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Motivation problem 1: Applicant screening problem

N applicants, T rounds of interview.
Each round: you can interview up to αN candidates.
Goal: maximize the expected quality of candidates.

Each candidate has an (unknown)
quality pn.

I Result of an interview:
Bernoulli(pn)

Goal: find the βN highest pn.

Possible heuristics:

I Greedy (exploitation)?

I Random (exploration)?



2/28

Motivation problem 1: Applicant screening problem

N applicants, T rounds of interview.
Each round: you can interview up to αN candidates.
Goal: maximize the expected quality of candidates.

Each candidate has an (unknown)
quality pn.

I Result of an interview:
Bernoulli(pn)

Goal: find the βN highest pn.

Possible heuristics:

I Greedy (exploitation)?

I Random (exploration)?



3/28

Motivation problem 2: What to work on?
Job Scheduling

I Examples: research projects, tasks allocations, electric vehicle
charging, wireless scheduling,...

I We allow preemption (preempt-resume).

Possible heuristic: SRPT ((Shortest Remaining Processing Time).)
I ”Strongly optimal” [Schrage, 1966] if you know the project

durations and you want to minimize the waiting time
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Can we do better?

These two problems are restless bandit problems.

I PSPACE hard in general.

I Greedy, random, SRPT,... are in general not optimal.

We construct policies by assuming independence.

I Asymptotically optimal policies.

I LP-based (= computationally efficient)
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Reslless Markov bandit problem

A decision maker faces N arms.
Time is discrete.

I Each arm is a 2-action
MDP (passive / active)

I Controller can activate
αN < N arms each time.

Policy : you observe the states. Which ones do you activate?
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For simplicity, we consider statistically identical bandits

An arm is a 2-action MDP: if in state s:

I Activation: earn r(s, active), jump to s ′ ∼ P
[
s ′ | s, active

]
.

I Passive: earn r(s, passive), jump to s ′ ∼ P
[
s ′ | s, passive

]
.

Transition are independent given the actions.

The N arms are statistically identical and we denote by:

X
(N)
s (t) =

1

N
{# arms in state s at time t}.

Y
(N)
s,a (t) =

1

N
{#arms in state s for which action a is taken at t}.
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Restless bandits are difficult to solve

A admissible policy is a sequence of functions πt : X → Y such
that Y (N)(t) = πt(X

(N)(t)) is feasible with respect to X (N)(t),
and ∑

s

aY
(N)
s,a (t) ≤ α (activation constraint)

Theorem (Papadimitriou, Tsitsiklis 1994)

Finding the best admissible policy is PSPACE-complete.

(harder than NP-hard).
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The LP-relaxation
Replace the activation constraint

∑
s

aY
(N)
s,a (t) ≤ α by

∑
s

aE
[
Y

(N)
s,a (t)

]
≤ α.

Lemma
Finding the optimal allocation can be solved by an LP.

Proof. Let ys,a(t) := E
[
Y

(N)
s,a (t)

]
and xs(t) = E

[
X

(N)
s (t)

]
.

max
∑
s,a,t

ys,a(t)rs,a

s.t.
∑
a

a ys,a(t) ≤ αN ∀t∑
s,a

ys,a(t)p(s ′ | s, a) = xs′(t + 1) ∀t, s ′∑
a

ys′,a(t) = xs′(t).
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How can we use the LP to build a policy for the original
problem?

∑
s

aY
(N)
s,a (t) ≤ α

∑
s

aE
[
Y

(N)
s,a (t)

]
≤ α

Original problem
(Hard)

LP relaxation
(Easy)

V ∗N ≤ V ∗rel

x∗, y∗

V π
N

Can we build π that

is close to optimal?

oo

Subject of (G, Gaujal, Yan 2021), (Frazier et al 2020), (Brown and
Smith 2019)
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LP-relaxation vs Original problem

Relaxed problem: Optimal sequence x∗s (t), y∗s,a(t).

Original problem: Sequence πt : X → Y.

I A policy is LP-compatible if πt(x
∗) = y∗.

Theorem (G., Gaujal, Yan 2021)

I A continuous policy is LP-compatible iff lim
N→∞

V π
N = V ∗rel .

I A locally linear LP-compatible policy satisfies

|V π
N − V ∗rel | ≤ C1e

−C2N .

Proof (sketch). If π is continuous: lim
N→∞

X (N)
π (t) = xπ(t) and

therefore lim
N→∞

V π
N = V π

rel .
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How to build an LP-compatible policy: water-filling
LP-compatible: find a function π : X → Y such that π(x∗) = y∗.

I Priority to S+

I Second priority to S0

up to y∗s,1.

I Fill with the rest.

where:

I S+ = {s : ys,0(t) = 0}
I S− = {s : ys,1(t) = 0}
I S0 = {s : ys,0(t) > 0 ∧ ys,1(t) > 0}
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Existence of an LP-compatible policy

Non-degenerate = for all t: |S0(t)| ≥ 1.
Rankable = for all t: S0(t) ≤ 1.

Theorem
I For any problem, there exists an LP-compatible policy.

I If the problem is non-degenerate, then there exists a locally
linear LP-compatible policy.

I If the problem is rankable, there exists a strict priority policy
that is LP-compatible.
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Illustration: Applicant screening problem
Figure from (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α=0.25

(1,1)
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Illustration: Applicant screening problem
Figure from (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget α=0.25

Example: optimal relaxed solution: after two interviews:

I x∗(1,1) = 2x∗(2,1) = 2x∗(1,2) = 0.5.

I y∗(2,1),interview = y∗(1,1),interview = 0.125.
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Optimality
LP-index = policy from (Brown Smith 2020), LP-update = update LP solution.
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Subsidy and indexability

Main idea: use a Lagrangian decomposition and replace the

constraint
∑

E [aYs,a] = α by a subsidy aµ to action a.

An arm is a 2-action MDP: if in state s:

I Activation: earn r(s, active)

+µ

, jump to j ∼ P [j | s, active].

I Passive: earn r(s, passive), jump to j ∼ P [j | s, passive].
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E [aYs,a] = α by a subsidy aµ to action a.

An arm is a 2-action MDP: if in state s:

I Activation: earn r(s, active)+µ, jump to j ∼ P [j | s, active].

I Passive: earn r(s, passive), jump to j ∼ P [j | s, passive].

In general, the ”optimal” subsidy depends on α.
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What is the subsidy and who should we activate?

subsidy µ
s1

s2

s3

s4

=optimal to activate

λ1λ2 λ3λ4

If the subsidy for which ”activation” is optimal for s is (−∞, λ(s)],
then the state is indexable and λ(s) is its Whittle index.

I Activate arms by decreasing order of Whittle index.

Whittle policy is1 LP-compatible for infinite horizon.

1
Verloop. Asymptotically optimal priority policies for indexable and nonindexable restless bandits. (2016)

Annals of Applied Probability.
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Asymptotic optimality of Whittle index

Theorem (Weber Weiss 90s, Verloop 2016)

For infinite horizon, an LP-compatible policy is asymptotically
optimal in under the ”global attractor condition”.

(G. Gaujal Yan 2021) Holds with exponential rate for non-degenerate
problems.
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Illustration with a stochastic scheduling problem

Example: two jobs of sizes X and Y with:

I X = 10− ε

I Y =

{
2 proba 1/2
18 proba 1/2

For this model: Gittins (=Whittle) index policy is optimal:

I serve job with smallest index first.

Running a job costs 1€/sec and you can stop anytime. If you
finish the job, you earn x . Gittins index = smallest x so that you
running or stopping is equivalent.
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Scheduling: Are all related problems closed since the 90s?

(Recently) closed questions:

I Can we analyze the performance of this Gittins index?
(SOAP: [Scully et al 2018]).

I Multi-server? (Close to optimal: [Grosof et al 2019]).

I At which speed do Whittle index become optimal?
(exponentially fast in most cases [G,Gaujal,Yan 2021])

I Can we define index for finite-horizon problems? [Hu and
Frazier 2019-20, Brown Smith 2020, Gaujal, Yan 2022].

I Can we leverage indexable to problem to obtain better
learning algorithms? (No regret learning.[G,G,Khun, 2021])

I Are Whittle index hard to compute? [G, G. Khun, 2022]
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General idea: compute the index by increasing order

I A policy is π ⊂ {1 . . . S}
I gπ(x) = value for subsidy x .

I π∗(x) = arg max
π

gπ(x).

We want to find the inflection
points of the red curve.

Facts:

1. gπ(x) is linear in x .

2. π∗(−∞) = {1 . . . S}.
3. Computing gπ\{i}(x) from

gπ(x) is easy.
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I A policy is π ⊂ {1 . . . S}
I gπ(x) = value for subsidy x .

I π∗(x) = arg max
π

gπ(x).

We want to find the inflection
points of the red curve.

Facts:

1. gπ(x) is linear in x .

2. π∗(−∞) = {1 . . . S}.

3. Computing gπ\{i}(x) from
gπ(x) is easy.
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Why are the facts true?

I gπ(x) = (Aπ)−1(r + xπ)

I If subsidy is −∞ for all states, then we should not activate.

I Sherman-Morisson formula: Let A be an invertible matrix, u
and v vectors 1D such that 1 + vTA−1u 6= 0. Then:(

A + uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
.

By using fast matrix multiplication, we can compute Whittle
indices in O(S2.53) operations (conjectured to be at least n3 in a
2016 paper).

https://en.m.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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Simulation result
https://pypi.org/project/markovianbandit-pkg/
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(a) With index. test

(b) Without test

(c) With index. test

(d) Without test

https://pypi.org/project/markovianbandit-pkg/
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Conclusion

Index policies / LP relaxation are efficient ways to share resources
among tasks.

I Idea: it allows you to compute a ”right price” for each
resource. You can then activate the cheapest up to your
budget.

This scales and performs very well in practice.

I This talk: Optimality of index and computation of index.

I Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

I Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun
https://arxiv.org/abs/2203.05207

I LP-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast)
asymptotic optimality. G. Gaujal Yan. https://arxiv.org/abs/2106.10067

http://polaris.imag.fr/nicolas.gast/
https://arxiv.org/abs/2203.05207
https://arxiv.org/abs/2106.10067
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