
Mean-Field Control for Restless Bandits and Weakly
Coupled MDPs

Nicolas Gast

joint work with Bruno Gaujal, Kimang Khun, Chen Yan

Inria

CNI Seminar series, May 2nd, 2023

Nicolas Gast – 1 / 27



The Markovian bandit problem

Classical bandit problem:

N arms

I.i.d. unknown reward

Goal: identify the best

Markovian bandit:

N statistically identical arms.

Each arm has a state: you know P(·|sn, an) and r(sn, an).

Goal: compute a policy π : SN → AN .
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Example 1: Applicant screening problem

N applicants, T rounds of interview.
Each round: you can interview up to αN candidates.
Goal: maximize the expected quality of selected candidates.

Each candidate has an (unknown)
quality qn.

Result of an interview:
Bernoulli(qn)

Goal: find the βN highest qn.
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Example 2: What to work on?
Job Scheduling

Examples: research projects, tasks allocations, electric vehicle
charging, wireless scheduling,...

Heuristics: SRPT, EDF,...
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Job Scheduling

“server”
Waiting room (queue)

Projects

Examples: research projects, tasks allocations, electric vehicle
charging, wireless scheduling,...

Heuristics: SRPT, EDF,...
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We use tools from mean field control

Controller Population of N arms

P(·|xn, an)

action a

The computational difficulty increases with N but “N = ∞” is easy.

How to use the N = +∞ solution for finite N?

How efficient is this? (i.e., how fast does it become optimal?)
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Outline

1 The mean-field control problem

2 Infinite-horizon and index policies

3 Asymptotic optimality and index computation

4 Finite-horizon restless bandits

5 Conclusion
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Original model for finite N

N statistically identical arms

Discrete time, finite state space.

P(·|sn, an) and r(sn, an).

Maximize expected reward

1

T

T∑
t=1

N∑
n=1

r(sn(t), an(t)).

Hard constraint: ∀t :
N∑

n=1

an(t) ≤ C .

If an(t) ∈ {0, 1}: Markovian bandit (this talk)

If an(t) ∈ {0, 1}d : Weakly coupled MDP.
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The mean-field control problem

Original model: For all t,
N∑

n=1

an(t) ≤ αN. ⇒ PSPACE-hard

This can be solve by an LP.

xs = P [sn = s] and ys,a = P [sn = s, an = a].

max
x≥0,y≥0

∑
s,a

rs,ays,a

s.t. xs′ =
∑
s

ys,aP(s
′|s, a)

xs =
∑
a

ys,a∑
s

xs = 1.∑
s

ys,1 = α relaxed budget contraint
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Can I apply this to N < ∞?

∑
s

an(t) ≤ α
∑
s

E [an(t)] ≤ α

Original problem
(Hard)

LP relaxation
(Easy)

V ∗
N ≤ V ∗

rel

x∗, y∗

V π
N

Can we build π that

is close to optimal?

≀≀

Main difficulty: in general XN(t) ̸= x∗(t).

We cannot choose YN(t) = y∗(t).
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Some historical perspective

Infinite horizon: Index policies (Gittins 60s, Whittle index (89),
Nino-Mora, 90s-2000s)

▶ Often asymptotically optimal. (Weber and Weiss 91).

1. When they are: exponentially fast. (G, Gaujal, Yan 2021).
2. We can compute index efficiently. (G, Gaujal, Khun 2022).

Finite horizon: LP-index
▶ Priority rule not always asymptotically optimal (Brown and Smith 2019),

(Frazier et al 2020).

3. When they are: exponentially fast (G, Gaujal, Yan 2022)
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1 The mean-field control problem

2 Infinite-horizon and index policies

3 Asymptotic optimality and index computation

4 Finite-horizon restless bandits

5 Conclusion
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Penalty and indexability

The N = ∞ is a constraint MDP:

P(·|sn, an) and r(sn, an) s.t. in steady-state, P [an] = α.

Idea: use a Lagrangian relaxation:

P(·|sn, an) and r(sn, an)− λ an.

Penalty for activation
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The penaly can be used to define a priority policy

penalty λ
s1

s2

s3

s4

=optimal to activate

λ1λ2 λ3λ4

This is Whittle index policy.
For this example: s3 ≻ s1 ≻ s4 ≻ s2.
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Definition of Whittle index

Intuitively, for each state, there exists a λs such that any optimal policy is
such that:

The optimal action in s is 0 (rest) if λ < λs ;

The optimal action in s is 1 (activate) if λ > λs .

This is not always true1.

If the model satisfies this assumption, we say that the model is indexable.
Whittle index policy is the corresponding priority policy.

1True with high probability? Yes: (Nino-Mora 01), No (G, Gaujal, Khun 21).
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Illustration of what is Whittle policy
(stochastic scheduling)

Jobs of sizes X and Y with:

X = 10

Y =

{
2 proba 1/2
18 proba 1/2

Who should you run first to minimize expected completion time?

Running a job costs 1€/sec and you can stop anytime. If you finish the
job, you earn x . Whittle (=Gittins) index is the smallest x so that you
start running the job.

Index can be computed independently for each job (=arm).
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Are Whittle index asymptotic optimal?

Assume indexability. For the infinite model, πWIP defines a (piecewise
linear) dynamical system:

x(t + 1) = πWIP(x(t)).

Theorem

1 If πWIP has a unique attractor, then WIP is asymptotically optimal.
[Weber Weiss 90s, Verloop 2016]

2 For these problems, the suboptimality gap is exponentially small for
non-degenerate problems. [G. Gaujal Yan 2021]
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Sketch of proof

Recall that X
(N)
s (t) =

1

N
#{arms in state s at time t}.

We have:

X(N)(t + 1) = πWIP(X(N)(t)) + O(1/
√
N)︸ ︷︷ ︸

stochastic noise. CLT

.

Hence:

1 If πWIP has a unique attractor x∗, then XN(∞) concentrates on x∗

(Hoeffding bound / large deviation).

2 Non-degenerate = πWIP is locally linear around x∗. We use the
linearity of expectation.
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How to compute Whittle indices?
Classical definition:

The index is the penalty λs such that that an optimal policy can
choose to activate or not the state s when the penalty is λs .

A Bellman-optimal policies satisfies Bellman equations:

g∗(λ) + h∗s (λ) = max
a

r(s, a) + aλ+
∑
j

P(j |s, a)h∗j (λ)︸ ︷︷ ︸
qs,a(λ)

We define the active advantage bs(λ) := qs,1(λ)− qs,0(λ).

0.2 0.4 0.6 0.8
Penalty

0.5

0.0

0.5

A
ct

iv
e 

A
dv

an
ta

ge

State 1
State 2
State 3

Theorem (G,Gaujal,Khun, 22)

An arm is indexable if and only if for all s: bs,1(λ) = 0 has a unique
solution.
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We can use this characterization to build an efficient
algorithm

0.2 0.4 0.6 0.8
Penalty

0.5

0.0

0.5

A
ct

iv
e 

A
dv

an
ta

ge

State 1
State 2
State 3

Three ingredients:
1 For MDP, the advantage function is piecewise linear:

bπ(λ) = (Aπ)−1(r + λπ).

2 Sherman-Morisson formula: Let A be an invertible matrix, u and v
vectors 1D such that 1 + vTA−1u ̸= 0. Then:(

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
.

3 We can reorder operations to use Strassen’s like operations.
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We obtain a theoretical complexity of O(S2.53) and an
efficient implemenation
https://pypi.org/project/markovianbandit-pkg/
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Data from [38]

(a) With index. test

(b) Without test

(c) With index. test

(d) Without test
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How to construct a policy for the original problem?
Relaxed problem: Optimal sequence x∗s (t), y

∗
s,a(t).

Original problem: Sequence πt : X → Y such that π(x∗) = y∗.

You can implement πt as a priority rule iff |calS0(t)| = 1,

It is locally linear.
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Asymptotic optimality

Theorem

There exists an priority rule that is asymptotically optimal if and only
if for all t, |S0(t)| ≤ 1.

It becomes optimal exponentially fast if for all t, |S0(t)| = 1.

Proof ingredients.

1 Concentration argument: π continuous implies lim
N→∞

X (N)
π (t) = xπ(t).

2 Linearity of expectation.
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Many finite-horizon problems do not admit asymptotically
optimal priority rules Example: Applicant screening problem (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α=0.25

(1,1)

(2,1)

(1,2)

good

bad
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Many finite-horizon problems do not admit asymptotically
optimal priority rules Example: Applicant screening problem (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α=0.25

No asymptotically optimal priority policy: after two interviews:

x∗(1,1) = 2x∗(2,1) = 2x∗(1,2) = 0.5.
y∗(2,1),interview = y∗(1,1),interview = 0.125. Nicolas Gast – 25 / 27
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Conclusion
For Markovian bandits, mean-field control can be solved by an LP.

Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.

When they are, they become optimal exponentially fast.

Index policy (= “right actication price”) are very efficient.

This talk: finite-state space, computation of policies.

Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun https://arxiv.org/abs/2203.05207

LP-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast) asymptotic optimality.
G. Gaujal Yan. https://arxiv.org/abs/2106.10067
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