
1/17

Restless Bandit Problems and Computation of
Index Policies

Nicolas Gast

joint work with our two students Kimang Khun, Chen Yan,
co-supervised with Bruno Gaujal

Inria

AEP – Grenoble – July, 2022



2/17

Motivation: What to work on?



2/17

Motivation: What to work on?

“server”
Waiting room (queue)

Projects

I Examples: research projects, tasks allocations, electric vehicle
charging, wireless scheduling,...

I We allow preemption (preempt-resume).
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Motivation: What to work on?

“server”
Waiting room (queue)

Projects

If you know the project sizes and you want to minimize the waiting
time: use SRPT (Shortest Remaining Processing Time).

I ”Strongly optimal” [Schrage, 1966]
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Is SRPT always optimal?

Short answer: no

I Projects have different rewards.

I Impatient customers (research completed by other team)

I Durations are unknown.

I . . .

Objective of the talk: How can we do better?
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Outline

Intuitive Example: What is an Index policy?

Definition: Resltess Bandits and Whittle index

How to Compute Indices: A Sub-Cubic Algorithm

Conclusion



5/17

Example: scheduling with random job durations

“server”
Waiting room (queue)

Projects
? ?

Example: How to schedule with unknown durations?

Intuition suggests SERPT (shortest expected remaining
processing time)
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SERPT is in general not optimal

Example: two jobs of sizes X and Y with:

I X = 10− ε

I Y =

{
2 proba 1/2
18 proba 1/2

For this model: Gittins index policy is optimal:

I Gittins index policy: serves job with smallest index first.

Running a job costs 1€/sec and you can stop anytime. If you
finish the job, you earn x . Gittins index = smallest x so that you
running or stopping is equivalent.
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Reslless Markov bandit problem

A decision maker faces n arms.
Time is discrete.

I Each arm is a 2-action
MDP (passive / active)

I Controller can activate
m < n arms each time.

Policy : you observe the states. Which ones do you activate?
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Indexability

We consider a x-subsidized MDP.

An arm is a 2-action MDP: if in state s:

I Activation: earn r(s, active), jump to j ∼ P [j | s, active].

I Passive: earn r(s, passive)

+x

, jump to j ∼ P [j | s, passive].

Let πs = values of x such that ”activation” is optimal. If
πs = (−∞, λ(s)], then the state is indexable and λ(s) is its
Whittle index.



9/17

Indexability

We consider a x-subsidized MDP.

An arm is a 2-action MDP: if in state s:

I Activation: earn r(s, active), jump to j ∼ P [j | s, active].

I Passive: earn r(s, passive)+x , jump to j ∼ P [j | s, passive].

Let πs = values of x such that ”activation” is optimal. If
πs = (−∞, λ(s)], then the state is indexable and λ(s) is its
Whittle index.



10/17

Optimality of index policies

When P(j | s, passive), the bandit is ”rested”. In this case, Whittle
index=Gittins index.

Theorem (Gittins, Glazebrook, Weber, 90s)

For rested bandits and m = 1, the Gittins index policy is optimal.

I Preemptive-resume is rested: running tasks with smallest index is optimal.

I Impatient customers is restless, multi-server is m ≥ 2.

Theorem (Weber Weiss 90s)

For restless bandits, the Whittle index policy is asymptotically
optimal in the regime n→∞ and m/n = O(1) under the ”global
attractor condition”.
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Are all related problems closed since the 90s?

(Recently) closed questions:

I Can we analyze the performance of this Gittins index?
(SOAP: [Scully et al 2018]).

I Multi-server? (Close to optimal: [Grosof et al 2019]).

I At which speed do Whittle index become optimal?
(exponentially fast in most cases [G,Gaujal,Yan 2021])

I Can we define index for finite-horizon problems? [Frazier et al.
2019-20, G, Gaujal, Yan 2022].

I Can we leverage indexable to problem to obtain better
learning algorithms? (No regret learning.[G,G,Khun, 2021])

I Are Whittle index hard to compute? [G, G. Khun, 2022]
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General idea: compute the index by increasing order

I A policy is π ⊂ {1 . . . S}
I gπ(x) = value for subsidy x .

I π∗(x) = arg max
π

gπ(x).

We want to find the inflection
points of the red curve.

Facts:

1. gπ(x) is linear in x .

2. π∗(−∞) = {1 . . . S}.
3. Computing gπ\{i}(x) from

gπ(x) is easy.
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Why are the facts true?

I gπ(x) = (Aπ)−1(r + xπ)

I If subsidy is −∞ for all states, then we should not activate.

I Sherman-Morisson formula: Let A be an invertible matrix, u
and v vectors 1D such that 1 + vTA−1u 6= 0. Then:(

A + uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
.

By using fast matrix multiplication, we can compute Whittle
indices in O(S2.53) operations (conjectured to be at least n3 in a
2016 paper).

https://en.m.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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Simulation result
https://pypi.org/project/markovianbandit-pkg/
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(a) With index. test

(b) Without test

(c) With index. test

(d) Without test

https://pypi.org/project/markovianbandit-pkg/
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Conclusion

Index policies are very efficient to share resources among tasks.

I Idea: compute the ”right price”, and activate the cheapest.

This scales well and performs very well in practice.

I This talk: Optimality of index and computation of index.

I Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

I Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun
https://arxiv.org/abs/2203.05207

I LP-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast)
asymptotic optimality. G. Gaujal Yan. https://arxiv.org/abs/2106.10067

http://polaris.imag.fr/nicolas.gast/
https://arxiv.org/abs/2203.05207
https://arxiv.org/abs/2106.10067
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