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Motivation problem 1: Applicant screening problem

N applicants, T rounds of interview.
Each round: you can interview up to aN candidates.
Goal: maximize the expected quality of candidates.
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N applicants, T rounds of interview.
Each round: you can interview up to aN candidates.
Goal: maximize the expected quality of candidates.

~ Each candidate has an (unknown)
-+ quality p,.
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], » Result of an interview:
: Bernoulli(p,)

Goal: find the SN highest p,.

Possible heuristics:
» Greedy (exploitation)?
» Random (exploration)?



Motivation problem 2: What to work on?
Job Scheduling
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Motivation problem 2: What to work on?
Job Scheduling

Projects

Wiaiting room (queue) “server’

» Examples: research projects, tasks allocations, electric vehicle
charging, wireless scheduling,...

» We allow preemption (preempt-resume).

Possible heuristic: SRPT ((Shortest Remaining Processing Time).)

» "Strongly optimal” [Schrage, 1966] if you know the project
durations and you want to minimize the waiting time



Can we do better?

These two problems are restless bandit problems.
» PSPACE hard in general.

» Greedy, random, SRPT,... are in general not optimal.



Can we do better?

These two problems are restless bandit problems.
» PSPACE hard in general.
» Greedy, random, SRPT,... are in general not optimal.

We construct policies by assuming independence.
> Asymptotically optimal policies.
» LP-based (= computationally efficient)
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Reslless Markov bandit problem

A decision maker faces N arms.
Time is discrete.
» Each arm is a 2-action
MDP (passive / active)
» Controller can activate
aN < N arms each time.

Policy : you observe the states. Which ones do you activate?



For simplicity, we consider statistically identical bandits

An arm is a 2-action MDP: if in state s:
> Activation: earn r(s, active), jump to s’ ~ P [s' | s, active].
> Passive: earn r(s, passive), jump to s’ ~ P [s' | s, passive|.

Transition are independent given the actions.



For simplicity, we consider statistically identical bandits

An arm is a 2-action MDP: if in state s:
> Activation: earn r(s, active), jump to s’ ~ P [s' | s, active].
> Passive: earn r(s, passive), jump to s’ ~ P [s' | s, passive|.

Transition are independent given the actions.

The N arms are statistically identical and we denote by:
(N) 1 : :

Xs (t) = N{# arms in state s at time t}.

1
Ys(,’g)(t) = N{#arms in state s for which action a is taken at t}.



Restless bandits are difficult to solve

A admissible policy is a sequence of functions 7; : X — ) such
that YN () = 7,(X(M)(¢)) is feasible with respect to X(N)(t),
and

Z aYs(,lg\,l)(t) <« (activation constraint)
S



Restless bandits are difficult to solve

A admissible policy is a sequence of functions 7; : X — ) such
that YN () = 7,(X(M)(¢)) is feasible with respect to X(N)(t),
and

Z aYs(,,;I)(t) <« (activation constraint)
S

Theorem (Papadimitriou, Tsitsiklis 1994)
Finding the best admissible policy is PSPACE-complete.
(harder than NP-hard).
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The LP-relaxation
Replace the activation constraint Z aYs(,g/)(t) < a by

S

Z akE [Ys(/;/)(t)] < a.

S

Lemma
Finding the optimal allocation can be solved by an LP.

Proof. Let ys o(t) = E [vs(,f)(t)} and xs(t) = E [xﬁ“’)(t)]

max Z Ys,a(t)rsa
s,a,t

s.t. Z ays.(t) <aN vt

ZYsa p(s' | s,a) = xg(t+1) Vt, s’

ZYS’ —Xs )



How can we use the LP to build a policy for the original
problem?

> avd(t) <a > ek | Y (0)| <a
Original problem LP relaxation
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How can we use the LP to build a policy for the original
problem?

Y aviPt) <a S [vid@)] <a
S s
Original problem LP relaxation
(Hard) (Easy)
Vn < el

n 1

Vi Can we build 7 that <y
is close to optimal?
Subject of (G, Gaujal, Yan 2021), (Frazier et al 2020), (Brown and

Smith 2019)




LP-relaxation vs Original problem
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LP-relaxation vs Original problem

Relaxed problem: Optimal sequence x;(t), ys ,(t).
Original problem: Sequence 7; : X — ).

*

» A policy is LP-compatible if m(x*) = y™.
Theorem (G., Gaujal, Yan 2021)

» A continuous policy is LP-compatible iff lim Vg = V.
N—o0

» A locally linear LP-compatible policy satisfies

Vi - Vil < Ge @,

Proof (sketch). If 7 is continuous: Nlim XM(t) = x:(t) and
—00
therefore lim Vg = V7.
N—o0



How to build an LP-compatible policy: water-filling

LP-compatible: find a function m: X — Y such that w(x*) = y*.
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> St = {s:yso(t) = 0}
where: » ST = {s:y;1(t) =0}
> SO = {s:y.o(t) >0Ays1(t) >0}



How to build an LP-compatible policy: water-filling

LP-compatible: find a function m: X — Y such that w(x*) = y*.

¥ §F s .
o 2 & » Priority to ST
iy
X,
i 3 s

> St = {5 yoo(t) = 0}
where: » S = {s:y;1(t) =0}
> S0 = {s:yso(t) > 0Ays1(t) > 0}



How to build an LP-compatible policy: water-filling

®

LP-compatible: find a function m: X — Y such that w(x*) = y*.
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How to build an LP-compatible policy: water-filling

*

LP-compatible: find a function m: X — Y such that w(x*) = y*.

é"‘

¥ s
» Priority to ST

» Second priority to S°
,J— up to yo;.

» Fill with the rest.

S A
7 9777 Y (Y (S P
XLN): /// /AR ‘V/f/';ff-‘ 7H X i

3* 2 F
> St ={s: yso(t) =0}
where: » S = {s:y,1(t) =0}
> SO — {s:ys0(t) >0Ays1(t) >0}



Existence of an LP-compatible policy

Non-degenerate = for all t: [SO(t)| > 1.
Rankable = for all t: S%(t) < 1.
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Theorem
» For any problem, there exists an LP-compatible policy.
» [f the problem is non-degenerate, then there exists a locally
linear LP-compatible policy.
» [f the problem is rankable, there exists a strict priority policy
that is LP-compatible.



Illustration: Applicant screening problem
Figure from (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget «=0.25



Illustration: Applicant screening problem
Figure from (Brown Smith 2020)

Candidates with prior quality Beta(1,1), Interview budget a=0.25
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Example: optimal relaxed solution: after two interviews:
* * *
> X1 = P21 = Xz = 05
* *
> Y(2,1),interview — Y(1,1),interview — 0.125.



Optimality

LP-index = policy from (Brown Smith 2020), LP-update = update LP solution.
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Subsidy and indexability

Main idea: use a Lagrangian decomposition and replace the
constraint ZE [aYs,a] = « by a subsidy ap to action a.

An arm is a 2-action MDP: if in state s:
» Activation: earn r(s, active) , jump to j ~ P[j|s,active].

» Passive: earn r(s, passive), jump to j ~ P [j | s, passive].



Subsidy and indexability

Main idea: use a Lagrangian decomposition and replace the
constraint ZE [aYs] = a by a subsidy ap to action a.

An arm is a 2-action MDP: if in state s:
» Activation: earn r(s, active)+p, jump to j ~ P[j | s, active].

» Passive: earn r(s, passive), jump to j ~ P[j | s, passive].

In general, the "optimal” subsidy depends on a.



What is the subsidy and who should we activate?

[ =optimal to activate

subsidy 1

1
Verloop. Asymptotically optimal priority policies for indexable and nonindexable restless bandits. (2016)
Annals of Applied Probability. 19/28



What is the subsidy and who should we activate?

=optimal to activate

S4
53
52
. = . | subsidy 1
1 1 1 1 4
)\2 )\4 )\1 A3

If the subsidy for which "activation” is optimal for s is (—oo, A(s)],
then the state is indexable and A(s) is its Whittle index.

» Activate arms by decreasing order of Whittle index.

Whittle policy is' LP-compatible for infinite horizon.

1
Verloop. Asymptotically optimal priority policies for indexable and nonindexable restless bandits. (2016)
Annals of Applied Probability.



Asymptotic optimality of Whittle index

Theorem (Weber Weiss 90s, Verloop 2016)

For infinite horizon, an LP-compatible policy is asymptotically
optimal in under the "global attractor condition”.

(G. Gaujal Yan 2021) Holds with exponential rate for non-degenerate
problems.



lllustration with a stochastic scheduling problem

Example: two jobs of sizes X and Y with:

» X=10—¢

2 proba 1/2
> Y =
Y { 18 proba 1/2



lllustration with a stochastic scheduling problem

Example: two jobs of sizes X and Y with:

» X=10—¢

2 proba 1/2
| 2 =
v { 18 proba 1/2

For this model: Gittins (=Whittle) index policy is optimal:
» serve job with smallest index first.

Running a job costs 1€ /sec and you can stop anytime. If you
finish the job, you earn x. Gittins index = smallest x so that you
running or stopping is equivalent.
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lllustration with a stochastic scheduling problem
Running a job costs 1€ /sec and you can stop anytime. If you
finish the job, you earn x. Gittins index = smallest x so that you
running or stopping is equivalent.

Index | age
A
15

2 proba 1/2
18  proba 1/2

10 \

N

5 10 15
age (= time processed))
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» Can we leverage indexable to problem to obtain better
learning algorithms? (No regret learning.[G,G,Khun, 2021])



Scheduling: Are all related problems closed since the 90s?

(Recently) closed questions:

» Can we analyze the performance of this Gittins index?
(SOAP: [Scully et al 2018]).

» Multi-server? (Close to optimal: [Grosof et al 2019]).

» At which speed do Whittle index become optimal?
(exponentially fast in most cases [G,Gaujal,Yan 2021])

» Can we define index for finite-horizon problems? [Hu and
Frazier 2019-20, Brown Smith 2020, Gaujal, Yan 2022].

» Can we leverage indexable to problem to obtain better
learning algorithms? (No regret learning.[G,G,Khun, 2021])

» Are Whittle index hard to compute? [G, G. Khun, 2022]



Outline

How to Compute Indices: A Sub-Cubic Algorithm



General idea: compute the index by increasing order

» A policyismC {1...5}
> g:(x) = value for subsidy x.
> 7%(x) = arg max g(x).
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General idea: compute the index by increasing order
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General idea: compute the index by increasing order
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Why are the facts true?

> gr(x) = (AT)"}(r +x)
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Why are the facts true?

> gr(x) = (A7) "H(r +x7)
» If subsidy is —oo for all states, then we should not activate.


https://en.m.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula

Why are the facts true?

> gr(x) = (A7) "H(r +x7)
» If subsidy is —oo for all states, then we should not activate.

» Sherman-Morisson formula: Let A be an invertible matrix, u
and v vectors 1D such that 1+ v’ A71u # 0. Then:

-1 A luyyTAL
A T) At
( v 1+vTA-1y

By using fast matrix multiplication, we can compute Whittle
indices in O(5%%3) operations (conjectured to be at least n® in a
2016 paper).


https://en.m.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula

Simulation result
https://pypi.org/project/markovianbandit-pkg/
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Conclusion

Index policies / LP relaxation are efficient ways to share resources
among tasks.

» Idea: it allows you to compute a "right price” for each
resource. You can then activate the cheapest up to your
budget.

This scales and performs very well in practice.

» This talk: Optimality of index and computation of index.

» Open questions: learning, continuous state-spaces.
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Conclusion
Index policies / LP relaxation are efficient ways to share resources
among tasks.

» Idea: it allows you to compute a "right price” for each
resource. You can then activate the cheapest up to your
budget.

This scales and performs very well in practice.

» This talk: Optimality of index and computation of index.

» Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

»  Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun
https://arxiv.org/abs/2203.05207

»  LP-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast)
asymptotic optimality. G. Gaujal Yan. https://arxiv.org/abs/2106.10067


http://polaris.imag.fr/nicolas.gast/
https://arxiv.org/abs/2203.05207
https://arxiv.org/abs/2106.10067

	Finite-horizon restless bandits
	Subsidy, infinite-horizon and index policies
	How to Compute Indices: A Sub-Cubic Algorithm
	Conclusion

