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Motivation: agents interacting on a graph

N agents (e.g., servers, neurons,
infected people)

Steady-state properties (e.g.,
queue lengths, activation, %
infected)

“Theorem”: If the graph is dense:

lim
N→∞
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What can we do for sparse graphs?

N agents.

O(1) neighbors per node.

Open questions:

Tractable and accurate approximations?

Can we prove anything?

I will use two examples:

Dynamic random graph: pair/triplet-approximation.

Information propagation with interference: refined replica.
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Outline

1 Dynamic graph and pair approximation
Our example
How to construct the approximation
Numerical result: Accuracy of the approximations

2 Refined replica (on a two time-scale model)
Method overview and example
The two-time scale replica model
Elements of Proof (Stein’s method)

3 Conclusion
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Motivation: parrallel systems with redundancy

“Simplest” setting:

Poisson arrival Nλ

Independent replicas

Exponential service 1

Cancel on complete

We want to characterize the
queue length distribution.

With FCFS: “easy” (order-independent queues)

With PS: ???
(only stability is known, λ < 1)
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Markovian representation: dynamic graph model

For each job shared by i and j , we add an edge (i , j):

6 Nicolas Gast, Benny Van Houdt

4.1 The dynamic graph model
When there are 3 = 2 replicas per jobs, the RED-PS model can be represented by a dynamic random
(multi)graph (+ , ⇢C ). The graph is undirected and the set of vertices + is the set of servers. The set
of edges ⇢C evolves over time and there is an edge between D 2 + and E 2 + for each job that is
shared by servers D and E at time C . The graph (+ , ⇢C ) is in fact a multigraph since there can be
multiple edges between two nodes when two servers share more than one job. There can be also
loops if two replicas of the same jobs are connected to the same server. An example of such a graph
is depicted in Figure 1(a).
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Fig. 1. Example of a dynamic random graph for a system with = = 10 servers. The labels on the servers
indicate degrees. A new edge is added between two nodes at rate 2_. An edge connecting two nodes (D, E) of
degrees 3C (D) and 3C (E) disapears at rate 1/3C (D) + 1/3C (E).

The multigraph evolves as follows:
• For any pair of servers (D, E), a new edge (D, E) is added to the graph at rate 2_/=.
• Any vertex has an internal Poisson clock of intensity 1. When this clock ticks, it destroys one

of its edge (taken uniformly at random among all its edges).
Let us denote by 3C (D) be the degree of a node D at time C , which is also equal to the number of
replicas that this server holds. The above transition implies that if an edge connects two servers of
degree 3C (D) and 3C (E), then this edge disappears at rate 1/3C (D) + 1/3C (E).

The multigraph model corresponds exactly to the RED-PS model. In what follows, we will use
this graph representation to construct two sets of ODEs that are a very good approximation of
the RED-PS model when the number of servers = is large. Yet, to simplify the derivation of the
equations, we will construct these ODEs by using a slightly simpler model in which we forbid the
creation of multi-edges or loops – the rest of the model remains the same. The argument to do so
is that, when the number of servers = is large, the rate at which loops or multi-edges are created
is $ (1/=), while the rate at which such edges are removed remains $ (1). Hence, the di�erence
between the two models is likely to be of order $ (1/=).

4.2 The Pair Approximation
To construct our mean �eld approximation, the idea was to focus on servers and study the number
of replicas per server. To obtain a more accurate approximation, here we change our point of view
and focus on the jobs rather than on servers, and we look at how many replicas do the two servers
of a job hold.

4.2.1 Fraction of pairs. As before, we denote by 3C (D) the degree of a node D at time C . It is equal to
the number of neighbors in the graph ⌧C , that is, 3C (D) = |�C (D) |, where �C (D) = |{E | (D, E) 2 ⇢C }|
is the set of neighbors of the node D. We denote by cC (G,~) the number of edges that connect a
node of degree G with a node of degree ~ at time C divided by the number of servers n if G = ~, and
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Each edge is created at rate 2λ/N

Each node deletes one of its edge at rate 1.

We want to study the degree distribution (=queue length) for large N.
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What approximations can we construct?
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The graph shoud be simple and locally
a tree (because N is large)

Approximations:

Nodes are independent
(= mean field)

Nodes only depend on neighbors
(= pair-approximation)
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Construction of the mean field approximation

x d1

d2

d3

If a node has degree x :

x 7→ x + 1 at rate 2λ

x 7→ x − 1 at rate 1 +
x∑

i=1

1

di
, where di is

the degree of the ith neighboor.

E
[
1

di

]
=

?
∑
q≥1

P [di = q]︸ ︷︷ ︸
≈ qP[degree=q]

q̄
(mean field approximation)

1

q
=

1− q0
q̄

,

where q̄ =
∑
q

qP [degree = q] is the average queue length of a node

taken at random.
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Pair-approximation

x

?

?

?

Degree of neighboors are not independent.

We need to track the proportion of pairs:

π(x , y) =
1

N
#{connected pairs (x , y)}.

Approx: P [z |x , y ] ≈ P [z |x ] = π(x , z)∑
z ′ π(x , z

′)
.

If we zoom on one pair:

Creation of pairs / destruction

(x , y) 7→ (x + 1, y): creation of a new neighboor of x

(x , y) 7→ (x − 1, y): departure of one of the x − 1 neighboors of x .

Nicolas Gast – 9 / 24



Pair-approximation

x

P [. | x ]

P [. | x ]

P [. | x ]

Degree of neighboors are not independent.

We need to track the proportion of pairs:

π(x , y) =
1

N
#{connected pairs (x , y)}.

Approx: P [z |x , y ] ≈ P [z |x ] = π(x , z)∑
z ′ π(x , z

′)
.

If we zoom on one pair:

Creation of pairs / destruction

(x , y) 7→ (x + 1, y): creation of a new neighboor of x

(x , y) 7→ (x − 1, y): departure of one of the x − 1 neighboors of x .

Nicolas Gast – 9 / 24



Pair-approximation

x

P [. | x , y ]

P [. | x , y ]

y P [. | y , x ]

Degree of neighboors are not independent.

We need to track the proportion of pairs:

π(x , y) =
1

N
#{connected pairs (x , y)}.

Approx: P [z |x , y ] ≈ P [z |x ] = π(x , z)∑
z ′ π(x , z

′)
.

If we zoom on one pair:

Creation of pairs / destruction

(x , y) 7→ (x + 1, y): creation of a new neighboor of x

(x , y) 7→ (x − 1, y): departure of one of the x − 1 neighboors of x .

Nicolas Gast – 9 / 24



Pair-approximation

x

P [. | x , y ]

P [. | x , y ]

y P [. | y , x ]

Degree of neighboors are not independent.

We need to track the proportion of pairs:

π(x , y) =
1

N
#{connected pairs (x , y)}.

Approx: P [z |x , y ] ≈ P [z |x ] = π(x , z)∑
z ′ π(x , z

′)
.

If we zoom on one pair:

Creation of pairs / destruction

(x , y) 7→ (x + 1, y): creation of a new neighboor of x

(x , y) 7→ (x − 1, y): departure of one of the x − 1 neighboors of x .

Nicolas Gast – 9 / 24



Can we do triplet approximations?

Yes but... The complexity is large (computation + construction).

Nicolas Gast – 10 / 24



Are these approximations just approximations?

Example with λ = 0.7 and N = 106 servers.

q0 q1 q2 q3 q4 q5 q6
Simu 0.29999 0.28283 0.20311 0.11820 0.05791 0.02451 0.00914

m-f 0.30000 0.28471 0.20436 0.11795 0.05693 0.02361 0.00858
Pair 0.30000 0.28288 0.20315 0.11820 0.05788 0.02449 0.00912

Triplet 0.30002 0.28279 0.20312 0.11821 0.05791 0.02451 0.00914

Error “Approx - simu”:

0 2 4 6 8
0.0010

0.0005

0.0000

0.0005

0.0010

0.0015
m-f
pair
triplet
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Refined replica method

A B C

We consider N replicas of the same model. When one agent A interacts
with B, it interact with one of the N replicas at random.

“Theorem”: For many systems:

P [Agent A is in state i ] = xA,i︸︷︷︸
replica mf

+
1

N
vA,i

︸ ︷︷ ︸
refined replica

+O(1/N2).

This is often very accurate, even for N = 1.
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Example: two-timescale “replica” mean field
CSMA model from Cecchi et al. 2015

Activate 

Transmit

Arrival 

F I p

. in it is

Activate 

Transmit

Arrival 

F I p

⑯T i) i↑9

Objective: estimate steady-state.
P [Sk = i ]

Scaling: replica

N severs per node

Arrival rate × 1

N
.
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Illustration of the theorem

Activate 

Transmit

Arrival 

F I p

⑯T i) i↑9

Transmission rates 1.4 1.3 1.7
Activation rates 1.2 2 1.5
Arrival rates 0.5 0.2 0.5

40 5010 20 6051 75 10030
Nr. of nodes per class

1.50

1.60

1.70

1.80

1.90

Class 1

40 5010 20 6051 75 10030
Nr. of nodes per class

0.40

0.45

0.50

0.55

0.60

Class 2

40 5010 20 6051 75 10030
Nr. of nodes per class

1.50

1.60

1.70

1.80

1.90

2.00

Class 3

Simulated Mean
95 Conf. Interval
Avg. MF
MF + Correction

MF+correction is almost exact
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Outline

1 Dynamic graph and pair approximation
Our example
How to construct the approximation
Numerical result: Accuracy of the approximations

2 Refined replica (on a two time-scale model)
Method overview and example
The two-time scale replica model
Elements of Proof (Stein’s method)

3 Conclusion
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Two timescale mean field model

Population of N objects.

Object k has a state Sk(t) ∈ S.
Shared resource Y (t) ∈ Y.

Xi = fraction of objects in state i .

Model

Object n jumps from i to j at rate Qi ,j(X,Y)

Resource Y jumps from y to y ′ at rate Ky ,y ′(X).
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We use two approximations to construct a fluid limit.

N = 30

fast System - Y(t)

N = 100 N = 1000

N = 30

slow System - X(t)

N = 100 N = 1000

“Average” mean field approximation

Let πy (x) be the stationary distribution of K (x). We
define:

Q̄(x) =
∑
y

πy (x)Q(x, y).

The mean field approximation is the solution of the ODE:

ẋ = xQ̄(x),
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The approximation is asymptocally exact. Its bias is v/N .

Assume that

K is unichain for all x.

K and Q are twice differenciable

ẋ = xQ̄(x) has a unique attractor x∗.

Theorem

There exists a computable V such that, in steady-state:

P [Sk = i ] = x∗i︸︷︷︸
mean field approximation

+
1

n
Vi

︸ ︷︷ ︸
refined approximation

+ O(1/n2).
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If Y is not here, we can directly use Stein’s method

and introduce a Poisson equation for the slow system

Let G sto be the Generator of the stochastic system. For h : X → R:
1 G stoh(X ) =

∑
i ,j

(h(X +
1

n
(ej − ei ))− h(X ))nxiQij(x)

= ∇h · xQ(X )︸ ︷︷ ︸
Generator of ODE ẋ = xQ(x).

+O(1/n)︸ ︷︷ ︸
if h is C1

.

2 E
[
G stoh(X )

]
= 0 if X is in steady-state.

Let G be such that ∇G · xQ(x) = x − x∗ (Poisson equation). We have:

E [X − x∗] = E [∇G · XQ(X )]

= E
[
(∇G − G sto) · XQ(X )

]
(by (2))

= O(1/n) (by (1)).
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When Y is here, we need to treat the fast system

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
i ,j

(h(X +
1

n
(ej − ei ))− h(X ))nxiQij(X ,Y )

= ∇h · XQ(X ,Y )︸ ︷︷ ︸
̸=GODE=∇h·Q̄(x).

+O(1/n),

We are left with Q(X ,Y )− Q̄(X ).

Lemma: There exists a K+ that is C 2 such that for all h : X × Y → R:

h(X ,Y )− h̄(X ) = K (x)K+(x)h(X ,Y ).

Nicolas Gast – 21 / 24



When Y is here, we need to treat the fast system

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
i ,j

(h(X +
1

n
(ej − ei ))− h(X ))nxiQij(X ,Y )

= ∇h · XQ(X ,Y )︸ ︷︷ ︸
̸=GODE=∇h·Q̄(x).

+O(1/n),

We are left with Q(X ,Y )− Q̄(X ).

Lemma: There exists a K+ that is C 2 such that for all h : X × Y → R:

h(X ,Y )− h̄(X ) = K (x)K+(x)h(X ,Y ).

Nicolas Gast – 21 / 24



When Y is here, we need to treat the fast system
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Rapping up the proof

Let h : X × Y → R be a test function.

G stoh(X ,Y ) = nK (X )h(X ,Y )︸ ︷︷ ︸
fast

+∇xh · XQ(X ,Y )︸ ︷︷ ︸
slow

+O(1/n)

Hence, K fast − 1

n
G sto = o(1/n) if h is C 1.

This shows that in steady-state:

E
[
h(X )− h̄(X )

]
= E

[
K (x)K+(x)h(X ,Y )

]
= E

[
(K (x)− 1

n
G sto)K+(x)h(X ,Y )

]
(steady-state).

= O(1/n) (expansion above).
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Conclusion

Interacting models on graphs are complicated.
We studied two heuristic methods:

The pair approximation.

The ”refined replica” method.

For both cases:

No real guarantee of why it is so accurate.

Help wanted!

Slides and references: http://polaris.imag.fr/nicolas.gast
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