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l What are “smart” cities?

Smart-* = Monitor, Model, Manage
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Smart cities are composed of many interacting individuals
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® |ndividual objectives lead to collective behaviour.
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“Smart” -* involve more decentralized control
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Example 1: Smart-grids
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“Smart”-* involve more decentralized control
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Example 2: bike-sharing systems

F OO Lo & =

April 9, 2015 4 /42



www.quanticol.eu
. _______________________________________________________________________________________________|

Research challenge J

Develop tractable models for collective adaptive systems.

® Build model from systems (automatic)

® QObtain macroscopic properties in order to help system designers.
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Example of questions that we want to answer
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® Smart grid — (How) Can we use prices for distributed control?

Gast, Le Boudec, Proutiére, Tomozei — Impact of Storage on the Efficiency and Prices in Real-Time Electricity
Markets. ACM e-Energy '13,

Gast, Le Boudec, Tomozei — Impact of demand-response on the efficiency and prices in real-time electricity
markets. ACM e-Energy '14,
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® Smart grid — (How) Can we use prices for distributed control?

Gast, Le Boudec, Proutiére, Tomozei — Impact of Storage on the Efficiency and Prices in Real-Time Electricity
Markets. ACM e-Energy '13,

Gast, Le Boudec, Tomozei — Impact of demand-response on the efficiency and prices in real-time electricity
markets. ACM e-Energy '14,

® Bike-sharing — Can we regulate the system without manually
redistributing the bikes?

Fricker Gast (2014) — Incentives and redistribution in homogeneous bike-sharing systems with stations of finite
capacity. EURO Journal on Transportation.
Waserhole, Jost (2012) — Vehicle Sharing System Pricing Regulation : A Fluid Approximation
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@ Bike-sharing systems: an overview
9 Mean-field approximation for performance evaluation

© Macroscopic properties of bike-sharing systems
@ The homogeneous model
@ Adding some heterogeneity
@ Frustration of the demand

@ Conclusion
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@ Bike-sharing systems: an overview
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Who has already used a bike-sharing system and what
was your experience?
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Bike-sharing is a rather new transportation system.
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Example of Velib':
® 20000 bikes
® 2000 stations.
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l Bike-sharing systems
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l Bike-sharing systems
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X
~l¢ take a bike
d%//\
o No
No o Use it for
a while %
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The main problem is the lack of resource
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(a) Empty station (b) Full station

Problematic states

The system’s operator want to anticipate and avoid those states.
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l How to manage them?

To take good strategic decisions, one need to identify bottlenecks.
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How to manage them?
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To take good strategic decisions, one need to identify bottlenecks.

Decisions:
® Planning (number of stations, location, size)
® | ong term: static pricing, number of bikes.

® Short term operating decisions: dynamic pricing, repositioning.
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State of the art
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Visualization of existing systems

® Traces analysis, clustering (Borgnat et al. 10, Vogel et al. 11,
Nair et al. 11, Come et al. 13...)

Short-term / mid-term prediction of availability
® (Ji Won Yoon et al. 12, Guenther et al. 12)

Bike re-positioning (classical RO problem)

® Redistribution based of forecast [Raviv et al. 11, Chemla et al.
13, Pfrommer 13,.. ]

Planing using macroscopic data
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Visualizing the data: usage varies (data from paris, 2014)
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Example :

moving
bikes

temporal variation

time of the day

— weekday
—  weekend
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Visualizing the data: usage varies (data from paris, 2014)

Example: spatial variation
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Visualizing the data: usage varies (data from paris, 2014)
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Example: spatial variation
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Visualizing the data: usage varies (data from paris, 2014)
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Example: spatio-temporal variation

Lunch
=

-.'/' . "x\__ )
Céme et al (2013) — Spatio-temporal analysis of Dynamic Origin-Destination data using Latent Dirichlet Allocation.
Application to the Vélib' Bike Sharing System of Paris April 9, 2015 15/ 42
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Prediction is for trip planning, multi-modal transportation
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Carrier 6:53 PM =)

2.2/26 Km

0:16 /0:22 Rem [

Droim
Conrach

Mountjoy
Square Park

Cityride: a predictive bike sharing journey advisor
Ji Won Yoon, Fabio Pinelli, and Francesco
Calabrese, 2012
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Our objective
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We want to understand the emergent behavior of the model and to
build a rigorous mathematical model that can be analyzed quickly
and fed by data.
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l We consider a markovian model
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l We consider a markovian model
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"R

d)i(t) take an object

o_~
o o

o 3o Use it f
— se it for % Expo(1/11;)

A a while
_ if station full

return i

J Routing matrix Pj;(t)
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Outline
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9 Mean-field approximation for performance evaluation
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l QUANTICOL Research Vision
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The QUANTICOL's objective is to develop an innovative formal
design framework consisting of:

® an unambiguous way of describing the behaviour;
B a logic

® model checking
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Stochastic process algebras
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® Models consists of agents which engage in actions at some rate.

(a, Tr) - P\
il

component/
derivative c
activity rate
(parameter of an b
exponential distribution)
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l Stochastic process algebras

® Models consists of agents which engage in actions at some rate.

(a, Tr) - P\
a(g:rionna}l}llge

component/
derivative c

activity rate
(parameter of an b
exponential distribution)

® The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

CTMC model
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Problem: the state space grows exponentially with the
number of objects. wonw.quanticolcu

A A
a B oa T A,
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Q é a ® ERE IS
4 A N
A N

obJects 60 objects
3 states 310 &~ 10° states 360 ~ 1028 states

® Only simulation?

April 9, 2015 22 /42



Mean Field Approximation
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Mean Field Approximation

www.quanticol.eu

We view the population of objects more abstractly, assuming that
individuals are indistinguishable.
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Mean Field Approximation
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%

An occupancy measure records the proportion of agents that are
currently exhibiting each possible state.
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L.Bortolussi and J.HllIston, Fluid Model Checking, CONCUR 2012
www.quanticol.eu

l Example: Fluid Model Checking

e.g. agent Z is in the blue state until it enters the red state and this
must occur within time 1.7.

® The agent is considered in the mean field created by the rest (it
is represented as a time-inhomogeneous CTMC.) "*"% 20 = /%




FIUId MOdEI Checking L.Bortolussi and J.Hlliston, Fluid Model Checking, CONCUR 2012
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290 — £ G (1), 0(2), %5 (2)
2240 = £ (a(8), o(8), x5(1)) | h

&0 — F(x(e), xo(t), xs(t))

Model-Checking
Algorithm/tool

CSL formula
Property of object Z
in System Po.(Z@blue 7 <'7 Z@red)
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© Macroscopic properties of bike-sharing systems
@ The homogeneous model
@ Adding some heterogeneity
@ Frustration of the demand
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The simplest case: homogeneous system with n stations
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C=4
C—24 For all stations:
% (ﬁb 57 ® Fixed capacity C
O
c—4 &
o))
HNo Mo
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C=4
C—24 For all stations:
Qi%i) (ﬁb C&b ® Fixed capacity C
@%) ® Arrival rate A.
C=4 ;N
A o))
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l The simplest case: homogeneous system with n stations

For all stations:

® Fixed capacity C

® Arrival rate \.

® Routing matrix:
homogeneous.

g5 "

Travel time:
exponential of
mean 1/pu.

g
=
:

O{-O
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l The simplest case: homogeneous system with n stations

For all stations:

® Fixed capacity C

® Arrival rate \.

® Routing matrix:
homogeneous.

g5 "

® Travel time:
exponential of
mean 1/pu.

m QOther destination
chosen if full (=

Oq-o local search).
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l We take the limit as n goes to infinity

1
x; = —#{stations with i bikes}
n

For fixed N, X; is a compli-
cated stochastic process
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l We take the limit as n goes to infinity

1 :
x; = —#{stations with i bikes}oc p'
n

n— oo

—

For fixed N, X; is a compli-

: System is described by an ODE
cated stochastic process

Use mean field approximation [Kurtz 79]

® Study the system when the number of stations N goes to
infinity.
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Congestion due to random choices is not negligible
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Theorem

® As n goes to infinity, at least 2n/(C + 1) stations are
problematic.

B The optimal fleet size is for % + %L bikes per station.
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If the capacity is C = 30 bikes and you use the system
twice a week, you cannot do a trip once a week.... qunicore

Proportion of
problematic
stations

roportion of problematic stations
°

P
e

xwimmmnanmnnngnnf 50

0 5 10 15 20 25 20 35 40 a5
Number of bikes per station: s

Fleet size (number of bikes per station)
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Improvement can be dramatic with simple incentives

www.quanticol.eu

Algorithm: we force the users to go to the station that has the least
number of bikes among the two closest to his destination.
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Algorithm: we force the users to go to the station that has the least
number of bikes among the two closest to his destination.

— Without incentives
With incentives

Proportion of problematic stations

i n n L .
s 1 15 20 25 30 N 35 40

-2 .
x empty 27 full T 22empty x full

. 2 empty . 2 full
Proportion of problematic station goes from 2/C to VC2€/2,
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Algorithm: we force the users to go to the station that has the least
number of bikes among the two closest to his destination.

Without incentives
With incentives
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When the stations have different popularities, the previ-
ous results do not hold. wonw quantical.eu

Popularity of a station is described by (A;, p;i).
® The optimal fleet size can be different than C/2.

® Having stations of infinite capacities can worsen the situation.
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With two clusters, the optimal fleet size is not C/2
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Two types of stations: popular and non-popular for arrivals:

A1/A2 =2.
Performance is
09 l‘ not optimal for
0.8 ‘\ a fleet size C/2
Prop. of 061
problematic o5

stations 041

0.34
0.2

0.14

Fleet size s
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l Infinite capacities can worsen the situation
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l Infinite capacities can worsen the situation

Theorem (Malyshev-Yakovlev 96)

When the stations have infinite capacity, then there exists a critical
fleet size s. such that if s > s, bikes accumulate in a few stations.

Example: station 1 is a destination twice as popular as stations 2 to
9. There are 27 bikes for 9 stations.

89 — station 1
~ slation 2

w0

.
number of
bikes in a
station

|
h I A /LL‘
J 'eru Mol \Jrﬂrh_ﬂllJ U /!
‘ : : . :
[] 500 1000 1500 2000

Time
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Having finite capacities prevent saturation of the demand.
What if we could frustrate some demand? wonw.quantico.eu

Model: we have a trip demand Aj(t) and an accepted demand
Aij(t)-

® Generous policy: Aj(t) := Ay

® Possible control Aj;(t) < Aji(t)
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l Frustrating demand can improve the balance of objects
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Users want to go to
C. Almost nobody

wants to go to A or
B.

Rate of trips (infinite capacities, infinite vehicles

Generous policy

~ 6 trips / time unit
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l Frustrating demand can improve the balance of objects

www.quanticol.eu

Users want to go to
C. Almost nobody

wants to go to A or
B.

Rate of trips (infinite capacities, infinite vehicles

Generous policy

~ 6 trips / time unit

Frustrating policy

20 trips / time unit

Optimal circulation

24 trips / time unit
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l Dynamic scenarios have been explored in [Waserhole/Jost
2012]

1000

Generous
800

Trips per &w
Second
200

0
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Vehicles propoifion

half capacity is not optimal

April 9, 2015 38 / 42




l Dynamic scenarios have been explored in [Waserhole /Jost
2012] e quanticolu

Frustrating policies: +40% of successful trips

1000 S-Fluid \I

Generous

800

Trips per &w
Second

200

0
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Vehicles proportion
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Outline
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@ Conclusion
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l Take-away message

@MMean-field approximation makes possible the study of large
systems.
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l Take-away message
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@MMean-field approximation makes possible the study of large
systems.

I 4
2

S8l Performance of bike-sharing is poor, even for homogeneous

scenarios (1/C of problematic stations). Incentives or frustration can
help.

If an ideal symmetric system works poorly, do not expect perfect
service in a real system ;)
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Limitations of the current approach and future work
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This work is part of a bigger project quanth_OI

4

88l Visualization of traces and Influence of geometry.

éLanguage and mathematical foundation.

-Distributed control for electric distribution network.
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To learn more: http://mescal.imag.fr/membres/nicolas.gast/
the slides are online
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Mean-field models for performance evaluation Bortolussi and Hillston (2012), Fluid
Model Checking, CONCUR 2012

Benaim, Le Boudec (2012) A class of mean field interaction models for computer and communication systems,
Performance evaluation 2008

Blke'sharlng SyStemS Fricker Gast (2014) — Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity. EURO Journal on Transportation.

Fricker, Gast, Mohamed (2012). Mean field analysis for inhomogeneous bike sharing systems DMTCS Proc.
Waserhole, Jost (2012) — Vehicle Sharing System Pricing Regulation : A Fluid Approximation

Malyshev and Yakovlev. Condensation in large closed Jackson networks. Ann. Appl. Proba. 1996.

Céme et al (2013) — Spatio-temporal analysis of Dynamic Origin-Destination data using Latent Dirichlet Allocation.
Application to the Vélib' Bike Sharing System of Paris

Ji Won Yoon et al. (2012) Cityride: a predictive bike sharing journey advisor

Smart-g”ds Gast, Le Boudec, Proutiere, Tomozei — Impact of Storage on the Efficiency and Prices in
Real-Time Electricity Markets. ACM e-Energy '13,

Gast, Le Boudec, Tomozei — Impact of demand-response on the efficiency and prices in real-time electricity markets.
ACM e-Energy '14,
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