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The ODE method

. . . has (at least) two applications.
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Why is the bias important? (1/2)
... for mean field methods

System with N objects

Xi (t) =
1

N
#{Objects in state i at time t}

In steady-state:

P [An object is in state i ] = E [Xi ] .

Assume that we can construct some mean field approximation ẋ = f̄ (x)
with a fixed point x∗, then:

How good does x∗i approximate
P [An object is in state i ]?
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Why is the bias important? (2/2)
. . . for stochastic approximation is important

Model with constant step-size and Markovian noise:

θn+1 = θn + α (f (θn,Yn) +Mn+1)

where Yn+1 ∼ P [· | θn,Yn]

, and define

θ̄n =
1

n

n∑
k=1

θk .

Assume that the ODE approximation: θ̇ = f̄ (θ) has an attractor θ∗.

How far is θ̄n from θ∗ (for large n and small α?)
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Reults in a nutshell

1 In general: |X (t)− x(t)| = O(

√
1

N
)
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2 If f̄ is smooth, then: |X̄ (t)− x(t)| = O(
1

N
)

0 500 1000 1500 2000 2500 3000 3500 4000
Time t

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
ODE approximation
Averaged X(t)

.

3 Results for the stochastic approximation with constant step size
α = 1/N corresponds to results for a mean field interacting model
with N objects.
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Outline

1 Mean field interaction models with a shared resource

2 Elements of Proof (Stein’s method)

3 What about stochastic approximation?

4 Conclusion
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Replica mean field model with a fast varying environment
Independent sets with arrivals, CSMA model from Cecchi et al. 2015
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Mean field model

Population of N objects.

Object k has a state Sk(t) ∈ S.

Xi = fraction of objects in state i .

Y = “activation set′′

Model

Object k jumps from i to j at rate Qij(X)

Resource Y jumps from y to y ′ at rate NKy ,y ′(X).
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We use two approximations to construct a fluid limit.

N = 30

fast System - Y(t)

N = 100 N = 1000

N = 30

slow System - X(t)

N = 100 N = 1000

“Average” mean field approximation

Let πy (x) be the stationary distribution of K (x). We define:

Q̄(x) =
∑
y

πy (x)Q(x, y).

The mean field approximation is the solution of the ODE:

ẋ = xQ̄(x),
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The approximation is asymptocally exact. Its bias is v/N .

Assume that

K is unichain for all x.

K and Q are twice differenciable

ẋ = xQ̄(x) has a unique attractor x∗.

Theorem

There exists a computable V such that, in steady-state:

P [Sk = i ] = x∗i︸︷︷︸
mean field approximation

+
1

N
Vi

︸ ︷︷ ︸
refined approximation

+ O(1/N2).
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Illustration of the theorem
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Result of Cecchi et al (2015): MF is asymptotically exact

Our results: Accuracy is O(1/N). MF+correction is almost exact

Even for N = 1.
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To compare Xt and ODE, we study infinitesimal changes
The generator approach
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Stochastic system Xt

ODE ϕt(X0)

ODE ϕt−s(Xs)

Xt

We want to compare:

E [Xt ]− ϕt(X0)

=

∫ t

0
E
[
d

ds
ϕt−s(Xs)

]
ds

=

∫ ∞

0
(G sto − GODE)ϕt−s(Xs)ds.
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If Y is not here, we can directly use Stein’s method

and introduce a Poisson equation for the slow system

Let G sto be the Generator of the stochastic system. For h : X → R:
1 G stoh(X ) =

∑
i ,j

(h(X +
1

N
(ej − ei ))− h(X ))NxiQij(x)

= ∇h · xQ(X )︸ ︷︷ ︸
Generator of ODE ẋ = xQ(x).

+O(1/N)︸ ︷︷ ︸
if h is C1

.

2 E
[
G stoh(X )

]
= 0 if X is in steady-state.

Let G be such that ∇G · xQ(x) = x − x∗ (Poisson equation). We have:

E [X − x∗] = E [∇G · XQ(X )]

= E
[
∇G · XQ(X )− G stoG

]
(by (2))

= O(1/N) (by (1)).
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When Y is here, we need to treat the fast system

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
i ,j

(h(X +
1

N
(ej − ei ))− h(X ))NxiQij(X ,Y )

= ∇h · XQ(X ,Y )︸ ︷︷ ︸
̸=GODE=∇h·Q̄(x).

+O(1/N),

We are left with Q(X ,Y )− Q̄(X ).

Lemma: There exists a K+ that is C 2 such that for all h : X × Y → R:

h(X ,Y )− h̄(X ) = K (x)K+(x)h(X ,Y ).

Nicolas Gast – 17 / 24



When Y is here, we need to treat the fast system

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
i ,j

(h(X +
1

N
(ej − ei ))− h(X ))NxiQij(X ,Y )

= ∇h · XQ(X ,Y )︸ ︷︷ ︸
̸=GODE=∇h·Q̄(x).

+O(1/N),

We are left with Q(X ,Y )− Q̄(X ).

Lemma: There exists a K+ that is C 2 such that for all h : X × Y → R:

h(X ,Y )− h̄(X ) = K (x)K+(x)h(X ,Y ).

Nicolas Gast – 17 / 24



When Y is here, we need to treat the fast system
and introduce a Poisson equation for the fast system.

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
i ,j

(h(X +
1

N
(ej − ei ))− h(X ))NxiQij(X ,Y )

= ∇h · XQ(X ,Y )︸ ︷︷ ︸
̸=GODE=∇h·Q̄(x).

+O(1/N),

We are left with Q(X ,Y )− Q̄(X ).

Lemma: There exists a K+ that is C 2 such that for all h : X × Y → R:

h(X ,Y )− h̄(X ) = K (x)K+(x)h(X ,Y ).

Nicolas Gast – 17 / 24



Rapping up the proof

Let h : X × Y → R be a test function.

G stoh(X ,Y ) = NK (X )h(X ,Y )︸ ︷︷ ︸
fast

+∇xh · XQ(X ,Y )︸ ︷︷ ︸
slow

+O(1/N)

Hence, K fast − 1

N
G sto = o(1/N) if h is C 1.

This shows that in steady-state:

E
[
h(X )− h̄(X )

]
= E

[
K (x)K+(x)h(X ,Y )

]
= E

[
(K (x)− 1

n
G sto)K+(x)h(X ,Y )

]
(steady-state).

= O(1/N) (expansion above).
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Stochastic approximation with Markovian noise
... is similar to our mean field model with a fast-varying environment

Recurrence of the form:

θn+1 = θn + α (f (θn,Yn) +Mn+1)

where Yn+1 ∼ P [· | θn,Yn].

For our mean field model with a resource:

X (t +
1

N
) = X (t) +

1

N
(xQ(x ,Y ) + N(X (t +

1

N
)− X (t))− xQ(x ,Y )︸ ︷︷ ︸

:=M(t+ 1
N
) and E

[
M(t + 1

N
) · |F(t)

]
≈ 0

).

Hence, we can use similar proofs.
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Stochastic approximation: results
Under “smoothness” conditions, there exists V such that

lim sup
n→∞

θ̄n = θ∗ + Vα+ O(α2).

0 20000 40000 60000 80000 100000
n

10 2

10 1

100

Er
ro

r

= 0.02
= 0.01
= 0.005
= 0.0025
= 0.00125
= 0.000625

Here: Error = θ̄n − θ∗
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We can extrapolate V by using two step-sizes α and 2α

θ̄
(α)
n = θ∗ + Vα+ O(α2)

θ̄
(2α)
n = θ∗ + V 2α+ O(α2)

Hence:

2θ̄
(α)
n − θ̄

(2α)
n = θ∗ + O(α2).
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Conclusion

We study the accuracy of mean field approximation for two time-scale.

The bias is of order O(1/N). It can be computed.

This also works for most “smooths” models (e.g., heterogeneous).

Two-timescale models:

Shared resource or synchronization (e.g., CSMA)

Q-learning type algorithm: Stochastic approximation algorithms with
Markovian noise. Huo et al. 2023

Many open questions: non-smooth, (sparse) geometric models,
non-Markovian.

Slides and references: http://polaris.imag.fr/nicolas.gast
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