Mean-Field Control for Restless Bandits and Weakly Coupled MDPs

Nicolas Gast

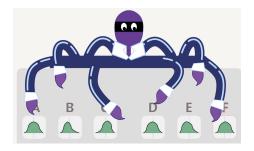
joint work with Bruno Gaujal, Kimang Khun, Chen Yan

Inria

CNI Seminar series, May 2nd, 2023

Nicolas Gast - 1 / 27

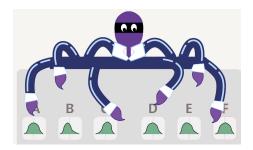
The Markovian bandit problem



Classical bandit problem:

- N arms
- I.i.d. unknown reward
- Goal: identify the best

The Markovian bandit problem



Classical bandit problem:

- N arms
- I.i.d. unknown reward
- Goal: identify the best

Markovian bandit:

- N statistically identical arms.
- Each arm has a state: you know $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$.
- Goal: compute a policy $\pi : S^N \to A^N$.

Example 1: Applicant screening problem

N applicants, T rounds of interview.

Each round: you can interview up to αN candidates.

Goal: maximize the expected quality of selected candidates.

Example 1: Applicant screening problem

N applicants, T rounds of interview. Each round: you can interview up to αN candidates. Goal: maximize the expected quality of selected candidates.

Each candidate has an (unknown) quality q_n .

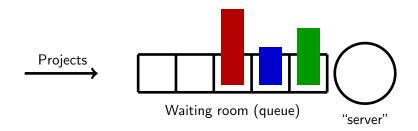
• Result of an interview: Bernoulli(q_n)

Goal: find the βN highest q_n .

Example 2: What to work on?

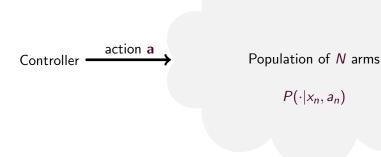
Job Scheduling

Example 2: What to work on? Job Scheduling

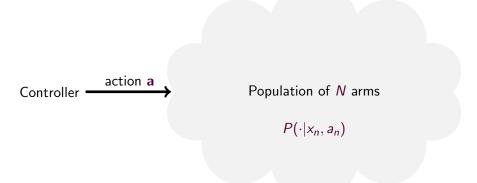


- Examples: research projects, tasks allocations, electric vehicle charging, wireless scheduling,...
- Heuristics: SRPT, EDF,....

We use tools from mean field control



We use tools from mean field control



The computational difficulty increases with N but " $N = \infty$ " is easy.

- How to use the $N = +\infty$ solution for finite N?
- How efficient is this? (i.e., how fast does it become optimal?)

Outline

- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits

Original model for finite N

N statistically identical arms

- Discrete time, finite state space.
- $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$.

Maximize expected reward

$$\frac{1}{T}\sum_{t=1}^{T}\sum_{n=1}^{N}r(s_n(t),a_n(t)).$$

Original model for finite N

N statistically identical arms

- Discrete time, finite state space.
- $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$.

Maximize expected reward

$$\frac{1}{T}\sum_{t=1}^{T}\sum_{n=1}^{N}r(s_n(t),a_n(t)).$$

Hard constraint:

$$\forall t: \sum_{n=1}^N a_n(t) \leq C.$$

• If $a_n(t) \in \{0,1\}$: Markovian bandit (this talk)

• If $a_n(t) \in \{0,1\}^d$: Weakly coupled MDP.

The mean-field control problem Original model: For all t, $\sum_{n=1}^{N} a_n(t) \le \alpha N$. \Rightarrow PSPACE-hard

The mean-field control problem Relaxed model: For all t, $\mathbb{E}\left[\sum_{n=1}^{N} a_n(t)\right] \le \alpha N$. \Rightarrow Independence relaxation. This can be solve by an LP.

The mean-field control problem

Relaxed model: For all t, $\mathbb{E}\left[\sum_{n=1}^{N} a_n(t)\right] \leq \alpha N$. \Rightarrow Independence relaxation.

This can be solve by an LP.

•
$$x_s = \mathbf{P}[s_n = s]$$
 and $y_{s,a} = \mathbf{P}[s_n = s, a_n = a]$.

$$\max_{\substack{x \ge 0, y \ge 0 \\ s < a}} \sum_{s,a} r_{s,a} y_{s,a}$$

s.t.
$$x_{s'} = \sum_{s} y_{s,a} P(s'|s, a)$$
$$x_{s} = \sum_{a} y_{s,a}$$
$$\sum_{s} x_{s} = 1.$$
$$\sum_{s} y_{s,1} = \alpha$$

relaxed budget contraint

The mean-field control problem

Relaxed model: For all t, $\mathbb{E}\left[\sum_{n=1}^{N} a_n(t)\right] \leq \alpha N$. \Rightarrow Independence relaxation.

This can be solve by an LP.

• $x_s(t) = \mathbf{P}[s_n(t) = s]$ and $y_{s,a}(t) = \mathbf{P}[s_n(t) = s, a_n(t) = a]$.

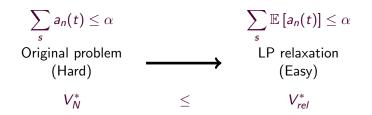
$$\max_{x \ge 0, y \ge 0} \sum_{t=1}^{T} \sum_{s,a} r_{s,a} y_{s,a}(t)$$

s.t. $x_{s'}(t+1) = \sum_{s} y_{s,a}(t) P(s'|s,a)$
 $x_{s}(t) = \sum_{a} y_{s,a}(t)$
 $\sum_{s} x_{s} = x_{s}(0).$
 $\sum_{s} y_{s,1}(t) = \alpha(t)$

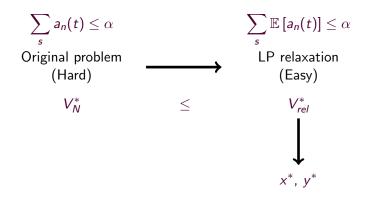
relaxed budget contraint

Nicolas Gast - 8 / 27

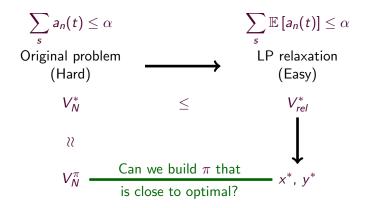
Can I apply this to $N < \infty$?



Can I apply this to $N < \infty$?



Can I apply this to $N < \infty$?



Main difficulty: in general $\mathbf{X}^{N}(t) \neq \mathbf{x}^{*}(t)$.

• We cannot choose $\mathbf{Y}^{N}(t) = \mathbf{y}^{*}(t)$.

Some historical perspective

- Infinite horizon: Index policies (Gittins 60s, Whittle index (89), Nino-Mora, 90s-2000s)
 - Often asymptotically optimal. (Weber and Weiss 91).
 - 1. When they are: exponentially fast. (G, Gaujal, Yan 2021).
 - 2. We can compute index efficiently. (G, Gaujal, Khun 2022).

Some historical perspective

- Infinite horizon: Index policies (Gittins 60s, Whittle index (89), Nino-Mora, 90s-2000s)
 - Often asymptotically optimal. (Weber and Weiss 91).
 - 1. When they are: exponentially fast. (G, Gaujal, Yan 2021).
 - 2. We can compute index efficiently. (G, Gaujal, Khun 2022).
- Finite horizon: LP-index
 - Priority rule not always asymptotically optimal (Brown and Smith 2019), (Frazier et al 2020).
 - 3. When they are: exponentially fast (G, Gaujal, Yan 2022)

Outline

2 Infinite-horizon and index policies

3 Asymptotic optimality and index computation

4 Finite-horizon restless bandits

Penalty and indexability

The $N = \infty$ is a constraint MDP:

• $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$ s.t. in steady-state, $P[a_n] = \alpha$.

Penalty and indexability

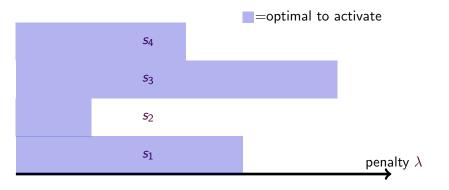
The $N = \infty$ is a constraint MDP:

• $P(\cdot|s_n, a_n)$ and $r(s_n, a_n)$ s.t. in steady-state, $P[a_n] = \alpha$.

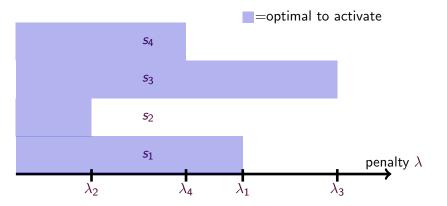
Idea: use a Lagrangian relaxation:

```
• P(\cdot|s_n, a_n) and r(s_n, a_n) - \lambda a_n.
Penalty for activation
```

The penaly can be used to define a priority policy



The penaly can be used to define a priority policy



This is Whittle index policy. For this example: $s_3 \succ s_1 \succ s_4 \succ s_2$.

Definition of Whittle index

Intuitively, for each state, there exists a λ_s such that any optimal policy is such that:

- The optimal action in s is 0 (rest) if $\lambda < \lambda_s$;
- The optimal action in s is 1 (activate) if $\lambda > \lambda_s$.

Definition of Whittle index

Intuitively, for each state, there exists a λ_s such that any optimal policy is such that:

- The optimal action in s is 0 (rest) if $\lambda < \lambda_s$;
- The optimal action in s is 1 (activate) if $\lambda > \lambda_s$.

This is not always true¹.

If the model satisfies this assumption, we say that the model is indexable. Whittle index policy is the corresponding priority policy.

¹True with high probability? Yes: (Nino-Mora 01), No (G, Gaujal, Khun 21).

(stochastic scheduling)

Jobs of sizes X and Y with:

• X = 10• $Y = \begin{cases} 2 & \text{proba } 1/2 \\ 18 & \text{proba } 1/2 \end{cases}$

Who should you run first to minimize expected completion time?

(stochastic scheduling)

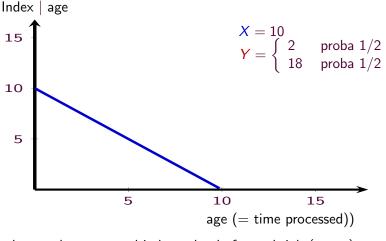
Jobs of sizes X and Y with:

• X = 10• $Y = \begin{cases} 2 & \text{proba } 1/2 \\ 18 & \text{proba } 1/2 \end{cases}$

Who should you run first to minimize expected completion time?

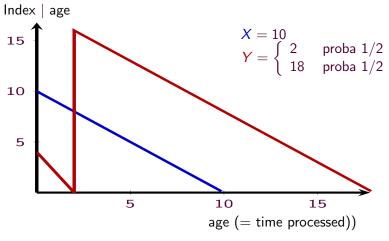
Running a job costs $1 \in /\text{sec}$ and you can stop anytime. If you finish the job, you earn x. Whittle (=Gittins) index is the smallest x so that you start running the job.

(stochastic scheduling)



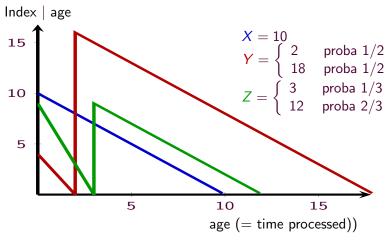
Index can be computed independently for each job (=arm).

(stochastic scheduling)



Index can be computed independently for each job (=arm).

(stochastic scheduling)



Index can be computed independently for each job (=arm).

Outline

2 Infinite-horizon and index policies

3 Asymptotic optimality and index computation

4 Finite-horizon restless bandits

5 Conclusion

Are Whittle index asymptotic optimal?

Assume indexability. For the infinite model, π^{WIP} defines a (piecewise linear) dynamical system:

$$\mathbf{x}(t+1) = \pi^{WIP}(\mathbf{x}(t)).$$

Theorem

- If π^{WIP} has a unique attractor, then WIP is asymptotically optimal. [Weber Weiss 90s, Verloop 2016]
- For these problems, the suboptimality gap is exponentially small for non-degenerate problems. [G. Gaujal Yan 2021]

Sketch of proof

Recall that
$$X_s^{(N)}(t) = \frac{1}{N} \# \{ \text{arms in state } s \text{ at time } t \}.$$

We have:

$$\mathbf{X}^{(N)}(t+1) = \pi^{WIP}(\mathbf{X}^{(N)}(t)) + \underbrace{O(1/\sqrt{N})}_{ ext{stochastic noise. CLT}}.$$

Sketch of proof

Recall that
$$X_s^{(N)}(t) = \frac{1}{N} \# \{ \text{arms in state } s \text{ at time } t \}.$$

We have:

$$\mathbf{X}^{(N)}(t+1) = \pi^{WIP}(\mathbf{X}^{(N)}(t)) + \underbrace{O(1/\sqrt{N})}_{ ext{stochastic noise. CLT}}$$

Hence:

- If π^{WIP} has a unique attractor x^{*}, then X^N(∞) concentrates on x^{*} (Hoeffding bound / large deviation).
- Solution Non-degenerate = π^{WIP} is locally linear around x^* . We use the linearity of expectation.

Classical definition:

• The index is the penalty λ_s such that that an optimal policy can choose to activate or not the state s when the penalty is λ_s .

Refined definition:

• The index is the (unique) penalty λ_s such that that an (Bellman-)optimal policy can choose to activate or not the state s when the penalty is λ_s .

A Bellman-optimal policies satisfies Bellman equations:

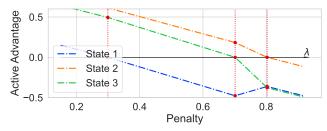
$$g^{*}(\lambda) + h^{*}_{s}(\lambda) = \max_{a} r(s, a) + a\lambda + \sum_{j} P(j|s, a)h^{*}_{j}(\lambda)$$

We define the active advantage $b_s(\lambda) := q_{s,1}(\lambda) - q_{s,0}(\lambda)$.

A Bellman-optimal policies satisfies Bellman equations:

$$g^{*}(\lambda) + h^{*}_{s}(\lambda) = \max_{a} r(s, a) + a\lambda + \sum_{j} P(j|s, a)h^{*}_{j}(\lambda)$$

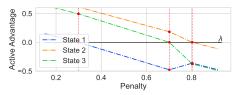
We define the active advantage $b_s(\lambda) := q_{s,1}(\lambda) - q_{s,0}(\lambda)$.



Theorem (G,Gaujal,Khun, 22)

An arm is indexable if and only if for all s: $b_{s,1}(\lambda) = 0$ has a unique solution.

We can use this characterization to build an efficient algorithm

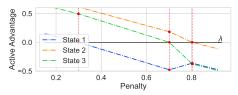


Three ingredients:

I For MDP, the advantage function is piecewise linear:

 $b^{\pi}(\lambda) = (A^{\pi})^{-1}(r + \lambda \pi).$

We can use this characterization to build an efficient algorithm



Three ingredients:

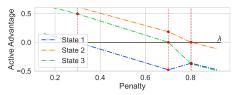
I For MDP, the advantage function is piecewise linear:

 $b^{\pi}(\lambda) = (A^{\pi})^{-1}(r + \lambda \pi).$

Sherman-Morisson formula: Let A be an invertible matrix, u and v vectors 1D such that $1 + v^T A^{-1} u \neq 0$. Then:

$$\left(A + uv^{T}\right)^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

We can use this characterization to build an efficient algorithm



Three ingredients:

I For MDP, the advantage function is piecewise linear:

 $b^{\pi}(\lambda) = (A^{\pi})^{-1}(r + \lambda \pi).$

Sherman-Morisson formula: Let A be an invertible matrix, u and v vectors 1D such that $1 + v^T A^{-1} u \neq 0$. Then:

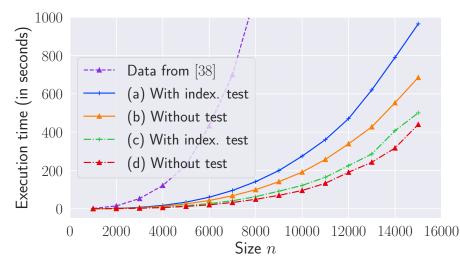
$$\left(A + uv^{T}\right)^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}.$$

We can reorder operations to use Strassen's like operations.

Nicolas Gast - 20 / 27

We obtain a theoretical complexity of $O(S^{2.53})$ and an efficient implemenation

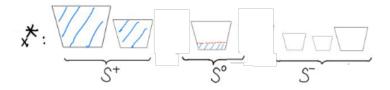
https://pypi.org/project/markovianbandit-pkg/



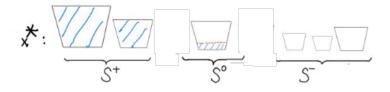
Outline

- The mean-field control problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits
 - 5 Conclusion

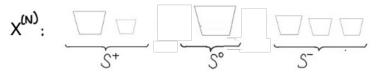
How to construct a policy for the original problem? Relaxed problem: Optimal sequence $x_s^*(t)$, $y_{s,a}^*(t)$.



How to construct a policy for the original problem? Relaxed problem: Optimal sequence $x_s^*(t)$, $y_{s,a}^*(t)$.



Original problem: Sequence $\pi_t : \mathcal{X} \to \mathcal{Y}$ such that $\pi(x^*) = y^*$.



You can implement π_t as a priority rule iff $|calS^0(t)| = 1$,

• It is locally linear.

Asymptotic optimality

Theorem

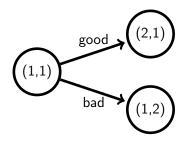
- There exists an priority rule that is asymptotically optimal if and only if for all t, $|S^0(t)| \le 1$.
- It becomes optimal exponentially fast if for all t, $|S^0(t)| = 1$.

Proof ingredients.

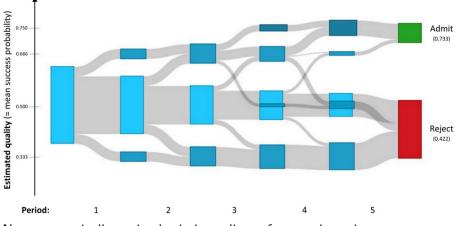
- Concentration argument: π continuous implies $\lim_{N \to \infty} X_{\pi}^{(N)}(t) = x_{\pi}(t)$.
- 2 Linearity of expectation.

Many finite-horizon problems do not admit asymptotically optimal priority rules Example: Applicant screening problem (Brown Smith 2020) Candidates with prior quality Beta(1,1), Interview budget α =0.25

Many finite-horizon problems do not admit asymptotically optimal priority rules Example: Applicant screening problem (Brown Smith 2020) Candidates with prior quality Beta(1,1), Interview budget α =0.25



Many finite-horizon problems do not admit asymptotically optimal priority rules Example: Applicant screening problem (Brown Smith 2020) Candidates with prior quality Beta(1,1), Interview budget α =0.25



No asymptotically optimal priority policy: after two interviews:

•
$$x_{(1,1)}^* = 2x_{(2,1)}^* = 2x_{(1,2)}^* = 0.5.$$

• $y_{(2,1),interview}^* = y_{(1,1),interview}^* = 0.125$

Nicolas Gast - 25 / 27

Outline

- 1 The mean-field control problem
- 2 Infinite-horizon and index policies
- 3 Asymptotic optimality and index computation
- 4 Finite-horizon restless bandits

Conclusion

For Markovian bandits, mean-field control can be solved by an LP.

• Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.

- When they are, they become optimal exponentially fast.
- Index policy (= "right actication price") are very efficient.

Conclusion

For Markovian bandits, mean-field control can be solved by an LP.

• Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.

- When they are, they become optimal exponentially fast.
- Index policy (= "right actication price") are very efficient.
- This talk: finite-state space, computation of policies.
- Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

- Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun https://arxiv.org/abs/2203.05207
- LP-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast) asymptotic optimality.
 G. Gaujal Yan. https://arxiv.org/abs/2106.10067