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Motivation: independent sets with arrivals
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Two-timescale “replica” mean field
CSMA model from Cecchi et al. 2015
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Reults in a nutshell

Xk,i =
1

N
#{Objects of type k in state i}

Y = “activation set′′

We show that Xk,i has a fluid limit xi and that:

P(Sk = i) = xk,i +
1

N
vk,i + O(1/N2).

This is very accurate even for small N.
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Outline

1 A two timescale model

2 Elements of Proof (Stein’s method)

3 Conclusion
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Two timescale mean field model

Population of N objects.

Object k has a state Sk(t) ∈ S.
Shared resource Y (t) ∈ Y.

Xi = fraction of objects in state i .

Model

Object n jumps from i to j at rate Qi ,j(X,Y)

Resource Y jumps from y to y ′ at rate Ky ,y ′(X).
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We use two approximations to construct a fluid limit.

N = 30

fast System - Y(t)

N = 100 N = 1000

N = 30

slow System - X(t)

N = 100 N = 1000

“Average” mean field approximation

Let πy (x) be the stationary distribution of K (x). We
define:

Q̄(x) =
∑
y

πy (x)Q(x, y).

The mean field approximation is the solution of the ODE:

ẋ = xQ̄(x),
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The approximation is asymptocally exact. Its bias is v/N .

Assume that

K is unichain for all x.

K and Q are twice differenciable

ẋ = xQ̄(x) has a unique attractor x∗.

Theorem

There exists a computable V such that, in steady-state:

P [Sk = i ] = x∗i︸︷︷︸
mean field approximation

+
1

n
Vi

︸ ︷︷ ︸
refined approximation

+ O(1/n2).
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Illustration of the theorem
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If Y is not here, we can directly use Stein’s method

and introduce a Poisson equation for the slow system

Let G sto be the Generator of the stochastic system. For h : X → R:
1 G stoh(X ) =

∑
i ,j

(h(X +
1

n
(ej − ei ))− h(X ))nxiQij(x)

= ∇h · xQ(X )︸ ︷︷ ︸
Generator of ODE ẋ = xQ(x).

+O(1/n)︸ ︷︷ ︸
if h is C1

.

2 E
[
G stoh(X )

]
= 0 if X is in steady-state.

Let G be such that ∇G · xQ(x) = x − x∗ (Poisson equation). We have:

E [X − x∗] = E [∇G · XQ(X )]

= E
[
(∇G − G sto) · XQ(X )

]
(by (2))

= o(1/n) (by (1)).
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When Y is here, we need to treat the fast system

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
i ,j

(h(X +
1

n
(ej − ei ))− h(X ))nxiQij(X ,Y )

= ∇h · XQ(X ,Y )︸ ︷︷ ︸
̸=GODE=∇h·Q̄(x).

+O(1/n),

We are left with Q(X ,Y )− Q̄(X ).

Lemma: There exists a K+ that is C 2 such that for all h : X × Y → R:

h(X ,Y )− h̄(X ) = K (x)K+(x)h(X ,Y ).
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Rapping up the proof

Let h : X × Y → R be a test function.

G stoh(X ,Y ) = nK (X )h(X ,Y )︸ ︷︷ ︸
fast

+∇xh · XQ(X ,Y )︸ ︷︷ ︸
slow

+O(1/n)

Hence, K fast − 1

n
G sto = o(1/n) if h is C 1.

This shows that in steady-state:

E
[
h(X )− h̄(X )

]
= E

[
K (x)K+(x)h(X ,Y )

]
= E

[
(K (x)− 1

n
G sto)K+(x)h(X ,Y )

]
(steady-state).

= O(1/n) (expansion above).
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Conclusion

We study the accuracy of mean field approximation for two time-scale.

The bias is of order O(1/N). It can be computed.

This also works for most “smooths” models (e.g., heterogeneous).

Two-timescale models:

Shared resource or synchronization (e.g., CSMA)

Q-learning type algorithm: Stochastic approximation algorithms with
Markovian noise. Huo et al. 2023

Many open questions: non-smooth, (sparse) geometric models,
non-Markovian.

Slides and references: http://polaris.imag.fr/nicolas.gast
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