Approximating the bias of stochastic processes With applications to stochastic approximation and mean-field limits.

Nicolas Gast (Inria, Grenoble), joint work with Sebastian Allmeier

Inria Sophia, May 2024

Motivating example: Independent sets with arrivals CSMA model from Cecchi et al. 2015

Motivating example: Independent sets with arrivals CSMA model from Cecchi et al. 2015

Motivating example: Independent sets with arrivals CSMA model from Cecchi et al. 2015

Objective: estimate $\mathbf{P}[S_k = i]$.

The ODE method

1. Study a complex (e.g. queueing) system

(Mean field methods)

The ODE method ... has (at least) two applications.

The ODE method ... has (at least) two applications.

The ODE method ... has (at least) two applications.

Why is the bias important? (1/2)

... for mean field methods

System with N objects

$$X_i(t) = rac{1}{N} \# \{ ext{Objects in state } i ext{ at time } t \}$$

In steady-state:

P [An object is in state
$$i$$
] = $\mathbb{E}[X_i]$.

Why is the bias important? (1/2)

... for mean field methods

System with N objects

$$X_i(t) = rac{1}{N} \# \{ ext{Objects in state } i ext{ at time } t \}$$

In steady-state:

P [An object is in state
$$i$$
] = $\mathbb{E}[X_i]$.

Assume that we can construct some mean field approximation $\dot{x} = \bar{f}(x)$ with a fixed point x^* , then:

How good does x_i^{*} approximate
 P [An object is in state i]?

Why is the bias important? (2/2)

... for stochastic approximation is important

Model with constant step-size and Markovian noise:

$$\theta_{n+1} = \theta_n + \alpha \left(f(\theta_n, Y_n) + M_{n+1} \right)$$

where $Y_{n+1} \sim \mathbf{P} \left[\cdot \mid \theta_n, Y_n \right]$

Why is the bias important? (2/2)

... for stochastic approximation is important

Model with constant step-size and Markovian noise:

$$\theta_{n+1} = \theta_n + \alpha \left(f(\theta_n, Y_n) + M_{n+1} \right)$$

where $Y_{n+1} \sim \mathbf{P} \left[\cdot \mid \theta_n, Y_n \right]$, and define

$$\bar{\theta}_n = \frac{1}{n} \sum_{k=1}^n \theta_k.$$

Assume that the ODE approximation: $\dot{\theta} = \bar{f}(\theta)$ has an attractor θ^* .

• How far is $\bar{\theta}_n$ from θ^* (for large *n* and small α ?)

Reults in a nutshell

Results for the stochastic approximation with constant step size \alpha = 1/N corresponds to results for a mean field interacting model with N objects.

Outline

1 Mean field interaction models with a shared resource

- 2 Elements of Proof (Stein's method)
- **3** What about stochastic approximation?
- 4 Conclusion

Replica mean field model with a fast varying environment Independent sets with arrivals, CSMA model from Cecchi et al. 2015

Objective: estimate $\mathbf{P}[S_k = i]$

Replica mean field model with a fast varying environment Independent sets with arrivals, CSMA model from Cecchi et al. 2015

Objective: estimate $\mathbf{P}[S_k = i]$

Scaling: *replica N* severs per node
Transmission rate ×*N*.

Mean field model

Population of N objects.

• Object k has a state $S_k(t) \in \mathcal{S}$.

 X_i = fraction of objects in state *i*.

Model

• Object k jumps from i to j at rate Q_{ij}(X)

Mean field model ... with a shared resource

Population of N objects.

• Object k has a state $S_k(t) \in S$.

 X_i = fraction of objects in state *i*. Y = "activation set"

Model

- Object k jumps from i to j at rate $Q_{ij}(\mathbf{X}, \mathbf{Y})$
- Resource **Y** jumps from y to y' at rate $NK_{y,y'}(\mathbf{X})$.

We use two approximations to construct a fluid limit.

We use two approximations to construct a fluid limit.

"Average" mean field approximation Let $\pi_y(\mathbf{x})$ be the stationary distribution of $K(\mathbf{x})$. We define: $\bar{Q}(\mathbf{x}) = \sum_{y} \pi_y(\mathbf{x})Q(\mathbf{x}, y).$

The mean field approximation is the solution of the ODE:

 $\dot{\mathbf{x}} = \mathbf{x}\bar{Q}(\mathbf{x}),$

The approximation is asymptocally exact. Its bias is v/N.

Assume that

- K is unichain for all x.
- K and Q are twice differenciable
- $\dot{\mathbf{x}} = \mathbf{x}\bar{Q}(\mathbf{x})$ has a unique attractor x^* .

Theorem

There exists a *computable* V such that, in steady-state:

$$\mathbf{P}[S_k = i] = \underbrace{x_i^*}_{\text{mean field approximation}} + \frac{1}{N}V_i + O(1/N^2).$$

Transmission rates	1.4	1.3	1.7
Activation rates	1.2	2	1.5
Arrival rates	0.5	0.2	0.5

Outline

D Mean field interaction models with a shared resource

2 Elements of Proof (Stein's method)

3 What about stochastic approximation?

4 Conclusion

We want to compare:

 $\mathbb{E}\left[X_t\right] - \phi_t(X_0)$

We want to compare:

 $\mathbb{E}\left[X_t\right] - \phi_t(X_0)$

We want to compare:

$$\mathbb{E}\left[X_{t}\right] - \phi_{t}(X_{0}) = \int_{0}^{t} \mathbb{E}\left[\frac{d}{ds}\phi_{t-s}(X_{s})\right] ds$$

We want to compare:

$$\mathbb{E}[X_{\infty}] - \phi_{\infty}(X_{0}) = \int_{0}^{\infty} \mathbb{E}\left[\frac{d}{ds}\phi_{t-s}(X_{s})\right] ds$$
$$= \int_{0}^{\infty} (G^{\text{sto}} - G^{\text{ODE}})\phi_{t-s}(X_{s}) ds$$

Nicolas Gast - 15 / 24

Let G^{sto} be the Generator of the stochastic system. For $h: \mathcal{X} \to \mathbb{R}$:

•
$$G^{\text{sto}}h(X) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(x)$$

Let G^{sto} be the Generator of the stochastic system. For $h: \mathcal{X} \to \mathbb{R}$:

$$G^{\text{sto}}h(X) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(x)$$
$$= \underbrace{\nabla h \cdot xQ(X)}_{\text{Generator of ODE } \dot{x} = xQ(x)} + \underbrace{O(1/N)}_{\text{if } h \text{ is } C^1}.$$

and introduce a Poisson equation for the slow system

Let G^{sto} be the Generator of the stochastic system. For $h : \mathcal{X} \to \mathbb{R}$:

$$G^{\text{sto}}h(X) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(x)$$
$$= \underbrace{\nabla h \cdot xQ(X)}_{\text{Generator of ODE } \dot{x} = xQ(x)} + \underbrace{O(1/N)}_{\text{if } h \text{ is } C^1}.$$

2 $\mathbb{E}\left[G^{\text{sto}}h(X)\right] = 0$ if X is in steady-state.

and introduce a Poisson equation for the slow system

Let G^{sto} be the Generator of the stochastic system. For $h : \mathcal{X} \to \mathbb{R}$:

$$G^{\text{sto}}h(X) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(x)$$
$$= \underbrace{\nabla h \cdot xQ(X)}_{\text{Generator of ODE } \dot{x} = xQ(x)} + \underbrace{O(1/N)}_{\text{if } h \text{ is } C^1}.$$

2 $\mathbb{E}\left[G^{\text{sto}}h(X)\right] = 0$ if X is in steady-state.

Let G be such that $\nabla G \cdot xQ(x) = x - x^*$ (Poisson equation). We have:

$$\mathbb{E} [X - x^*] = \mathbb{E} [\nabla G \cdot XQ(X)]$$

= $\mathbb{E} [\nabla G \cdot XQ(X) - G^{\text{sto}}G]$ (by (2))
= $O(1/N)$ (by (1)).

When Y is here, we need to treat the fast system

Let $h: \mathcal{X} \to \mathbb{R}$ be a test function. We have:

$$G^{\text{sto}}h(X,Y) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(X,Y)$$
$$= \underbrace{\nabla h \cdot XQ(X,Y)}_{\neq G^{\text{ODE}} = \nabla h \cdot \bar{Q}(x).} + O(1/N),$$

When Y is here, we need to treat the fast system

Let $h: \mathcal{X} \to \mathbb{R}$ be a test function. We have:

$$G^{\text{sto}}h(X,Y) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(X,Y)$$
$$= \underbrace{\nabla h \cdot XQ(X,Y)}_{\neq G^{\text{ODE}} = \nabla h \cdot \bar{Q}(x).} + O(1/N),$$

We are left with $Q(X, Y) - \overline{Q}(X)$.

When Y is here, we need to treat the fast system and introduce a Poisson equation for the fast system.

Let $h: \mathcal{X} \to \mathbb{R}$ be a test function. We have:

$$G^{\text{sto}}h(X,Y) = \sum_{i,j} (h(X + \frac{1}{N}(e_j - e_i)) - h(X))Nx_iQ_{ij}(X,Y)$$
$$= \underbrace{\nabla h \cdot XQ(X,Y)}_{\neq G^{\text{ODE}} = \nabla h \cdot \bar{Q}(x).} + O(1/N),$$

We are left with $Q(X, Y) - \overline{Q}(X)$.

Lemma: There exists a \mathcal{K}^+ that is \mathcal{C}^2 such that for all $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$:

$$h(X, Y) - \overline{h}(X) = K(x)K^+(x)h(X, Y).$$

Rapping up the proof

Let $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a test function.

$$G^{\text{sto}}h(X,Y) = \underbrace{NK(X)h(X,Y)}_{\text{fast}} + \underbrace{\nabla_{x}h \cdot XQ(X,Y)}_{\text{slow}} + O(1/N)$$

Hence, $K^{\text{fast}} - \frac{1}{N}G^{\text{sto}} = o(1/N)$ if h is C^{1} .

Rapping up the proof

Let $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a test function.

$$G^{\text{sto}}h(X,Y) = \underbrace{NK(X)h(X,Y)}_{\text{fast}} + \underbrace{\nabla_{x}h \cdot XQ(X,Y)}_{\text{slow}} + O(1/N)$$

Hence, $K^{fast} - \frac{1}{N}G^{sto} = o(1/N)$ if h is C^1 .

This shows that in steady-state:

$$\mathbb{E} \left[h(X) - \bar{h}(X) \right] = \mathbb{E} \left[K(x)K^{+}(x)h(X,Y) \right]$$

= $\mathbb{E} \left[(K(x) - \frac{1}{n}G^{\text{sto}})K^{+}(x)h(X,Y) \right]$ (steady-state)
= $O(1/N)$ (expansion above)

Outline

1) Mean field interaction models with a shared resource

2 Elements of Proof (Stein's method)

4 Conclusion

Stochastic approximation with Markovian noise

... is similar to our mean field model with a fast-varying environment

Recurrence of the form:

$$\theta_{n+1} = \theta_n + \alpha \left(f(\theta_n, Y_n) + M_{n+1} \right)$$

where $Y_{n+1} \sim \mathbf{P} \left[\cdot \mid \theta_n, Y_n \right]$.

Stochastic approximation with Markovian noise

... is similar to our mean field model with a fast-varying environment

Recurrence of the form:

$$\theta_{n+1} = \theta_n + \alpha \left(f(\theta_n, Y_n) + M_{n+1} \right)$$

where $Y_{n+1} \sim \mathbf{P} \left[\cdot \mid \theta_n, Y_n \right]$.

For our mean field model with a resource:

$$X(t+\frac{1}{N}) = X(t) + \frac{1}{N}(xQ(x,Y) + \underbrace{N(X(t+\frac{1}{N}) - X(t)) - xQ(x,Y)}_{:=M(t+\frac{1}{N}) \text{ and } \mathbb{E}\left[M(t+\frac{1}{N}) \cdot |\mathcal{F}(t)\right] \approx 0}$$

Hence, we can use similar proofs.

Stochastic approximation: results

Under "smoothness" conditions, there exists V such that

$$\limsup_{n\to\infty} \bar{\theta}_n = \theta^* + V\alpha + O(\alpha^2).$$

Nicolas Gast - 21 / 24

We can extrapolate V by using two step-sizes α and 2α

$$\bar{\theta}_n^{(\alpha)} = \theta^* + V\alpha + O(\alpha^2)$$
$$\bar{\theta}_n^{(2\alpha)} = \theta^* + V2\alpha + O(\alpha^2)$$

We can extrapolate V by using two step-sizes α and 2α

$$\bar{\theta}_n^{(\alpha)} = \theta^* + V\alpha + O(\alpha^2)$$
$$\bar{\theta}_n^{(2\alpha)} = \theta^* + V2\alpha + O(\alpha^2)$$

Hence:

$$2\bar{\theta}_n^{(\alpha)} - \bar{\theta}_n^{(2\alpha)} = \theta^* + O(\alpha^2).$$

Nicolas Gast - 22 / 24

Outline

1) Mean field interaction models with a shared resource

2 Elements of Proof (Stein's method)

3 What about stochastic approximation?

Conclusion

We study the accuracy of mean field approximation for two time-scale.

- The bias is of order O(1/N). It can be computed.
- This also works for most "smooths" models (e.g., heterogeneous).

Conclusion

We study the accuracy of mean field approximation for two time-scale.

- The bias is of order O(1/N). It can be computed.
- This also works for most "smooths" models (e.g., heterogeneous).

Two-timescale models:

- Shared resource or synchronization (e.g., CSMA)
- *Q*-learning type algorithm: Stochastic approximation algorithms with Markovian noise. Huo et al. 2023

Conclusion

We study the accuracy of mean field approximation for two time-scale.

- The bias is of order O(1/N). It can be computed.
- This also works for most "smooths" models (e.g., heterogeneous).

Two-timescale models:

- Shared resource or synchronization (e.g., CSMA)
- *Q*-learning type algorithm: Stochastic approximation algorithms with Markovian noise. Huo et al. 2023

Many open questions: non-smooth, (sparse) geometric models, non-Markovian.

Slides and references: http://polaris.imag.fr/nicolas.gast

References

Results on which this talk is based:

- Bias and Refinement of Multiscale Mean Field Models. Allmeier, Gast, 2022. Sigmetrics 2023.
- CSMA networks in a many-sources regime: A mean-field approach. Cecchi, Borst, van Leeuwaarden, Whiting. Infocom 2016.
- Results on stochastic approximation: preprint (email me if you want the preprint)

Q-learning and bias:

 Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes. Dongyan Huo, Yudong Chen, Qiaomin Xie. Sigmetrics 2023.

Related refined mean-field approximation papers:

- Mean Field and Refined Mean Field Approximations for Heterogeneous Systems: It Works! by Allmeier and Gast. SIGMETRICS 2022.
- A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018.