., servers, neurons,
infected people)

o Steady-state properties (e.g.,
queue lengths, activation, %
infected)

“Theorem™: If the graph is dense:
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ODE (mean field) is asymptotically exact
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What can we do for sparse graphs?

o N agents.
@ O(1) neighbors per node.

Open questions:
@ Tractable and accurate approximations?

@ Can we prove anything?
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What can we do for sparse graphs?

o N agents.
@ O(1) neighbors per node.

Open questions:
@ Tractable and accurate approximations?

@ Can we prove anything?

| will use two examples:
e Dynamic random graph: pair/triplet-approximation.

@ Information propagation with interference: refined replica.
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Outline

@ Dynamic graph and pair approximation
@ Our example
@ How to construct the approximation
@ Numerical result: Accuracy of the approximations
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Motivation: parrallel systems with redundancy

Send two
(i.i.d.)
replica

@)
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“Simplest” setting:

Poisson arrival N
Independent replicas
Exponential service 1

Cancel on complete

We want to characterize the
queue length distribution.
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Motivation: parrallel systems with redundancy

O

“Simplest” setting:

@ Poisson arrival NA
S‘:!"_d;‘;"o O @ Independent replicas
ii.d.
replica @ Exponential service 1

O O O O o Cancel on complete

We want to characterize the

O O queue length distribution.

e With FCFS: “easy” (order-independent queues)

® \With PS: 777 (only stability is known, A < 1)
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Markovian representation: dynamic graph model

For each job shared by i/ and j, we add an edge (i, /):
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Markovian representation: dynamic graph model

For each job shared by i/ and j, we add an edge (i, /):

2 2 1
—eo——o
2 4
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@ Each edge is created at rate 2\/N

@ Each node deletes one of its edge at rate 1.

We want to study the degree distribution (=queue length) for large N.
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What approximations can we construct?

The graph shoud be simple and locally
a tree (because N is large)

)
|

[ Nen)

[ o]
/
—_

—

Nicolas Gast — 7 / 24



What approximations can we construct?

@ —

[ New)

[ Ne)

The graph shoud be simple and locally
a tree (because N is large)

Approximations:

@ Nodes are independent
(= mean field)

@ Nodes only depend on neighbors
(= pair-approximation)
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Construction of the mean field approximation

If a node has degree x:
do

@ x+— x + 1 at rate 2\
d1 1
@ x — x — 1 at rate 1—1—23, where d; is
d i=1 '
} the degree of the ith neighboor.
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Construction of the mean field approximation

do

o

d3

If a node has degree x:
@ x+— x + 1 at rate 2\

X
1
@ x—x—1at ratel—l—zg, where d; is
i

i=1
the degree of the ith neighboor.
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Construction of the mean field approximation

If a node has degree x:
do

@ x+— x + 1 at rate 2\
d1 1
@ x — x — 1 at rate 1—1—23, where d; is
d i=1 '
} the degree of the ith neighboor.

1 1 1-—
E{d} = > P[di = q] Z=—%
i g>1 —— q q

zw (mean field approximation)

where g = Z gP [degree = q] is the average queue length of a node

q
taken at random.
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Pair-approximation

Degree of neighboors are not independent.

-
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Pair-approximation

Degree of neighboors are not independent.
P[ | x]
PL[x]
Pl [x]
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Pair-approximation

Degree of neighboors are not independent.

Pl |xy] We need to track the proportion of pairs:
1
PL |y x] m(x,y) = N#{connected pairs (x,y)}.
P[[xy] (x,2)
Approx: P [z|x,y] ~ P [z|x] = %
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Pair-approximation

Degree of neighboors are not independent.

P[.|x,y] We need to track the proportion of pairs:
1
Pl 1y.x] (x,y) = N#{connected pairs (x,y)}.
P[|xy]

7(x, z)

Approx: P [z|x,y] ~ P [z|x] = Sm(x )

If we zoom on one pair:
e Creation of pairs / destruction
@ (x,y) — (x+1,y): creation of a new neighboor of x

@ (x,y) = (x—1,y): departure of one of the x — 1 neighboors of x.

Nicolas Gast — 9 / 24



Can we do triplet approximations?

Yes but... The complexity is large (computation + construction).
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Are these approximations just approximations?

Example with A = 0.7 and N = 10° servers.

qo

a1

a2

a3

da

ds de

Simu

0.29999

0.28283

0.20311

0.11820

0.05791

0.02451 | 0.00914
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Are these approximations just approximations?
Example with A = 0.7 and N = 10° servers.

do q1 a> a3 da ds de

Simu | 0.29999 | 0.28283 | 0.20311 | 0.11820 | 0.05791 | 0.02451 | 0.00914

m-f | 0.30000 | 0.28471 | 0.20436 | 0.11795 | 0.05693 | 0.02361 | 0.00858
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Are these approximations just approximations?
Example with A = 0.7 and N = 10° servers.

do q1 a> a3 da ds de

Simu | 0.29999 | 0.28283 | 0.20311 | 0.11820 | 0.05791 | 0.02451 | 0.00914

m-f | 0.30000 | 0.28471 | 0.20436 | 0.11795 | 0.05693 | 0.02361 | 0.00858

Pair | 0.30000 | 0.28288 | 0.20315 | 0.11820 | 0.05788 | 0.02449 | 0.00912
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Are these approximations just approximations?

Example with A = 0.7 and N = 10° servers.

qo a1 a2 a3 q4 ds de
Simu | 0.29999 | 0.28283 | 0.20311 | 0.11820 | 0.05791 | 0.02451 | 0.00914
m-f 0.30000 | 0.28471 | 0.20436 | 0.11795 | 0.05693 | 0.02361 | 0.00858
Pair 0.30000 | 0.28288 | 0.20315 | 0.11820 | 0.05788 | 0.02449 | 0.00912
Triplet | 0.30002 | 0.28279 | 0.20312 | 0.11821 | 0.05791 | 0.02451 | 0.00914

Error “Approx - simu":

0.0015

0.0010 A

0.0005

0.0000

—0.0005 -

—0.0010

— m-f
pair
—— triplet
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Outline

© Refined replica (on a two time-scale model)
@ Method overview and example
@ The two-time scale replica model
@ Elements of Proof (Stein's method)
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Refined replica method

—0

We consider N replicas of the same model. When one agent A interacts
with B, it interact with one of the N replicas at random.
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Refined replica method

. 4@
We consider N replicas of the same model. When one agent A interacts

with B, it interact with one of the N replicas at random.

“Theorem™”: For many systems:

1
P[Agent A isin state i] = xa; +—va;+O(1/N?).
’ N )

replica mf
| S ——
refined replica

This is often very accurate, even for N = 1.
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Example: two-timescale “replica” mean field
CSMA model from Cecchi et al. 2015

Transmit

Activate

Arrival

Objective: estimate steady-state.
P[Sk =]
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Example: two-timescale “replica” mean field
CSMA model from Cecchi et al. 2015

Transmit

Activate

Arrival

o _ Scaling: replica
Objective: estimate steady-state.

P[Sk =]

@ N severs per node

1
@ Arrival rate x—.
N
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[llustration of the theorem

Transmit
O . Transmission rates 1.4 13 1.7
Activate Activation rates 1.2 2 15
Arrival rates 05 02 05

Arrival
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[llustration of the theorem

Transmit
O Transmission rates 1.4 13 1.7
Activate . .
Activation rates 12 2 15
Arrival rates 05 02 05
Arrival
Class 1 Class 2 Class 3
% x % \
190 60 00 x  Simulated Mean
1.80 55 .90 95 Conf. Interval
1.70 0 8014 e Avg. MF
’ 70 + MF + Correction
160 .45
* * 601 %
1.50
X koo x ."40 KK Kk x L.50 x"xxxyv *
1510 20 30 40 50 60 75 100 1510 20 30 40 50 60 75 100 1510 20 30 40 50 60 75 100
Nr. of nodes per class Nr. of nodes per class Nr. of nodes per class

MF+-correction is almost exact
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Outline

0 Dynamic graph and pair approximation

© Refined replica (on a two time-scale model)

@ The two-time scale replica model

© Conclusion
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Two timescale mean field model

Population of N objects.
@ Object k has a state S(t) € S.
@ Shared resource Y (t) € ).

X; = fraction of objects in state /.
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Two timescale mean field model

Population of N objects.
@ Object k has a state S(t) € S.
@ Shared resource Y (t) € ).

X; = fraction of objects in state /.

Model
@ Object n jumps from i to j at rate Q;j(X,Y)

@ Resource Y jumps from y to y’ at rate Ky, (X).
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We use two approximations to construct a fluid limit.
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We use two approximations to construct a fluid limit.

N =100 N = 1000

“Average” mean field approximation

Let 7, (x) be the stationary distribution of K(x). We
define:

Q) = my(x)Q(x,¥)-

The mean field approximation is the solution of the ODE:

X = x@(x),
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The approximation is asymptocally exact. Its bias is v/N.

Assume that
@ K is unichain for all x.
@ K and @ are twice differenciable

o x = xQ(x) has a unique attractor x*.

Theorem
There exists a computable V' such that, in steady-state:
. . 1l 2
P[Sk=1i]= X; —i—;\/,- + O(1/n%).

~—
mean field approximation

refined approximation
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If Y is not here, we can directly use Stein's method

Let G**° be the Generator of the stochastic system. For h: X — R:
1
o Gstoh(X) = Z(h(X + ;(ej — e,-)) — h(X))nx,-Q,'j(x)

i
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If Y is not here, we can directly use Stein's method

Let G**° be the Generator of the stochastic system. For h: X — R:
1
° G¥h(X) = D (h(X + (e — &) = h(X))mxi Qy(x)
iJ
= Vh-xQ(X) +O(1/n).

—_—— ——
Generator of ODE x = xQ(x). if his C!

@ E [G*"°h(X)] =0 if X is in steady-state.
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If Y is not here, we can directly use Stein's method

and introduce a Poisson equation for the slow system
Let G**° be the Generator of the stochastic system. For h: X — R:
1
o Gstoh(X) = Z(h(X + ;(ej — e,-)) — h(X))nx,-Q,'j(x)
iJ
= Vh-xQ(X) +0(1/n).

—_—— ——
Generator of ODE x = xQ(x). if his C!

@ E [G*"°h(X)] =0 if X is in steady-state.

Let G be such that VG - xQ(x) = x — x™ (Poisson equation). We have:

E[X — x*] =E[VG - XQ(X)]
=E [(VG - G*°) - XQ(X)] (by (2))
= 0(1/n) (by (1))
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When Y is here, we need to treat the fast system

Let h: X — R be a test function. We have:

GHX, Y) = S (HOX+ (g — &) — A Qs (X. )
iJ
= Vh-XQ(X,Y)+0(1/n),
S ——

#GODPE=Vh.Q(x).
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When Y is here, we need to treat the fast system

Let h: X — R be a test function. We have:

GHX, Y) = S (HOX+ (g — &) — A Qs (X. )
iJ
= Vh-XQ(X,Y)+0(1/n),
—_——

#GODPE=Vh.Q(x).

We are left with Q(X, Y) — Q(X).
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When Y is here, we need to treat the fast system

and introduce a Poisson equation for the fast system.
Let h: X — R be a test function. We have:

GHX, Y) = S (HOX+ (g — &) — A Qs (X. )
iJ
= Vh-XQ(X,Y)+0(1/n),
—_——
#GODPE=Vh.Q(x).

We are left with Q(X, Y) — Q(X).
Lemma: There exists a KT that is C2 such that for all h: X x Y — R:

h(X,Y) = h(X) = K(x)K*(x)h(X, Y).
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Rapping up the proof
Let h: X x Y — R be a test function.

G h(X,Y) = nK(X)h(X,Y)+ Vyih- XQ(X,Y)+0(1/n)

-~

fast slow

Hence, Kt — %GStO = o(1/n) if his C*.
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Rapping up the proof
Let h: X x Y — R be a test function.

G h(X,Y) = nK(X)h(X,Y)+ Vyih- XQ(X,Y)+0(1/n)

-~

fast slow
Hence, Kt — %GStO = o(1/n) if his C*.
This shows that in steady-state:
E [A(X) ~ K(X)] = E [K()K ()h(X, Y)]
=E |[(K(x) — %GStO)KJF(X)h(X, Y) (steady-state).

= 0(1/n) (expansion above)
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Outline

© Conclusion
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Conclusion

Interacting models on graphs are complicated.

We studied two heuristic methods:
@ The pair approximation.

@ The "refined replica” method.
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Conclusion

Interacting models on graphs are complicated.
We studied two heuristic methods:

@ The pair approximation.

@ The "refined replica” method.

For both cases:
@ No real guarantee of why it is so accurate.

@ Help wanted!

Slides and references: http://polaris.imag.fr/nicolas.gast
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