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Motivation: online selection problems?
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@ Large population.

@ "Small” time-horizon.

!Fairness (Emelianov et al. 2021), Individual strategies (Emelianov et al. 2022).
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We view this as a Markovian bandit problem

Classical bandit problem:
o N arms
o l.i.d. unknown reward
@ Goal: identify the best
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We view this as a Markovian bandit problem

Classical bandit problem:
e N arms
@ l.i.d. unknown reward

@ Goal: identify the best

Markovian bandit:
o N statistically identical arms.
e Each arm has a state: you know P(:|sp, an) and r(sp, an).

e Goal: compute a policy 7 : SV — AN,
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We use tools from mean field control

action a .
Controller =—— Population of N arms

P(-[xn, an)
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We use tools from mean field control

action a .
Controller =—— Population of N arms

P(-[xn, an)

The computational difficulty increases with N but “N = c0” is easy.
@ How to use the N = 400 solution for finite N?

@ How efficient is this? (i.e., how fast does it become optimal?)
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Outline

0 The mean-field control problem

© Asymptotic optimality of priority policies
@ Finite-horizon problem
@ Infinite-horizon problems

© Index policies and computation of Whittle indices

@ Conclusion
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Original model for finite N

N statistically identical arms
@ Discrete time, finite state space.
o P(:|sp,an) and r(sp, an).

Maximize expected reward

1 N
=303 rlsnle), (1)),

t=1 n=1
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Original model for finite N

N statistically identical arms
@ Discrete time, finite state space.
o P(:|sp,an) and r(sp, an).

Maximize expected reward

N
Hard constraint: vt : Zan(t) < C.
n=1

o If ay(t) € {0,1}: Markovian bandit (this talk)
o If a,(t) € {0,1}9: Weakly coupled MDP.
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The mean-field control problem
N

Original model: For all t, Zan(t) < aN. = PSPACE-hard

n=1
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The mean-field control problem
N

Relaxed model: For all t, E [Z an(t)

n=1

<aN. = Independence relaxation.

This can be solve by an LP.
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The mean-field control problem
N

Relaxed model: For all ¢, E [Z an(t)| <aN. = Independence relaxation.

n=1

This can be solve by an LP.

@ x; =P[s, =s]and ys . =P [s, =s,a, = al.

max r
X200 Z s,a¥s,a

Xs/ = ZYS a ’5 a

Xs = ZYS,a

a
sz =1.
S
ZYS,I =« relaxed budget contraint
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The mean-field control problem
N

Relaxed model: For all t, E [Z an(t)
n=1

<aN. = Independence relaxation.

This can be solve by an LP.
0 x5(t) = P[ss(t) = s] and ysa(t) = P[sp(t) = s, a5(t) = a].

T
T, LT nonls

t=1 s,a

sit. xo(t+1) Zysa (s'|s,a)
= Z)/s,a t
a
sz = x5(0)
S

ZYS,l(t) = a(t) relaxed budget contraint

S
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Can | apply this to N < o0?

D an(t) <a

Original problem
(Hard)

Vv

—

<

D Elan(t)] <«

LP relaxation
(Easy)

*
rel
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Can | apply this to N < o0?

D an(t) <a D Elan(t)] <«
Original problem LP relaxation
(Hard) (Easy)
V/))\} < rTe/
X*, y*
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Can | apply this to N < o0?

D an(t) <a D Elan(t)] <«
Original problem LP relaxation
(Hard) (Easy)
VI))\} < rTel

ee 1

Can we build 7 that
Vi . . X"y
is close to optimal?

Main difficulty: in general XV (t) # x*(t).
e We cannot choose YV (t) = y*(t).
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Some historical perspective

@ Infinite horizon: Index policies (Gittins 60s, Whittle index (89),
Nino-Mora, 90s-2000s)
» Often asymptotically optimal. (Weber and Weiss 91).
1. When they are: exponentially fast. (G, Gaujal, Yan 2021).
2. We can compute index efficiently. (G, Gaujal, Khun 2022).
» More recently: optimality without UGAP (but
O(1/sqrtN)-suboptimality gap.)
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Some historical perspective

@ Infinite horizon: Index policies (Gittins 60s, Whittle index (89),
Nino-Mora, 90s-2000s)
» Often asymptotically optimal. (Weber and Weiss 91).
1. When they are: exponentially fast. (G, Gaujal, Yan 2021).
2. We can compute index efficiently. (G, Gaujal, Khun 2022).
» More recently: optimality without UGAP (but
O(1/sqrtN)-suboptimality gap.)

@ Finite horizon: LP-index
» Priority rule not always asymptotically optimal (Brown and Smith 2019),

(Frazier et al 2020).
3. When they are: exponentially fast (G, Gaujal, Yan 2022)
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Outline

e Asymptotic optimality of priority policies
@ Finite-horizon problem
@ Infinite-horizon problems
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From the LP solution to the finite-N policies
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Relaxed problem
Optimal sequence x; (t),ys 5(t).
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From the LP solution to the finite-N policies
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Relaxed problem Problem with N arms
Optimal sequence x; (t),ys 5(t). Need a policy.
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From the LP solution to the finite-N policies
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Problem with N arms

Need a policy.

o m : XN(t) = YN(t) (this talk).

@ Local policy (FtVA).
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We want a policy such that m(x*(t)) = y*(t).
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We want a policy such that m(x*(t)) = y*(t).
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We want a policy such that m(x*(t)) = y*(t).
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Asymptotic optimality

Let S°(t) be the number of states that are half-activated for the
LP-solution at time t.

Theorem

@ There exists an priority rule that is asymptotically optimal if and only
if for all t, S°(t) < 1.

o [t becomes optimal exponentially fast if for all t, So(t) =1,
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Sketch of proof

1
Recall that XS(N)(t) = N#{arms in state s at time t}.

J(t+1) Z YW (@)P [s]s,a] +  O(1/VN)

stochastic noise. CLT
@ Concentration argument: 7 continuous implies Nlim XM (1) = x:(1).
— 00

» This gives O(1/v/N) sub-optimality gap.

@ A priority rule is locally linear. We use the linearity of expectation.

—Q(N)

» This gives e sub-optimality gap.
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lllustration of the asymptotic optimality
LP-index = policy from (Brown Smith 2020), LP-update = update LP solution.
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For infinite-horizon problems, the LP-solution is a fixed

point.

Theorem (LP folk). There exists a solution of the LP such that S® < 1.
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@ This defines priority policies (many because of tie-breaking).
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Are these priority policies asymptotic optimal?
For the infinite model, a priority policy defines a (piecewise linear)
dynamical system:

x(t +1) = 7P(x(t)).

Theorem

Q If mP™ has a unique attractor (UGAP?), then it is asymptotically
optimal. [Weber Weiss 90s, Verloop 2016]

@ For these problems, the suboptimality gap is exponentially small for
non-degenerate problems. [G. Gaujal Yan 2021]

“See recent work of Hong, Xie, Chen, Wang for policies without UGAP
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Are these priority policies asymptotic optimal?
For the infinite model, a priority policy defines a (piecewise linear)
dynamical system:

x(t +1) = 7P(x(t)).

Theorem

Q If mP™ has a unique attractor (UGAP?), then it is asymptotically
optimal. [Weber Weiss 90s, Verloop 2016]

@ For these problems, the suboptimality gap is exponentially small for
non-degenerate problems. [G. Gaujal Yan 2021]

“See recent work of Hong, Xie, Chen, Wang for policies without UGAP

Proof.
@ Concentration of measure.
@ Local linearity + Stein's method.
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Are all tie-breaking rules equivalent?

No.
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Outline

© Index policies and computation of Whittle indices
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Penalty and indexability

The N = oo is a constraint MDP:

@ P(:|sp,an) and r(sp, ay) s.t. in steady-state, P [a,] = a.
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Penalty and indexability

The N = oo is a constraint MDP:

@ P(:|sp,an) and r(sp, ay) s.t. in steady-state, P [a,] = a.

Idea: use a Lagrangian relaxation:

@ P(:|sn,an) and r(sp,an) — X an.

Penalty for activation
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The penaly can be used to define a priority policy

[ =optimal to activate

penalty A
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The penaly can be used to define a priority policy

[ =optimal to activate

penalty A

> e

A2 A4 A1

3

This is Whittle index policy.
For this example: s3 > s1 > s4 > s».
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Definition of Whittle index

Intuitively, for each state, there exists a As such that any optimal policy is
such that:

@ The optimal action in s is 0 (rest) if A < \g;
@ The optimal action in s is 1 (activate) if A > As.
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Definition of Whittle index

Intuitively, for each state, there exists a As such that any optimal policy is
such that:

@ The optimal action in s is 0 (rest) if A < \g;
@ The optimal action in s is 1 (activate) if A > As.

This is not always true?.

If the model satisfies this assumption, we say that the model is indexable.
Whittle index policy is the corresponding priority policy.

*True with high probability? Yes: (Nino-Mora 01), No (G, Gaujal, Khun 21).
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lllustration of what is Whittle policy

(stochastic scheduling)

Jobs of sizes X and Y with:
e X =10

[ 2 proba1l/2
° Y_{ 18 proba 1/2

Who should you run first to minimize expected completion time?
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lllustration of what is Whittle policy

(stochastic scheduling)

Jobs of sizes X and Y with:
e X =10

[ 2 proba1l/2
° Y_{ 18 proba 1/2

Who should you run first to minimize expected completion time?
Running a job costs 1€ /sec and you can stop anytime. If you finish the

job, you earn x. Whittle (=Gittins) index is the smallest x so that you
start running the job.
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lllustration of what is Whittle policy

(stochastic scheduling)

Index | age
AN
] X =10
o y_ |2 probal/2
~ | 18 proba 1/2
10 |
5 ]}
5 10 15

age (= time processed))

Index can be computed independently for each job (=arm).
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lllustration of what is Whittle policy

(stochastic scheduling)

Index | age
AN
15 |

2 proba1/2
18 proba 1/2

ol
N

Index can be computed independently for each job (=arm).

5 10 15
age (= time processed))
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lllustration of what is Whittle policy

(stochastic scheduling)

Index | age
AN
] X =10
o y_J 2 probal/2
~ | 18 proba1/2
| 3 probal/3
10 _
\ Z= { 12 proba 2/3

5 10 15
age (= time processed))

Index can be computed independently for each job (=arm).
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How to compute Whittle indices?
Classical definition:
@ The index is the penalty s such that that an optimal policy can
choose to activate or not the state s when the penalty is As.
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How to compute Whittle indices?
Refined definition:
@ The index is the (unique) penalty A such that that an
(Bellman-)optimal policy can choose to activate or not the state s
when the penalty is Xs.
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How to compute Whittle indices?
A Bellman-optimal policies satisfies Bellman equations:

g"(\) + hz(N) = maxr(s,a) + aX + > _ P(jls, a)h7())
a .
J
qs,a(>\)

We define the active advantage bs(\) := gs.1(\) — gs,0(N).
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How to compute Whittle indices?
A Bellman-optimal policies satisfies Bellman equations:

g"(\) + hz(N) = maxr(s,a) + aX + > _ P(jls, a)h7())
a .
J
‘Is,a(>\)

We define the active advantage bs(\) := gs.1(\) — gs,0(N).

2 05 =T
] ~.
c : il E
) : ~.
> - : .
g 00 —— State 1 -
0 —— State2 T~ _
5 —— State 3 \'\\,\
<05 :

0.2 0.4 0.6

Penalty

Theorem (G,Gaujal,Khun, 22)

An arm is indexable if and only if for all s: bs 1(\) = 0 has a unique

solution.
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We can use this characterization to build an efficient
algorithm

S 05 el T

E ~.. =~ .
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= ~~. \.

B —:— State 3 N S

<05 T T,
0.2 0.4 0.6 0.8

Penalty

Three ingredients:
@ For MDP, the advantage function is piecewise linear:

b™(\) = (A™)"(r + An).
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We can use this characterization to build an efficient
algorithm

% 05 R
ot I
=4 S~ -~
9 - ~ o
- ~-. ~. A

2 oo State 1 — — ~—
) —— State2 T~ . ’
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B —— State 3 N S
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Penalty

Three ingredients:
@ For MDP, the advantage function is piecewise linear:

b™(N) = (AT)7H(r + Ar).

@ Sherman-Morisson formula: Let A be an invertible matrix, v and v
vectors 1D such that 1+ v A~1u # 0. Then:

-1 A lyyTA-L
A T) A1 7
( v 1+vTA 1y
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We can use this characterization to build an efficient
algorithm

% 05 S
ot I
=4 S~ -~
g - T~ .
—] ~. ~ A

2 oo State 1 — — ~—
[ —— State2 T~ N, .
= ~~. \.
B —:— State 3 N S
< 05 T T T

0.2 0.4 0.6 0.8

Penalty

Three ingredients:
@ For MDP, the advantage function is piecewise linear:

b™(N) = (AT)7H(r + Ar).

@ Sherman-Morisson formula: Let A be an invertible matrix, v and v
vectors 1D such that 1+ v A~1u # 0. Then:

_1 A—IUVTA—I
A T) —A o O
( v 1+viA-1y

© We can reorder operations to use Strassen'’s like operations.
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We obtain a theoretical complexity of O(5%°?) and an
efficient implemenation
https://pypi.org/project/markovianbandit-pkg/
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Outline

@ Conclusion
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Conclusion
For Markovian bandits, mean-field control can be solved by an LP.

@ Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.
@ When they are, they become optimal exponentially fast.

@ Index policy (= "right actication price") are very efficient.
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Conclusion
For Markovian bandits, mean-field control can be solved by an LP.

@ Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.
@ When they are, they become optimal exponentially fast.

@ Index policy (= "right actication price") are very efficient.

@ This talk: finite-state space, computation of policies.

@ Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

@ Computing Whittle (and Gittins) Index in Subcubic Time, G. Gaujal, Khun https://arxiv.org/abs/2203.05207

@ L P-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast) asymptotic optimality.
G. Gaujal Yan. https://arxiv.org/abs/2106.10067
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