
1/9

Stochastic Scheduling and Index Policies

Nicolas Gast

Inria

LIG WAX – May, 27, 2021.



2/9

Motivation: Single-server scheduling

“server”
waiting room (queue)

Tasks

I We allow preemptive scheduling (preempt-resume).
I Examples: tasks allocations, electric vehicle charging, wireless

scheduling, research projects,...

Focus of the talk
How to you schedule jobs to minimize the average response time?

If you know the job sizes: SRPT (Shortest Remaining Processing

Time)

I ”Strongly optimal” [Schrage, 1966]



2/9

Motivation: Single-server scheduling

“server”
waiting room (queue)

Tasks

Focus of the talk
How to you schedule jobs to minimize the average response time?

If you know the job sizes: SRPT (Shortest Remaining Processing

Time)

I ”Strongly optimal” [Schrage, 1966]



2/9

Motivation: Single-server scheduling

“server”
waiting room (queue)

Tasks

Focus of the talk
How to you schedule jobs to minimize the average response time?

If you know the job sizes: SRPT (Shortest Remaining Processing

Time)

I ”Strongly optimal” [Schrage, 1966]



3/9

Scheduling does matter
SRPT can lead to huge performance gain compared to FCFS

Low varying jobs High varying jobs
Job size ∈ {1, 10} Job size ∈ {1, 100}
99% of small jobs. 99% of small jobs.



4/9

How to schedule if you do not know jobs sizes?
But you know their distribution

“server”
waiting room (queue)

Tasks
? ?

Tentative: SERPT : shortest expected remaining processing time.

Is it optimal?



4/9

How to schedule if you do not know jobs sizes?
But you know their distribution

“server”
waiting room (queue)

Tasks
? ?

Tentative: SERPT : shortest expected remaining processing time.

Is it optimal?



5/9

SERPT is not optimal.

Example: two jobs with X = 10− ε and Y =

{
2 proba 1/2
18 proba 1/2

5 10 15 20

2

4

6

8

10

SERPT | age

age (= time processed))



6/9

Gittins’ index

If a finished job is subsidized x€ and running it costs 1€/sec.
Gittins index of a job = smallest x so that you start running it.

5 10 15 20

2

4

6

8

10

Index | age

age (= time processed))

X = 10

Y =

{
2 proba 1/2
18 proba 1/2



6/9

Gittins’ index

If a finished job is subsidized x€ and running it costs 1€/sec.
Gittins index of a job = smallest x so that you start running it.

5 10 15 20

2

4

6

8

10

Index | age

age (= time processed))

X = 10

Y =

{
2 proba 1/2
18 proba 1/2



7/9

Optimality of Gittins index

Theorem. (Gittins, Glazebrook, Weber, 90s). Scheduling smallest
index first is optimal.

The result is powerful but not very robust result: Gittins is not
optimal as soon as:

I Multi-server, Impatient jobs,. . .

(Recently) closed questions:

I Can we analyze the performance of this Gittins index?
(SOAP: [Scully et al 2018]).

I Multi-server? (Close to optimal: [Grosof et al 2019]).

I Impatient customers? We need to change the index: [Whittle
88]. (Very close to optimal [G,G,Yan 2021])

I Unkown distribution (No regret learning.[G,G,Khun, 2021])



7/9

Optimality of Gittins index

Theorem. (Gittins, Glazebrook, Weber, 90s). Scheduling smallest
index first is optimal.

The result is powerful but not very robust result: Gittins is not
optimal as soon as:

I Multi-server, Impatient jobs,. . .

(Recently) closed questions:

I Can we analyze the performance of this Gittins index?
(SOAP: [Scully et al 2018]).

I Multi-server? (Close to optimal: [Grosof et al 2019]).

I Impatient customers? We need to change the index: [Whittle
88]. (Very close to optimal [G,G,Yan 2021])

I Unkown distribution (No regret learning.[G,G,Khun, 2021])



8/9

Impatient Jobs

Suppose that at each time, a job can leave with some probability.

I The problem is in general PSPACE-hard.

Whittle’ index is defined similarly to Gittins’ index: Find the
smallest subsidy so that you start running it.

I Not always well defined.

I Not optimal in general.

I Works very well in practice.

“Therem” [G,G,Yan, 2021] Under quite general condition, when
the number of servers n grow, Whittle index becomes
asymptotically optimal exponentially fast in n.



8/9

Impatient Jobs

Suppose that at each time, a job can leave with some probability.

I The problem is in general PSPACE-hard.

Whittle’ index is defined similarly to Gittins’ index: Find the
smallest subsidy so that you start running it.

I Not always well defined.

I Not optimal in general.

I Works very well in practice.

“Therem” [G,G,Yan, 2021] Under quite general condition, when
the number of servers n grow, Whittle index becomes
asymptotically optimal exponentially fast in n.



8/9

Impatient Jobs

Suppose that at each time, a job can leave with some probability.

I The problem is in general PSPACE-hard.

Whittle’ index is defined similarly to Gittins’ index: Find the
smallest subsidy so that you start running it.

I Not always well defined.

I Not optimal in general.

I Works very well in practice.

“Therem” [G,G,Yan, 2021] Under quite general condition, when
the number of servers n grow, Whittle index becomes
asymptotically optimal exponentially fast in n.



9/9

Conclusion

Index policies are very efficient to share a single resource among
tasks.

I Idea: for a given task, find the largest subsidy so that you are
willing to execute this task.

I Schedule cheapest tasks in priority.

I This scales well and performs very well in practice.

Some open questions:

I Does not work “as is” when you have multiple resources :
need for other relaxations.

I Does not work for “bin-packing”-like constraints.


