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Motivation: Whittle index

”A problem is indexable if and only if the optimal policy π∗(λ) is
non-decreasing”.

Ambiguous definition:

1 What is ”optimal”?

2 “The” optimal: is it unique?
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Markov deicison processes (MDPs)

Markov decision processes = Markov chains + actions and rewards.

Introduced in the 50s (Bellman)

Very popular today because of reinforcement learning

Find a policy π : S → A to maximize some optimality
criterion.
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What are optimality criteria?

1 Finite horizon: maxE [R0 + R1 + · · ·+ RT ].

2 Discounted: maxE
[
R0 + γR1 + γ2R2 + . . .

]
for some γ < 1.

3 Time-average (a.k.a. gain): max lim
T→∞

1

T
E [R0 + R1 + · · ·+ RT ].

What is the ”good” notion of optimality for time-average MDPs?

Time-average makes sense for queueing applications.

Algorithms are designed for finite/discounted.

Strong connections between the three notions

Nicolas Gast – 4 / 22



What are optimality criteria?

1 Finite horizon: maxE [R0 + R1 + · · ·+ RT ].

2 Discounted: maxE
[
R0 + γR1 + γ2R2 + . . .

]
for some γ < 1.

3 Time-average (a.k.a. gain): max lim
T→∞

1

T
E [R0 + R1 + · · ·+ RT ].

What is the ”good” notion of optimality for time-average MDPs?

Time-average makes sense for queueing applications.

Algorithms are designed for finite/discounted.

Strong connections between the three notions

Nicolas Gast – 4 / 22



Outline

1 MDP and gain-optimality

2 Discounted MDP and n-sensitive optimality

3 Bellman optimality (a.k.a. canonical optimality)

4 Conclusion
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Definition of a MDP

At time t, you

Observe St ∈ S and take an action At ∈ A (we assume S, A finite).

Receive Rt = r(St ,At).

St+1 jumps according to P(·|St ,At).

A (deterministic) policy is a function π : S → A.
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Notion of gain-optimality

The gain of a policy is:

gπ(s) = lim
T→∞

1

T
E

[
T−1∑
t=0

r(St ,At) | S0 = s

]
.

A gain-optimal policy1 π∗ maximizes the gain, i.e., for all s:

gπ∗
(s) = argmax

π
gπ(s).

1Theorem (e.g., Puterman 2005). When S and A are finite, gain and optimal
policies are well defined.
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Is gain-optimal a good notion of optimality?
Example of deterministic MDPs

A B

+1

−1

+1

A B

+2

0

+1 +1

Here: all policies are gain-optimal but some look better than others.

What is the right notion of optimality?

What do algorithms compute?
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Discounted optimality

For discounted problems, the quantity of importance is the value function:

V π
γ (s) = E

[
R0 + γR1 + γ2R2 + · · · | S0 = s

]
.

The optimal policy satisfies Bellman equation:

V ∗
γ (s) = max

a
r(s, a) + γ

∑
s′

V ∗
γ (s

′)p(s ′|s, a).︸ ︷︷ ︸
=:Q∗(s,a)

Bellman equation is very powerful:

Unique solution for any γ < 1.

Many algorithms to solve it (VI, PI, Q-learning).

Can be used to define advantage Q∗(s, a)− V ∗(s) (e.g., actor-critic).
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Discounted-optimality when γ → 1

A B

+2

0

+1 +1

Policy π discounted gain V π
γ (A)

Stay left 1 + γ + γ2 + . . . =
1

1− γ

Go right: 2 + γ + γ2 + γ3 + . . . =
1

1− γ
+1. Best policy?

Alternate: 2 + 2γ2 + 2γ4 . . . =
1

1− γ
+

1

1 + γ
.
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Bias-optimality

(Puterman 2015): For any policy π, there exists a bias vector hπ(s) s.t.:

V π
γ (s) =

1

1− γ
gπ(s)︸ ︷︷ ︸
gain

+ hπ

0

(s)︸ ︷︷ ︸

0-

bias

+o(1− γ).

A policy is:

Gain-optimal if it maximizes gπ(s) (for all s).

Bias-optimal if it maximizes gπ(s) (for all s) and then hπ(s).

(Blackwell-optimal if it maximizes gπ(s) then hπ0 (s) then hπ1 (s),...)

What do algorithms compute?

Gain-optimal policies? Bias-optimal policies?
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The (modified) Bellman equation

Let g∗ be the optimal gain. There exists a bias vector h such that:

g∗(s) = max
a

g∗(s ′)p(s ′|s, a)

h(s) + g∗(s) = max
a

r(s, a) +
∑
s′

h(s ′)p(s ′|s, a). (1)

Note: the solution is not unique (not just up to a constant).

We call a best response to (1) a Bellman-optimal policy.

What is a Bellman optimal policy?
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Bellman-optimal policies are not gain/bias optimal policies

gain-optimal ⊋ Bellman-optimal ⊋ bias-optimal

A B

+1

−1

+1

A B

+2

0

+1 +1

A B

−1

−1

+1 +1

h∗(A) = h∗(B)

h∗(A) = 1+h∗(B) h∗(A) ∈ h∗(B) + [−1, 1]

Black is Bellman-opt

All policies are Bellman-optimal

All are Gain-optimal

There exists a unique bias-optimal policy
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Bellman optimal policy is a natural notion

Theorem

The set of optimal policies that can be output of policy iteration of value
iteration is the set of Bellman-optimal policy.

A policy π is canonical optimal if there exists a final reward F such that π
is optimal for for all finite horizon with final reward F , i.e. it maximmizes

E [R0 + R1 + · · ·+ RT + F (ST )] .

Theorem (Yushkevich 1974)

A policy is Bellman-optimal if and only if it is canonical optimal.
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Does it matter: Definition of computation of Whittle index

Consider a two-action MDP, with a penalty:

P(·|sn, an) and r(sn, an)− λ an.

definition of index

The Whittle index of s is penalty λs such that that optimal policy
chooses π(s) = 1 when λ < λs and π(s) = 0 when λ > λs .
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Does it matter: Definition of computation of Whittle index

Consider a two-action MDP, with a penalty:

P(·|sn, an) and r(sn, an)− λ an.

Non-ambiguous definition of index

The Whittle index of s is the unique penalty λs such that that any
(Bellman-)optimal policy chooses π(s) = 1 when λ < λs and π(s) = 0
when λ > λs .
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How to compute Whittle indices?
A Bellman-optimal policies satisfies Bellman equations:

g∗
λ(s) + h∗λ(s) = max

a
r(s, a) + aλ+

∑
s′

P(s ′|s, a)h∗λ(s ′)︸ ︷︷ ︸
qλ(s,a)

We define the active advantage bλ(s) := qλ(s, 1)− qλ(s, 0).
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Theorem (G,Gaujal,Khun, 22)

An arm is indexable if and only if for all s: bλ(s, 1) = 0 has a unique
solution.
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We can use to build an subcubic algorithm
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Three ingredients:
1 For MDP, the advantage function is piecewise linear:

bπλ = (Aπ)−1(r + λπ).

2 Sherman-Morisson formula: Let A be an invertible matrix, u and v
vectors 1D such that 1 + vTA−1u ̸= 0. Then:(

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
.

3 We can reorder operations to use Strassen’s like operations.
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We obtain a theoretical complexity of O(S2.53) and an
efficient implemenation
https://pypi.org/project/markovianbandit-pkg/
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FPA-matlab, numbers from [29]

FPA-Julia

(a) Alg.3 with index. test

(b) Alg.3 without test

(c) Alg.4 with index. test

(d) Alg.4 without test
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Conclusion

Time-average MDPs are complicated:

Gain-optimality is defined but stronger notions of optimality are used.

Be careful about structure.

bias-optimal ⊊
Bellman-optimal

≡
canonical-optimal

⊊ gain-optimal

Bellman-optimality allows to define the advantage (as for discounted
problems).

http://polaris.imag.fr/nicolas.gast/

Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun https://arxiv.org/abs/2203.05207
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