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Motivation: independent sets with arrivals
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CSMA model from Cecchi et al. 2015
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Two-timescale “replica” mean field
CSMA model from Cecchi et al. 2015

Transmit

Activate

Arrival

o _ Scaling: replica
Objective: estimate steady-state.

P[Sk =]

@ N severs per node

1
@ Arrival rate x—.
N
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Reults in a nutshell

1
Xk,i = N#{Objects of type k in state j}

Y = “activation set”
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Reults in a nutshell

1
Xk,i = N#{Objects of type k in state j}

Y = “activation set”
We show that X ; has a fluid limit x; and that:
. 1 2
P(Sk = i) = xki + —viki+ O(1/N7).

N

This is very accurate even for small N.

Nicolas Gast — 4 / 15



Outline

© A two timescale model
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Two timescale mean field model

Population of N objects.
@ Object k has a state S(t) € S.
@ Shared resource Y (t) € ).

X; = fraction of objects in state /.
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Two timescale mean field model

Population of N objects.
@ Object k has a state S(t) € S.
@ Shared resource Y (t) € ).

X; = fraction of objects in state /.

Model
@ Object n jumps from i to j at rate Q;j(X,Y)

@ Resource Y jumps from y to y’ at rate Ky, (X).
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We use two approximations to construct a fluid limit.
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We use two approximations to construct a fluid limit.

N =100 N = 1000

“Average” mean field approximation

Let 7, (x) be the stationary distribution of K(x). We
define:

Q) = my(x)Q(x,¥)-

The mean field approximation is the solution of the ODE:

X = x@(x),
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The approximation is asymptocally exact. Its bias is v/N.

Assume that
@ K is unichain for all x.
@ K and @ are twice differenciable

o x = xQ(x) has a unique attractor x*.

Theorem
There exists a computable V' such that, in steady-state:
. . I 2
P[Sk=1i]= X; —i—;\/,- + O(1/n%).

~—
mean field approximation

refined approximation
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[llustration of the theorem
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Outline

© Elements of Proof (Stein's method)

Nicolas Gast — 10 / 15



If Y is not here, we can directly use Stein's method

Let G**° be the Generator of the stochastic system. For h: X — R:
1
o Gstoh(X) = Z(h(X + ;(ej — e,-)) — h(X))nx,-Q,'j(x)

i
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If Y is not here, we can directly use Stein's method

Let G**° be the Generator of the stochastic system. For h: X — R:
1
° G¥h(X) = D (h(X + (e — &) = h(X))mxi Qy(x)
iJ
= Vh-xQ(X) +O(1/n).

—_—— ——
Generator of ODE x = xQ(x). if his C!

@ E [G*"°h(X)] =0 if X is in steady-state.
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If Y is not here, we can directly use Stein's method

and introduce a Poisson equation for the slow system
Let G**° be the Generator of the stochastic system. For h: X — R:
1
o Gstoh(X) = Z(h(X + ;(ej — e,-)) — h(X))nx,-Q,'j(x)
iJ
= Vh-xQ(X) +0(1/n).

—_—— ——
Generator of ODE x = xQ(x). if his C!

@ E [G*"°h(X)] =0 if X is in steady-state.

Let G be such that VG - xQ(x) = x — x™ (Poisson equation). We have:

E[X — x*] =E[VG - XQ(X)]
=E [(VG - G*°) - XQ(X)] (by (2))
= o(1/n) (by (1))
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When Y is here, we need to treat the fast system

Let h: X — R be a test function. We have:

GHX, Y) = S (HOX+ (g — &) — A Qs (X. )
iJ
= Vh-XQ(X,Y)+0(1/n),
S ——

#GODPE=Vh.Q(x).
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When Y is here, we need to treat the fast system

and introduce a Poisson equation for the fast system.
Let h: X — R be a test function. We have:

GHX, Y) = S (HOX+ (g — &) — A Qs (X. )
iJ
= Vh-XQ(X,Y)+0(1/n),
—_——
#GODPE=Vh.Q(x).

We are left with Q(X, Y) — Q(X).
Lemma: There exists a KT that is C2 such that for all h: X x Y — R:

h(X,Y) = h(X) = K(x)K*(x)h(X, Y).
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Rapping up the proof
Let h: X x Y — R be a test function.

G h(X,Y) = nK(X)h(X,Y)+ Vyih- XQ(X,Y)+0(1/n)

-~

fast slow

Hence, Kt — %GStO = o(1/n) if his C*.
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Rapping up the proof
Let h: X x Y — R be a test function.

G h(X,Y) = nK(X)h(X,Y)+ Vyih- XQ(X,Y)+0(1/n)

-~

fast slow
Hence, Kt — %GStO = o(1/n) if his C*.
This shows that in steady-state:
E [A(X) ~ K(X)] = E [K()K ()h(X, Y)]
=E |[(K(x) — %GStO)KJF(X)h(X, Y) (steady-state).

= 0(1/n) (expansion above)
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© Conclusion
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Conclusion

We study the accuracy of mean field approximation for two time-scale.
@ The bias is of order O(1/N). It can be computed.

@ This also works for most “smooths” models (e.g., heterogeneous).
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Two-timescale models:
@ Shared resource or synchronization (e.g., CSMA)

@ Q-learning type algorithm: Stochastic approximation algorithms with
Markovian noise. Huo et al. 2023
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Conclusion

We study the accuracy of mean field approximation for two time-scale.
@ The bias is of order O(1/N). It can be computed.

@ This also works for most “smooths” models (e.g., heterogeneous).

Two-timescale models:
@ Shared resource or synchronization (e.g., CSMA)

@ Q-learning type algorithm: Stochastic approximation algorithms with
Markovian noise. Huo et al. 2023

Many open questions: non-smooth, (sparse) geometric models,
non-Markovian.

Slides and references: http://polaris.imag.fr/nicolas.gast
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