Approximating the bias of stochastic processes

With applications to stochastic approximation and mean-field limits.

Nicolas Gast (Inria, Grenoble), joint work with Sebastian Allmeier

Inria Sophia, May 2024

Motivating example: Independent sets with arrivals CSMA model from Cecchi et al. 2015

Motivating example: Independent sets with arrivals

 CSMA model from Cecchi et al. 2015

Motivating example: Independent sets with arrivals CSMA model from Cecchi et al. 2015

Objective: estimate $\mathbf{P}\left[S_{k}=i\right]$.

The ODE method

1. Study a complex
(e.g. queueing) system
(Mean field methods)

The ODE method ... has (at least) two applications.

1. Study a complex
(e.g. queueing) system
(Mean field methods)
2. Design an algorithm that solves $\bar{f}(x)=0$.
(Stochastic approximation)

The ODE method ... has (at least) two applications.

1. Study a complex
(e.g. queueing) system
(Mean field methods)
2. Design an algorithm that solves $\bar{f}(x)=0$.
(Stochastic approximation)

The ODE method ... has (at least) two applications.

1. Study a complex
(e.g. queueing) system
(Mean field methods)
2. Design an algorithm that solves $\bar{f}(x)=0$.
(Stochastic approximation)

Why is the bias important? (1/2)

... for mean field methods
System with N objects

$$
X_{i}(t)=\frac{1}{N} \#\{\text { Objects in state } i \text { at time } t\}
$$

In steady-state:

$$
\mathbf{P}[\text { An object is in state } i]=\mathbb{E}\left[X_{i}\right] .
$$

Why is the bias important? (1/2)

... for mean field methods
System with N objects

$$
X_{i}(t)=\frac{1}{N} \#\{\text { Objects in state } i \text { at time } t\}
$$

In steady-state:

$$
\mathbf{P}[\text { An object is in state } i]=\mathbb{E}\left[X_{i}\right] .
$$

Assume that we can construct some mean field approximation $\dot{x}=\bar{f}(x)$ with a fixed point x^{*}, then:

- How good does x_{i}^{*} approximate \mathbf{P} [An object is in state i]?

Why is the bias important? (2/2)

... for stochastic approximation is important

Model with constant step-size and Markovian noise:

$$
\theta_{n+1}=\theta_{n}+\alpha\left(f\left(\theta_{n}, Y_{n}\right)+M_{n+1}\right)
$$

where $Y_{n+1} \sim \mathbf{P}\left[\cdot \mid \theta_{n}, Y_{n}\right]$

Why is the bias important? (2/2)

...for stochastic approximation is important

Model with constant step-size and Markovian noise:

$$
\theta_{n+1}=\theta_{n}+\alpha\left(f\left(\theta_{n}, Y_{n}\right)+M_{n+1}\right)
$$

where $Y_{n+1} \sim \mathbf{P}\left[\cdot \mid \theta_{n}, Y_{n}\right]$, and define

$$
\bar{\theta}_{n}=\frac{1}{n} \sum_{k=1}^{n} \theta_{k}
$$

Assume that the ODE approximation: $\dot{\theta}=\bar{f}(\theta)$ has an attractor θ^{*}.

- How far is $\bar{\theta}_{n}$ from θ^{*} (for large n and small α ?)

Reults in a nutshell

(1) In general: $|X(t)-x(t)|=O\left(\sqrt{\frac{1}{N}}\right)$

(2) If \bar{f} is smooth, then: $|\bar{X}(t)-x(t)|=O\left(\frac{1}{N}\right)$

(3) Results for the stochastic approximation with constant step size $\alpha=1 / N$ corresponds to results for a mean field interacting model with N objects.

Outline

(1) Mean field interaction models with a shared resource
(2) Elements of Proof (Stein's method)
(3) What about stochastic approximation?

4 Conclusion

Replica mean field model with a fast varying environment Independent sets with arrivals, CSMA model from Cecchi et al. 2015

Objective: estimate $\mathbf{P}\left[S_{k}=i\right]$

Replica mean field model with a fast varying environment Independent sets with arrivals, CSMA model from Cecchi et al. 2015

Scaling: replica
Objective: estimate $\mathbf{P}\left[S_{k}=i\right]$

- N severs per node
- Transmission rate $\times N$.

Mean field model

Population of N objects.

- Object k has a state $S_{k}(t) \in \mathcal{S}$.

$$
X_{i}=\text { fraction of objects in state } i .
$$

Model

- Object k jumps from i to j at rate $Q_{i j}(\mathbf{X})$

Mean field model . . . with a shared resource

Population of N objects.

- Object k has a state $S_{k}(t) \in \mathcal{S}$.

$$
\begin{aligned}
X_{i} & =\text { fraction of objects in state } i . \\
Y & =\text { "activation set" }
\end{aligned}
$$

Model

- Object k jumps from i to j at rate $Q_{i j}(\mathbf{X}, \mathbf{Y})$
- Resource \mathbf{Y} jumps from y to y^{\prime} at rate $N K_{y, y^{\prime}}(\mathbf{X})$.

We use two approximations to construct a fluid limit.

We use two approximations to construct a fluid limit.

"Average" mean field approximation
Let $\pi_{y}(\mathbf{x})$ be the stationary distribution of $K(\mathbf{x})$. We define:

$$
\bar{Q}(\mathbf{x})=\sum_{y} \pi_{y}(\mathbf{x}) Q(\mathbf{x}, y)
$$

The mean field approximation is the solution of the ODE:

$$
\dot{\mathbf{x}}=\mathbf{x} \bar{Q}(\mathbf{x})
$$

The approximation is asymptocally exact. Its bias is v / N.

Assume that

- K is unichain for all \mathbf{x}.
- K and Q are twice differenciable
- $\dot{\mathbf{x}}=\mathbf{x} \bar{Q}(\mathbf{x})$ has a unique attractor x^{*}.

Theorem

There exists a computable V such that, in steady-state:

$$
\mathbf{P}\left[S_{k}=i\right]=\underbrace{\underbrace{x_{i}^{*}}_{\text {refined approximation }}+\frac{1}{N} V_{i}+O\left(1 / N^{2}\right) . . O=\underbrace{(1)}}_{\text {mean field approximation }}
$$

Illustration of the theorem

Transmission rates	1.4	1.3	1.7
Activation rates	1.2	2	1.5
Arrival rates	0.5	0.2	0.5

Illustration of the theorem

Result of Cecchi et al (2015): MF is asymptotically exact

Illustration of the theorem

Transmission rates	1.4	1.3	1.7
Activation rates	1.2	2	1.5
Arrival rates	0.5	0.2	0.5

Class 1

Result of Cecchi et $2(201$) : MF/s asymptotically exact
Our results: Accuracy is $O(1 / N)$. MF+correction is almost exact

Illustration of the theorem

Transmission rates	1.4	1.3	1.7
Activation rates	1.2	2	1.5
Arrival rates	0.5	0.2	0.5

Class 3

Result of Cecchi enal (2015): MF is asymptotically exact
Our results: Accuracy is $O(N / x) . / \mathrm{MF}+$ correction is almost exact

Outline

(1) Mean field interaction models with a shared resource
(2) Elements of Proof (Stein's method)

(3) What about stochastic approximation?

4 Conclusion

To compare X_{t} and ODE, we study infinitesimal changes

The generator approach

We want to compare:

$$
\mathbb{E}\left[X_{t}\right]-\phi_{t}\left(X_{0}\right)
$$

To compare X_{t} and ODE, we study infinitesimal changes

The generator approach

ODE $\phi_{t}\left(X_{0}\right)$

ODE $\phi_{t-s}\left(X_{s}\right)$

X_{t}

We want to compare:

$$
\mathbb{E}\left[X_{t}\right]-\phi_{t}\left(X_{0}\right)
$$

To compare X_{t} and ODE, we study infinitesimal changes

The generator approach

ODE $\phi_{t}\left(X_{0}\right)$

ODE $\phi_{t-s}\left(X_{s}\right)$

X_{t}

We want to compare:

$$
\mathbb{E}\left[X_{t}\right]-\phi_{t}\left(X_{0}\right)=\int_{0}^{t} \mathbb{E}\left[\frac{d}{d s} \phi_{t-s}\left(X_{s}\right)\right] d s
$$

To compare X_{t} and ODE, we study infinitesimal changes

The generator approach

ODE $\phi_{t}\left(X_{0}\right)$

ODE $\phi_{t-s}\left(X_{s}\right)$

X_{t}

We want to compare:

$$
\begin{aligned}
\mathbb{E}\left[X_{\infty}\right]-\phi_{\infty}\left(X_{0}\right) & =\int_{0}^{\infty} \mathbb{E}\left[\frac{d}{d s} \phi_{t-s}\left(X_{s}\right)\right] d s \\
& =\int_{0}^{\infty}\left(G^{\text {sto }}-G^{\mathrm{ODE}}\right) \phi_{t-s}\left(X_{s}\right) d s
\end{aligned}
$$

If Y is not here, we can directly use Stein's method

Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1)

$$
G^{\text {sto }} h(X)=\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(x)
$$

If Y is not here, we can directly use Stein's method

Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1)

$$
\begin{aligned}
G^{\text {sto }} h(X) & =\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(x) \\
& =\underbrace{\nabla h \cdot x Q(X)}_{\text {Generator of ODE } \dot{x}=x Q(x) .}+\underbrace{O(1 / N)}_{\text {if } h \text { is } C^{1}}
\end{aligned}
$$

If Y is not here, we can directly use Stein's method and introduce a Poisson equation for the slow system
Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1)

$$
\begin{aligned}
G^{\text {sto }} h(X) & =\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(x) \\
& =\underbrace{\nabla h \cdot x Q(X)}_{\text {Generator of ODE } \dot{x}=x Q(x) .}+\underbrace{O(1 / N)}_{\text {if } h \text { is } C^{1}}
\end{aligned}
$$

(2) $\mathbb{E}\left[G^{\text {sto }} h(X)\right]=0$ if X is in steady-state.

If Y is not here, we can directly use Stein's method and introduce a Poisson equation for the slow system
Let $G^{\text {sto }}$ be the Generator of the stochastic system. For $h: \mathcal{X} \rightarrow \mathbb{R}$:
(1)

$$
\begin{aligned}
G^{\text {sto }} h(X) & =\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(x) \\
& =\underbrace{\nabla h \cdot x Q(X)}_{\text {Generator of ODE } \dot{x}=x Q(x) .}+\underbrace{O(1 / N)}_{\text {if } h \text { is } C^{1}} .
\end{aligned}
$$

(2) $\mathbb{E}\left[G^{\text {sto }} h(X)\right]=0$ if X is in steady-state.

Let G be such that $\nabla G \cdot x Q(x)=x-x^{*}$ (Poisson equation). We have:

$$
\begin{align*}
\mathbb{E}\left[X-x^{*}\right] & =\mathbb{E}[\nabla G \cdot X Q(X)] \\
& =\mathbb{E}\left[\nabla G \cdot X Q(X)-G^{\text {sto }} G\right] \tag{2}\\
& =O(1 / N)
\end{align*}
$$

(by (1)).

When Y is here, we need to treat the fast system

Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be a test function. We have:

$$
\begin{aligned}
G^{\text {sto }} h(X, Y) & =\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(X, Y) \\
& =\underbrace{\nabla h \cdot X Q(X, Y)}_{\neq G^{\mathrm{ODE}}=\nabla h \cdot \bar{Q}(x) .}+O(1 / N),
\end{aligned}
$$

When Y is here, we need to treat the fast system

Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be a test function. We have:

$$
\begin{aligned}
G^{\text {sto }} h(X, Y) & =\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(X, Y) \\
& =\underbrace{\nabla h \cdot X Q(X, Y)}_{\neq G^{\mathrm{ODE}}=\nabla h \cdot \bar{Q}(x) .}+O(1 / N),
\end{aligned}
$$

We are left with $Q(X, Y)-\bar{Q}(X)$.

When Y is here, we need to treat the fast system and introduce a Poisson equation for the fast system.

Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be a test function. We have:

$$
\begin{aligned}
G^{\text {sto }} h(X, Y) & =\sum_{i, j}\left(h\left(X+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-h(X)\right) N x_{i} Q_{i j}(X, Y) \\
& =\underbrace{\nabla h \cdot X Q(X, Y)}_{\neq G^{\text {ODE }}=\nabla h \cdot \bar{Q}(x) .}+O(1 / N),
\end{aligned}
$$

We are left with $Q(X, Y)-\bar{Q}(X)$.
Lemma: There exists a K^{+}that is C^{2} such that for all $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$:

$$
h(X, Y)-\bar{h}(X)=K(x) K^{+}(x) h(X, Y)
$$

Rapping up the proof

Let $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a test function.

$$
G^{\text {sto }} h(X, Y)=\underbrace{N K(X) h(X, Y)}_{\text {fast }}+\underbrace{\nabla_{x} h \cdot X Q(X, Y)}_{\text {slow }}+O(1 / N)
$$

Hence, $K^{\text {fast }}-\frac{1}{N} G^{\text {sto }}=o(1 / N)$ if h is C^{1}.

Rapping up the proof

Let $h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a test function.

$$
G^{\text {sto }} h(X, Y)=\underbrace{N K(X) h(X, Y)}_{\text {fast }}+\underbrace{\nabla_{x} h \cdot X Q(X, Y)}_{\text {slow }}+O(1 / N)
$$

Hence, $K^{\text {fast }}-\frac{1}{N} G^{\text {sto }}=o(1 / N)$ if h is C^{1}.
This shows that in steady-state:

$$
\begin{aligned}
\mathbb{E}[h(X)-\bar{h}(X)] & =\mathbb{E}\left[K(x) K^{+}(x) h(X, Y)\right] \\
& =\mathbb{E}\left[\left(K(x)-\frac{1}{n} G^{\text {sto }}\right) K^{+}(x) h(X, Y)\right] \\
& =O(1 / N)
\end{aligned}
$$

(steady-state).

Outline

(1) Mean field interaction models with a shared resource
(2) Elements of Proof (Stein's method)
(3) What about stochastic approximation?

Stochastic approximation with Markovian noise

... is similar to our mean field model with a fast-varying environment

Recurrence of the form:

$$
\theta_{n+1}=\theta_{n}+\alpha\left(f\left(\theta_{n}, Y_{n}\right)+M_{n+1}\right)
$$

where $Y_{n+1} \sim \mathbf{P}\left[\cdot \mid \theta_{n}, Y_{n}\right]$.

Stochastic approximation with Markovian noise

... is similar to our mean field model with a fast-varying environment

Recurrence of the form:

$$
\theta_{n+1}=\theta_{n}+\alpha\left(f\left(\theta_{n}, Y_{n}\right)+M_{n+1}\right)
$$

where $Y_{n+1} \sim \mathbf{P}\left[\cdot \mid \theta_{n}, Y_{n}\right]$.
For our mean field model with a resource:

$$
X\left(t+\frac{1}{N}\right)=X(t)+\frac{1}{N}(x Q(x, Y)+\underbrace{N\left(X\left(t+\frac{1}{N}\right)-X(t)\right)-x Q(x, Y)}_{:=M\left(t+\frac{1}{N}\right) \text { and } \mathbb{E}\left[\left.M\left(t+\frac{1}{N}\right) \cdot \right\rvert\, \mathcal{F}(t)\right] \approx 0})
$$

Hence, we can use similar proofs.

Stochastic approximation: results

Under "smoothness" conditions, there exists V such that

$$
\limsup _{n \rightarrow \infty} \bar{\theta}_{n}=\theta^{*}+V \alpha+O\left(\alpha^{2}\right)
$$

Here: Error $=\bar{\theta}_{n}-\theta^{*}$

We can extrapolate V by using two step-sizes α and 2α

$$
\begin{aligned}
\bar{\theta}_{n}^{(\alpha)} & =\theta^{*}+V \alpha+O\left(\alpha^{2}\right) \\
\bar{\theta}_{n}^{(2 \alpha)} & =\theta^{*}+V 2 \alpha+O\left(\alpha^{2}\right)
\end{aligned}
$$

We can extrapolate V by using two step-sizes α and 2α

$$
\begin{aligned}
\bar{\theta}_{n}^{(\alpha)} & =\theta^{*}+V \alpha+O\left(\alpha^{2}\right) \\
\bar{\theta}_{n}^{(2 \alpha)} & =\theta^{*}+V 2 \alpha+O\left(\alpha^{2}\right)
\end{aligned}
$$

Hence:

$$
2 \bar{\theta}_{n}^{(\alpha)}-\bar{\theta}_{n}^{(2 \alpha)}=\theta^{*}+O\left(\alpha^{2}\right)
$$

Outline

(1) Mean field interaction models with a shared resource
(2) Elements of Proof (Stein's method)
(3) What about stochastic approximation?

4 Conclusion

Conclusion

We study the accuracy of mean field approximation for two time-scale.

- The bias is of order $O(1 / N)$. It can be computed.
- This also works for most "smooths" models (e.g., heterogeneous).

Conclusion

We study the accuracy of mean field approximation for two time-scale.

- The bias is of order $O(1 / N)$. It can be computed.
- This also works for most "smooths" models (e.g., heterogeneous).

Two-timescale models:

- Shared resource or synchronization (e.g., CSMA)
- Q-learning type algorithm: Stochastic approximation algorithms with Markovian noise. Huo et al. 2023

Conclusion

We study the accuracy of mean field approximation for two time-scale.

- The bias is of order $O(1 / N)$. It can be computed.
- This also works for most "smooths" models (e.g., heterogeneous).

Two-timescale models:

- Shared resource or synchronization (e.g., CSMA)
- Q-learning type algorithm: Stochastic approximation algorithms with Markovian noise. Huo et al. 2023

Many open questions: non-smooth, (sparse) geometric models, non-Markovian.

Slides and references: http://polaris.imag.fr/nicolas.gast

References

Results on which this talk is based:

- Bias and Refinement of Multiscale Mean Field Models. Allmeier, Gast, 2022. Sigmetrics 2023.
- CSMA networks in a many-sources regime: A mean-field approach. Cecchi, Borst, van Leeuwaarden, Whiting. Infocom 2016.
- Results on stochastic approximation: preprint (email me if you want the preprint)

Q-learning and bias:

- Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes. Dongyan Huo, Yudong Chen, Qiaomin Xie. Sigmetrics 2023.

Related refined mean-field approximation papers:

- Mean Field and Refined Mean Field Approximations for Heterogeneous Systems: It Works! by Allmeier and Gast. SIGMETRICS 2022.
- A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018.

