How to Use Mean-Field Control for Restless Bandits and Weakly Coupled MDPs

Nicolas Gast

joint work with Bruno Gaujal, Kimang Khun, Chen Yan

Inria

Seminar McGill University, April 11, 2023

Centralized mean field control problem

Centralized mean field control problem

Controller
$$\xrightarrow{\text{action a}}$$
 Population of N agents $P(\cdot|x_n,a_n)$

The computational difficulty increases with N but $N=\infty$ is easy.

- How to use the $N = +\infty$ solution for finite N?
- How efficient is this? (i.e., how fast does it become optimal?)

This talk will focus on Markovian bandits

N statistically identical arms (=agents)

- Discrete time, finite state space.
- $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$.

Maximize expected reward

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{n=1}^{N} r(s_n(t), a_n(t)).$$

This talk will focus on Markovian bandits

N statistically identical arms (=agents)

- Discrete time, finite state space.
- $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$.

Maximize expected reward

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{n=1}^{N} r(s_n(t), a_n(t)).$$

Hard constraint:
$$\forall t : \sum_{n=0}^{N} a_n(t) \leq C$$
.

$$: \sum a_n(t) \leq C.$$

- If $a_n(t) \in \{0,1\}$: Markovian bandit (this talk)
- If $a_n(t) \in \{0,1\}^d$: Weakly coupled MDP.

Example 1: Applicant screening problem

N applicants, T rounds of interview.

Each round: you can interview up to αN candidates.

Goal: maximize the expected quality of selected candidates.

Example 1: Applicant screening problem

N applicants, T rounds of interview.

Each round: you can interview up to αN candidates.

Goal: maximize the expected quality of selected candidates.

Each candidate has an (unknown) quality p_n .

• Result of an interview: Bernoulli (p_n)

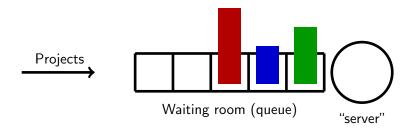
Goal: find the βN highest p_n .

Example 2: What to work on?

Job Scheduling

Example 2: What to work on?

Job Scheduling



- Examples: research projects, tasks allocations, electric vehicle charging, wireless scheduling,...
- Heuristics: SRPT, EDF,...

Main questions and outline

These problems are restless bandit problems (PSPACE-hard)

• Greedy, random, SRPT,... are in general not optimal.

Main questions and outline

These problems are restless bandit problems (PSPACE-hard)

• Greedy, random, SRPT,... are in general not optimal.

We want to use $N=\infty$ (\approx independence) to construct policies:

- Computationally efficient (LP-based) and simple (priority)
- Close-to-optimal (if possible)

Main questions and outline

These problems are restless bandit problems (PSPACE-hard)

• Greedy, random, SRPT,... are in general not optimal.

We want to use $N=\infty$ (\approx independence) to construct policies:

- Computationally efficient (LP-based) and simple (priority)
- Close-to-optimal (if possible)

Questions

- When are priority rules asymptotically optimal?
- How to compute a good priority rule?
- How fast do they become optimal?

Outline

- 1 The $N = +\infty$ problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- Finite-horizon restless bandits
- Conclusion

The $N=\infty$ problem

Original model: $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$. For all t, $\sum_{n=1}^{N} a_n(t) \leq \alpha N$.

The $N = \infty$ problem

Relaxed model: $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$. For all t, $\mathbb{E}\left[\sum_{n=1}^N a_n(t)\right] \leq \alpha N$.

This can be solve by an LP.

The $N=\infty$ problem

Relaxed model:
$$P(\cdot|s_n, a_n)$$
 and $r(s_n, a_n)$. For all t , $\mathbb{E}\left[\sum_{n=1}^{N} a_n(t)\right] \leq \alpha N$.

This can be solve by an LP.

• $x_s = P[s_n = s]$ and $y_{s,a} = P[s_n = s, a_n = a]$.

$$\max_{x \ge 0, y \ge 0} \sum_{s,a} r_{s,a} y_{s,a}$$
s.t.
$$x_{s'} = \sum_{s} y_{s,a} P(s'|s,a)$$

$$x_{s} = \sum_{a} y_{s,a}$$

$$\sum_{s} x_{s} = 1.$$

$$\sum_{s} y_{s,1} = \alpha$$

relaxed budget contraint

The $N=\infty$ problem

Relaxed model:
$$P(\cdot|s_n, a_n)$$
 and $r(s_n, a_n)$. For all t , $\mathbb{E}\left[\sum_{n=0}^{N} a_n(t)\right] \leq \alpha N$.

This can be solve by an LP.

•
$$x_s(t) = P[s_n(t) = s]$$
 and $y_{s,a}(t) = P[s_n(t) = s, a_n(t) = a]$.

$$\max_{x \ge 0, y \ge 0} \sum_{t=1}^{T} \sum_{s,a} r_{s,a} y_{s,a}(t)$$
s.t. $x_{s'}(t+1) = \sum_{s} y_{s,a}(t) P(s'|s,a)$

$$x_{s}(t) = \sum_{a} y_{s,a}(t)$$

$$\sum_{s} x_{s} = x_{s}(0).$$

$$\sum_{s} y_{s,1}(t) = \alpha(t)$$

relaxed budget contraint

Can I apply this to $N < \infty$?

$$\sum_{s} a_{n}(t) \leq \alpha$$
Original problem
(Hard)
$$V_{N}^{*} \qquad \leq \qquad V_{rel}^{*}$$

$$\sum_{s} \mathbb{E}\left[a_{n}(t)\right] \leq \alpha$$

$$LP \text{ relaxation}$$
(Easy)
$$V_{rel}^{*}$$

Can I apply this to $N < \infty$?

$$\sum_{s} a_{n}(t) \leq \alpha$$
Original problem
(Hard)
$$V_{N}^{*} \leq V_{rel}^{*}$$

$$\downarrow^{*} V_{rel}^{*}$$

$$\downarrow^{*} V_{rel}^{*}$$

Can I apply this to $N < \infty$?

Main difficulty: in general $\mathbf{X}^{N}(t) \neq \mathbf{x}^{*}(t)$.

• We cannot choose $\mathbf{Y}^N(t) = \mathbf{y}^*(t)$.

Some historical perspective

- Infinite horizon: Index policies (Gittins 60s, Whittle index (98), Nino-Mora, 90s-2000s)
 - ▶ Often asymptotically optimal. (Weber and Weiss 91).
 - When they are: exponentially fast. (G, Gaujal, Yan 2021).
 - 2 We can compute index efficiently. (G, Gaujal, Khun 2022).

Some historical perspective

- Infinite horizon: Index policies (Gittins 60s, Whittle index (98), Nino-Mora, 90s-2000s)
 - ▶ Often asymptotically optimal. (Weber and Weiss 91).
 - When they are: exponentially fast. (G, Gaujal, Yan 2021).
 - We can compute index efficiently. (G, Gaujal, Khun 2022).
- Finite horizon: LP-index
 - Priority rule not always asymptotically optimal (Brown and Smith 2019), (Frazier et al 2020).
 - 3. When they are: exponentially fast (G, Gaujal, Yan 2022)

Outline

- 1 The $N = +\infty$ problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits
- Conclusion

Penalty and indexability

The $N = \infty$ is a constraint MDP:

• $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$ s.t. in steady-state, $\mathbf{P}[a_n] = \alpha$.

Penalty and indexability

The $N = \infty$ is a constraint MDP:

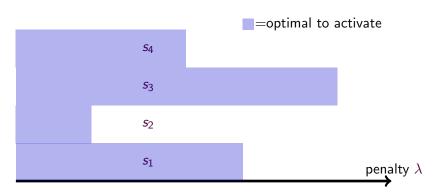
• $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$ s.t. in steady-state, $\mathbf{P}[a_n] = \alpha$.

Idea: use a Lagrangian relaxation:

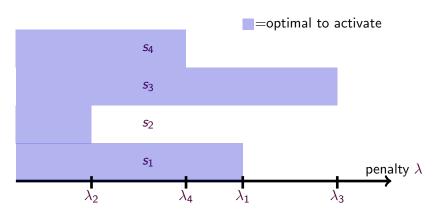
• $P(\cdot|s_n, a_n)$ and $r(s_n, a_n) - \lambda a_n$.

Penalty for activation

The penaly can be used to define a priority policy



The penaly can be used to define a priority policy



This is Whittle index policy.

For this example: $s_3 \succ s_1 \succ s_4 \succ s_2$.

Definition of Whittle index

Intuitively, for each state, there exists a λ_s such that any optimal policy is such that:

- The optimal action in s is 0 (rest) if $\lambda < \lambda_s$;
- The optimal action in s is 1 (activate) if $\lambda > \lambda_s$.

Definition of Whittle index

Intuitively, for each state, there exists a λ_s such that any optimal policy is such that:

- The optimal action in s is 0 (rest) if $\lambda < \lambda_s$;
- The optimal action in s is 1 (activate) if $\lambda > \lambda_s$.

This is not always true¹.

If the model satisfies this assumption, we say that the model is indexable. Whittle index policy is the corresponding priority policy.

¹True with high probability? Yes: (Nino-Mora 01), No (G, Gaujal, Khun 21).

(stochastic scheduling)

Jobs of sizes X and Y with:

$$\bullet \ \ \textbf{Y} = \left\{ \begin{array}{ll} 2 & \text{proba } 1/2 \\ 18 & \text{proba } 1/2 \end{array} \right.$$

Who should you run first to minimize expected completion time?

(stochastic scheduling)

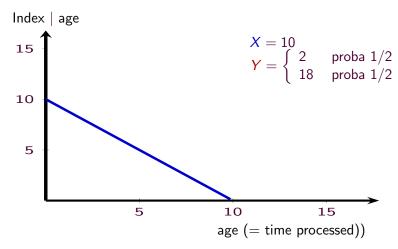
Jobs of sizes X and Y with:

- X = 10
- $\bullet \ \ \mathbf{Y} = \left\{ \begin{array}{ll} 2 & \text{proba } 1/2 \\ 18 & \text{proba } 1/2 \end{array} \right.$

Who should you run first to minimize expected completion time?

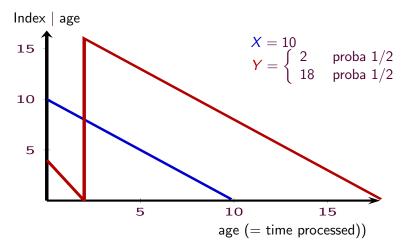
Running a job costs $1 \le /$ sec and you can stop anytime. If you finish the job, you earn x. Whittle (=Gittins) index is the smallest x so that you start running the job.

(stochastic scheduling)



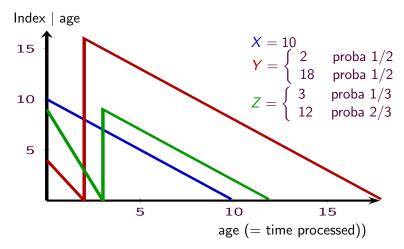
Index can be computed independently for each job (=arm).

(stochastic scheduling)



Index can be computed independently for each job (=arm).

(stochastic scheduling)



Index can be computed independently for each job (=arm).

Outline

- ① The $N = +\infty$ problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits
- Conclusion

Are Whittle index asymptotic optimal?

Assume indexability. For the infinite model, π^{WIP} defines a (piecewise linear) dynamical system:

$$\mathbf{x}(t+1) = \pi^{WIP}(\mathbf{x}(t)).$$

Theorem

- If π^{WIP} has a unique attractor, then WIP is asymptotically optimal. [Weber Weiss 90s, Verloop 2016]
- ② For these problems, the suboptimality gap is exponentially small for non-degenerate problems. [G. Gaujal Yan 2021]

Sketch of proof

Recall that
$$X_s^{(N)}(t) = \frac{1}{N} \# \{ \text{arms in state } s \text{ at time } t \}.$$

We have:

$$\mathbf{X}^{(N)}(t+1) = \pi^{WIP}(\mathbf{X}^{(N)}(t)) + \underbrace{O(1/\sqrt{N})}_{ ext{stochastic noise. CLT}}$$

Sketch of proof

Recall that $X_s^{(N)}(t) = \frac{1}{N} \# \{ \text{arms in state } s \text{ at time } t \}.$

We have:

$$\mathbf{X}^{(N)}(t+1) = \pi^{WIP}(\mathbf{X}^{(N)}(t)) + \underbrace{O(1/\sqrt{N})}_{ ext{stochastic noise. CLT}}.$$

Hence:

- If π^{WIP} has a unique attractor x^* , then $\mathbf{X}^N(\infty)$ concentrates on x^* (Hoeffding bound / large deviation).
- ② Non-degenerate $=\pi^{WIP}$ is locally linear around x^* . We use the linearity of expectation.

Classical definition:

• The index is the penalty λ_i such that that an optimal policy can choose to activate or not the state i when the penalty is λ_i .

Refined definition:

• The index is the (unique) penalty λ_i such that that an (Bellman-)optimal policy can choose to activate or not the state i when the penalty is λ_i .

A Bellman-optimal policies satisfies Bellman equations:

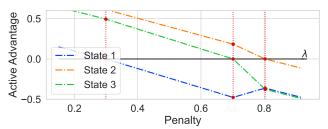
$$g^{*}(\lambda) + h_{i}^{*}(\lambda) = \max_{a} r(i, a) + a\lambda + \sum_{j} P(j|i, a)h_{j}^{*}(\lambda)$$

We define the active advantage $b_s(\lambda) := q_{i,1}(\lambda) - q_{i,0}(\lambda)$.

A Bellman-optimal policies satisfies Bellman equations:

$$g^{*}(\lambda) + h_{i}^{*}(\lambda) = \max_{a} r(i, a) + a\lambda + \sum_{j} P(j|i, a)h_{j}^{*}(\lambda)$$

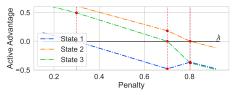
We define the active advantage $b_s(\lambda) := q_{i,1}(\lambda) - q_{i,0}(\lambda)$.



Theorem (G, Gaujal, Khun, 22)

An arm is indexable if and only if for all s: $b_{s,1}(\lambda) = 0$ has a unique solution.

We can use this characterization to build an efficient algorithm

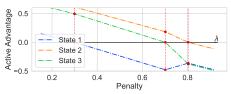


Three ingredients:

• For MDP, the advantage function is piecewise linear:

$$b^{\pi}(\lambda) = (A^{\pi})^{-1}(r + \lambda \pi).$$

We can use this characterization to build an efficient algorithm



Three ingredients:

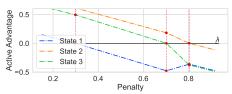
• For MDP, the advantage function is piecewise linear:

$$b^{\pi}(\lambda) = (A^{\pi})^{-1}(r + \lambda \pi).$$

② Sherman-Morisson formula: Let A be an invertible matrix, u and v vectors 1D such that $1 + v^T A^{-1} u \neq 0$. Then:

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}.$$

We can use this characterization to build an efficient algorithm



Three ingredients:

• For MDP, the advantage function is piecewise linear:

$$b^{\pi}(\lambda) = (A^{\pi})^{-1}(r + \lambda \pi).$$

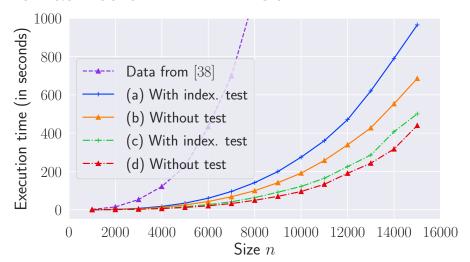
Sherman-Morisson formula: Let A be an invertible matrix, u and v vectors 1D such that $1 + v^T A^{-1} u \neq 0$. Then:

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$

We can reorder operations to use Strassen's like operations.

We obtain a theoretical complexity of $O(S^{2.53})$ and an efficient implemenation

https://pypi.org/project/markovianbandit-pkg/



Outline

- 1 The $N = +\infty$ problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits
- Conclusion

How to construct a policy for the original problem?

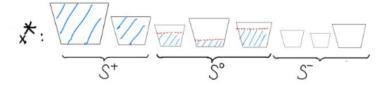
Find a function $\pi: \mathcal{X} \to \mathcal{Y}$ such that $\pi(x^*) = y^*$.

Relaxed problem: Optimal sequence $x_s^*(t)$, $y_{s,a}^*(t)$.

How to construct a policy for the original problem?

Find a function $\pi: \mathcal{X} \to \mathcal{Y}$ such that $\pi(x^*) = y^*$.

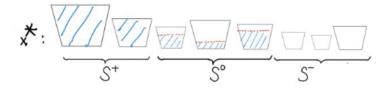
Relaxed problem: Optimal sequence $x_s^*(t)$, $y_{s,a}^*(t)$.



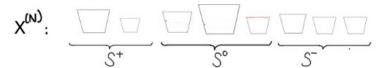
How to construct a policy for the original problem?

Find a function $\pi: \mathcal{X} \to \mathcal{Y}$ such that $\pi(x^*) = y^*$.

Relaxed problem: Optimal sequence $x_s^*(t)$, $y_{s,a}^*(t)$.



Original problem: Sequence $\pi_t : \mathcal{X} \to \mathcal{Y}$.



If $|calS^0(t)| = 1$, you can implement π_t as a priority rule.

• It is locally linear.

Asymptotic optimality

Theorem

- There exists an priority rule that is asymptotically optimal if and only if for all t, $|S^0(t)| \le 1$.
- It becomes optimal exponentially fast if for all t, $|S^0(t)| = 1$.

Proof ingredients.

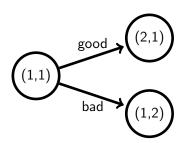
- **1** Concentration argument: π continuous implies $\lim_{N\to\infty} X_{\pi}^{(N)}(t) = x_{\pi}(t)$.
- 2 Linearity of expectation.

Many finite-horizon problems do not admit asymptotically optimal priority rules Example: Applicant screening problem (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α =0.25

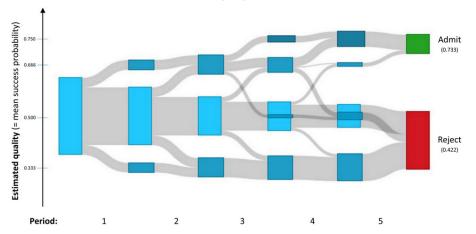
Many finite-horizon problems do not admit asymptotically optimal priority rules Example: Applicant screening problem (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α =0.25



Many finite-horizon problems do not admit asymptotically optimal priority rules Example: Applicant screening problem (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α =0.25



No asymptotically optimal priority policy: after two interviews:

•
$$x_{(1,1)}^* = 2x_{(2,1)}^* = 2x_{(1,2)}^* = 0.5.$$

•
$$x_{(1,1)}^* = 2x_{(2,1)}^* = 2x_{(1,2)}^* = 0.5.$$

• $y_{(2,1),interview}^* = y_{(1,1),interview}^* = 0.125.$

Outline

- 1 The $N = +\infty$ problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits
- Conclusion

Conclusion

For Markovian bandits, mean-field control can be solved by an LP.

• Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.

- When they are, they become optimal exponentially fast.
- Index policy (= "right actication price") are very efficient.

Conclusion

For Markovian bandits, mean-field control can be solved by an LP.

• Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.

- When they are, they become optimal exponentially fast.
- Index policy (= "right actication price") are very efficient.
- This talk: finite-state space, computation of policies.
- Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

- Omputing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun https://arxiv.org/abs/2203.05207
- LP-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast) asymptotic optimality.
 G. Gaujal Yan. https://arxiv.org/abs/2106.10067