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Stochastic networks = networks of stochastic objects

In this talk: Methods for quantitative evaluation
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The curse of dimensionality

disappears when using mean
field approx.

λ(S1(t))

S1(t) S2(t)

S̃2(t)E [λ(S1(t))]

S1(t) and S2(t) are dependent. ⇒ n queues = Sn possible states.

S̃2(t) depends on P [S1(t) = s] ⇒ n objects = Sn values.

Mean field assumption is to approximate S2(t) ∼ S̃2(t).

Mean field approx ≈ independence assumption.
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How accurate is mean field approximation?

Theorem (Folk)

Mean field approximation is exact as n goes to infinity.

Proof: Law of large number.
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Mean field-like methods are widely used

Epidemiology (SIR-like models) (too many papers!)

Cache replacement policy (TTL-approximation) Che et al 02, Fagin 77

Replica mean field (neuroscience) Baccelli Davydov 22

Bandit (Whittle-index) Whittle 88, Verloop 16

Wireless (CSMA) Bianchi 00, Borst-Cecchi 16

. . .

Questions in this talk:
1 Why is this approximation so popular?

I How accurate is it?

2 Can we do better approximation?
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Outline

1 Bias of Mean Field Approximation: Homogeneous Model

2 Heterogeneous Models

3 Extensions and Open Questions

4 Conclusion
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Interaction model

We consider a population of n objects with two types of interactions:

Unilateral transitions:

Object k jumps from state i to j at rate r
(k)
ij

Pairwise interactions:

Object k , k ′ simultaneously jump from states

(i , i ′) to (j , j ′) at rate r
(k,k ′)
ij ,i ′j ′ /n

If the rates do not depend on k, we call the model homogeneous.
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Homogeneous: Classical Mean Field Setting

Example: Load-balancing

Mean Field Methodology:

M
(n)
s (t) =

1

n
{# objects in state s at t}

Kurtz’s density dependent population model:

M(n) → M(n) +
1

n
` at rate nβ`(M)

Drift : f (m) =
∑
`

`β`(m).
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Accuracy of the Mean Field Approximation

For a system with n homogeneous ob-
jects with smooth drift f (C 1):

M(n)(t) ≈ m(t)︸︷︷︸
ODE = mf approx

+
1√
n
Bt︸ ︷︷ ︸

noise

.
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This result is about trajectories.

n 10 100 1000 +∞
Average queue length for SQ(2), ρ = 0.9 2.804 2.393 2.357 2.353

Bias 0.45 0.039 0.004 0
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If the drift is C 2, then the bias E [M]−m is O(1/n).

We obtain a refined approximation

Theorem (Kolokoltsov 2012, G. 2017, G. and Van Houdt 2018)

For a DDPP, if the drift f is C 2, then for anya t ∈ (0,∞):

1 There exists a (deterministic) vector V (t) such that:

E
[
M(n)(t)

]
= m(t)︸ ︷︷ ︸

mean field approx.

+
V (t)

n
+ O(1/n2)

2 V (t) can be (easily) computed numerically

aAlso holds for t = +∞ if the ODE has an exponentially stable attractor.

n 10 100 1000 +∞
Average queue length for SQ(2), ρ = 0.9 2.804 2.393 2.357 2.353

Refined approximation 2.751 2.393 2.357 2.353
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Where does the 1/n comes from?

Two ingredients:

Stein’s method / comparison of generators.

Moment closure approach.

Generators of the stochastic system: for a C 2 function h:

L(n)h(m) =
∑
`

(h(m +
`

n
)− h(m))nβ`(m)

= Dh(m) ·
∑
`

`β`(m)︸ ︷︷ ︸
=:f (m)

+
1

n
D2h(m) ·

∑
`

`⊗ `β`(m)︸ ︷︷ ︸
Q(m)

+O(
1

n2
)

= Dh(m) · f (m)︸ ︷︷ ︸
ODE generator (drift)

+
1

n
D2h(m) · Q(m)︸ ︷︷ ︸
Noise (covariance)

+O(
1

n2
)
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Generator approach (continued)

If φt(m) is the solution of the ODE starting from m, then:

E [M(t)− φt(M(0))] =

∫ t

0

d

ds
E
[
Φs(M(n)(t − s))

]
ds

=

∫ t

0
E
[
(L− L(n))Φs(M(n)(t − s))

]
ds

= O(1/n) if Φs is C 2.
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How to make it computable?
The moment closure approach

Consider a system for which X becomes X + 1/n at rate nX 2. We have:

d

dt
E [X ] = E

[
X 2
]

≈ E [X ]2 (mean field approx.)

d

dt
E
[
X 2
]

= 2E
[
X 3
]

+
1

n
E
[
X 2
]

≈ 2(3E
[
X 2
]
E [X ]− 2E [X ]2) +

1

n
E
[
X 2
]

d

dt
E
[
X 3
]

= E
[

3X 4

n
+

4X 3

n2
+

X 2

n3

]
(refined approximation)

...

This equation is not closed

They can be closed by assuming E
[
(X − E [X ])d

]
≈ 0

This gives a O(1/nb(d+1)/2c)-accurate approximation.
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Does it always work?

1 Interchange of limit : does lim
N→∞

lim
t→∞

= lim
t→∞

lim
N→∞

?

2 Non-smooth dynamics Xu, Tsitsiklis 2011

O(1/
√
n) convergence
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Recap on homoegeneous models

Mean field is often justified by studying pointwise convergence:

lim
n→∞

M(n)(t) = m(t) (a.s. or in proba.)

Yet, what often matters is the bias E
[
M(n)(t)

]
−m(t).

Bias =
1

n
V (t) + O(

1

n2
) for smooth and homogeneous system.

V (t) can be computed in O(S3) https://pypi.org/project/rmftool/

Nicolas Gast (Inria) The Bias of Mean Field Approximation SNC 2022 16 / 32

https://pypi.org/project/rmftool/


Outline

1 Bias of Mean Field Approximation: Homogeneous Model

2 Heterogeneous Models

3 Extensions and Open Questions

4 Conclusion

Nicolas Gast (Inria) The Bias of Mean Field Approximation SNC 2022 17 / 32



Motivation for Heterogeneous Models
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Zoom on a cache-replacement policy: RAND(c)

The cache i can contain ci items.
Requests for item k arrive at rate λk .

Requests trigger promotion.

This is a pairwise interaction model:

State of an object is its list.

Transitions for objects k , k ′:

(i , i + 1) 7→ (i + 1, i) at rate λk/ci+1.
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Mean field heterogeneous model

M
(n)
s (t) =

1

n
{# objects in state s at t} ⇒ M(n) is not Markovian.

Solution: represent model using indicators:

X
(n)
(k,s)(t) =

{
1 if object k is in state s at time t
0 otherwise

X(n) is Markovian. Example, for the cache:

X(n) → X(n) + ek,i+1 + ek ′,i − ek,i − ek ′,i+1 at rate
λk
ci+1

Xk,iXk ′,i+1.
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Heterogeneous mean field approximation
Similarly to the homogeneous case, we define the drift for X :

f (n)(X(n)(t)) ≈
∑

set of jumps
from X(n)(t)

jump× jump rate

The mean-field approximation is the solution of the ODE ẋ = f (x).

Example (cache): Let Hi (t) =
∑
k

λkXk,i (t) be the popularity in list i .

. . . i i + 1 . . .

λk

Hi (t)/ci

m-f approximation = use E [Hi (t)] to break dependencies.
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Accuracy of the heterogeneous mean field

Theorem (Allmeier, G. 2022)

Assume that the rates r (from slide 8) are bounded, then there exists a
computable constant V (n)(t) = O(1/n) such that:

E
[
X(n)(t)

]
= x(t) + V (t) + O(1/n2).

For the cache: this holds if λk = O(1) and ci = Θ(n).

Nicolas Gast (Inria) The Bias of Mean Field Approximation SNC 2022 22 / 32



What is the x and the V term and why this works?

Transitions are of the form:

X(n) → X(n) + ek,j + ek ′,j ′ − ek,i − ek ′,i ′ at rate
1

n
r

(k,k ′)
ij ,i ′j ′ Xk,iXk ′,i+1 ,

which can be written

X(n) → X(n) + ` at rate β`(x),

with β`(x) =
1

n
r

(k,k ′)
ij ,i ′j ′ Xk,iXk ′,i+1.

x and V are defined as for the homogeneous case.

Theorem: “it works!”

The proof holds by using a similar methodology as for the homogeneous
case and carefully examining the reminder terms.
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Illustration: Approximation Error for the cache model

0 2 4 6 8
Item ID (from most to least popular)

0.40
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0.55
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0.65
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Pr
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simulation (108 req)
mean field approximation
refined mean field

0 2 4 6 8
Item ID (from most to least popular)

0.015

0.010

0.005

0.000

0.005

0.010

Er
ro

r

simulation - exact
mean field - exact
refined mean field - exact

Mean field Refined mean field Simulation

n Error (time) Error (time) Error (time)

10 0.0142 (10ms) 0.00197 (10ms) 0.00026 (4.3s)

30 0.0050 (14ms) 0.00022 (17ms) 0.00047 (4.9s)

50 0.0031 (17ms) 0.00008 (30ms) 0.00055 (5.7s)

For n ≥ 30 refined mean field is more accurate than simulating 108requests
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Recap on heterogeneous models

Model: Object k , k ′ jump from states (i , i ′) to (j , j ′) at rate
1

n
r

(k,k ′)
ij ,i ′j ′ .

Our results: if the rates r are bounded:

Mean field approximation is O(1/n)-accurate.

A refined approximation can be defined and is O(1/n2)-accurate.
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Outline

1 Bias of Mean Field Approximation: Homogeneous Model

2 Heterogeneous Models

3 Extensions and Open Questions

4 Conclusion
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Multi-scale model

ex: Mean-field CSMA model Cecchi, Borst, Leeuwaarden, Whiting 16

w
ir

el
es

s
ch

an
n

el

A server with a non-empty queue:

Becomes active at rate µ if nobody is active.

Markovian model:

M(n)(t),B(t),

where B(t)=channel’s state.

This is a two-scale model:

M(n)(t) evolves by small jumps.

B(n)(t) evolves fast.
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Multi-scale model: mean field approximation

Classical approach:

Drift = f (m, b)

Mean field approximation: ṁ =
∑
b

f (m, b)πb(m).

One can prove almost sure convergence by using: Cecchi et al 16, Ball at al 05

f (M(n)(t),B(n)(t)) ≈
∑
b

f (M(n)(t), b)πb(M(n)(t)).

Current work / open problem: for smooth systems

The bias is O(1/n)

Can we compute it?
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Geometric aspects

n µ
1
µ2

µ

3

µ

4

µ

λλ

Example: Two-choice on a ring.

0 1 2 3 4 5 6
Number of jobs

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

simulation (JSQ-2 on ring)
mean field approximation

Pair-approximation is a moment closure technique: let xi , yij and zijk be
the proportions of node/edges/triplets with i/(ij)/(ijk) jobs and assume:

zijk ≈ yjiyjk/xj .

Open questions:

Why does this work?

Related to replica mean field?
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Non-markovian dynamics

Bramson, Lu, Prabhakar

Non-exponential service times.

Asymptotically insensitive under PS.

A mf-approx can be defined.

Open questions:

Is the bias of order O(1/n)?

How to use the covariance here?
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Outline

1 Bias of Mean Field Approximation: Homogeneous Model

2 Heterogeneous Models

3 Extensions and Open Questions

4 Conclusion

Nicolas Gast (Inria) The Bias of Mean Field Approximation SNC 2022 31 / 32



Conclusion

Mean field approximation is a widely used heuristic.

It consists in assuming independence.

We question its validity / accuracy.

We characterized the bias for different models (smooth
homogeneous, heterogeneous, multi-scale).

To do so, we took correlations into account.

Numerical library: https://pypi.org/project/rmftool/

Many open questions: geometric models, non-Markovian, controlled
systems

More slides and references: http://polaris.imag.fr/nicolas.gast
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