The Power of Two Choices on Graphs: the Pair-Approximation is Accurate

Nicolas Gast

Inria

ACM MAMA Workshop, June 15, 2015, Portland, Oregon

Nicolas Gast - 1 / 25

Motivating scenario is to study incentives in bike-sharing systems

Map of Velib' stations (Paris)

- 1200 stations
- 20k bikes

These system can be viewed as closed queuing-networks

N stations, capacity C bikes per station.

When the number of stations $N \to \infty$, we can show that the model boils down to a single (open) queue. Moving bikes

When the number of stations $N \to \infty$, we can show that the model boils down to a single (open) queue. Moving bikes

$$i \mapsto i + 1$$
 at rate μZ $(i < K)$
 $i \mapsto i - 1$ at rate λ $(i > 0)$

Can we improve performance?

• Even in a uniform scenario, the proportion of problematic stations (*i.e.* empty or full) is at least 1/(C + 1).

What if a user chooses to go to a less crowded station?

In this talk, I study a generalization of the two-choice models

- N identical servers
- Exponential service time

What happens when we restrict the choice to two neighbors?

Outline

2 Construction of the pair approximation equations

- 3 Numerical validation: the pair approximation is accurate!
- 4 Remarks and open questions

Outline

1 The classical two-choice model

2 Construction of the pair approximation equations

3 Numerical validation: the pair approximation is accurate!

4 Remarks and open questions

Two-choice rule: each incoming job/bike is routed to the least loaded of two servers picked at random.

Two-choice rule: each incoming job/bike is routed to the least loaded of two servers picked at random.

Paradigm known as "the power of two choices":

- Comes from balls and bills [Azar et al. 94]:
 - Throw n balls into n bins: what is the maximal number of balls in a bin?
 - ★ log(n) if no choice
 - ★ $\log(\log(n))$ is two choices.
- Drastic improvement of service time in server farm [Vvedenskaya 96, Mitzenmacher 96]
 - $P(\#jobs \ge i)\rho^i$ (no choice)
 - $P(\#jobs \ge i) = 2^{\lambda^{i+1}-1}$ (two choices)
- Interesting advances for non-exponential service times (Bramson 2000, Ramanan 2014)

We use mean-field to solve the two-choice equations

We use mean-field to solve the two-choice equations

Let x_j be the proportion of stations with j bikes.

$$(i\mapsto i-1)$$
 at rate 1
 $(i\mapsto i+1)$ at rate $\lambda(x_i+2\sum_{j=i+1}^\infty x_j)$

Note: the rate of change of x_i has to be multiplied by x_i .

Nicolas Gast - 10 / 25

With no geometry, we can solve the equation in close-form

$$x_i = \lambda^{2^i} - \lambda^{2^{i+1}}$$

Nicolas Gast - 11 / 25

With no geometry, we can solve the equation in close-form

$$x_i = \lambda^{2^i} - \lambda^{2^{i+1}}$$

For bike-sharing, choosing two stations at random, decreases the number of problematic stations from 1/C to $\sqrt{C}2^{-C/2}$

Nicolas Gast - 11 / 25

What if we add geometry?

Mean field do not apply (geometry) :(.

- For balls and bins, the power of two-choice does not work (see [Kenthapadi et al. 06])
- Only numerical results?

Outline

2 Construction of the pair approximation equations

3 Numerical validation: the pair approximation is accurate!

I consider that stations are placed on a ring

Let y_{ij} be the proportion of (ordered) pairs having (i, j) jobs.

Nicolas Gast - 14 / 25

We focus on the transitions that modify i (equations are similar for j). $(i,j) \mapsto (i-1,j)$ at rate 1 departure

We focus on the transitions that modify i (equations are similar for j). $(i,j) \mapsto (i-1,j)$ at rate 1 departure $(i,j) \mapsto (i+1,j)$ at rate $\begin{cases} \lambda & \text{if } i < j \\ \lambda/2 & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}$ arrival on (i,j)

We focus on the transitions that modify i (equations are similar for j). $(i,j) \mapsto (i-1,j)$ at rate 1 departure $(i,j) \mapsto (i+1,j)$ at rate $\begin{cases} \lambda & \text{if } i < j \\ \lambda/2 & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}$ arrival on (i,j) $(i,j) \mapsto (i+1,j)$ at rate $\lambda \left(\underbrace{\frac{1}{2} z_{i,i,j} + \sum_{\ell=i+1}^{\infty} z_{\ell,i,j}}_{=:p_i} \right) / y_{ij}$ arrival on (ℓ, i) ,

where $z_{\ell,i,j}$ is the proportion of triplets.

We focus on the transitions that modify i (equations are similar for j). $(i,j) \mapsto (i-1,j)$ at rate 1 departure $(i,j) \mapsto (i+1,j)$ at rate $\begin{cases} \lambda & \text{if } i < j \\ \lambda/2 & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}$ arrival on (i,j) $(i,j) \mapsto (i+1,j)$ at rate $\lambda \left(\underbrace{\frac{1}{2} z_{i,i,j} + \sum_{\ell=i+1}^{\infty} z_{\ell,i,j}}_{=:p_i} \right) / y_{ij}$ arrival on (ℓ, i) ,

where $z_{\ell,i,j}$ is the proportion of triplets.

The pair approximation is $z_{\ell,i,j} \approx y_{\ell,i}y_{i,j}/x_i$ or: $p_i \approx \frac{Y_{ii}/2 + \sum_{k>i} Y_{ki}}{\sum_k Y_{ki}}.$

Nicolas Gast - 15 / 25

The pair approximation ODE is composed of four terms Y_{ij} decreases at rate:

μY_{ij}	(departure)
$\lambda Y_{i,j}$	(arrival on (i, j) when (i < j))
$\lambda Y_{i,j}/2$	(arrival on (i, i) when i = j)
$\lambda p_i Y_{i,j}$	(arrival on neighbor)

The pair approximation ODE is composed of four terms Y_{ij} decreases at rate:

$$\begin{array}{ll} \mu Y_{ij} & (departure) \\ \lambda Y_{i,j} \frac{2}{k} & (arrival \ on \ (i,j) \ when \ (i < j)) \\ \lambda Y_{i,j}/k & (arrival \ on \ (i,i) \ when \ i = j) \\ \lambda p_i Y_{i,j} 2 \frac{k-1}{k} & (arrival \ on \ neighbor) \end{array}$$

The equations can be generalized to graph with fixed degree $k \ge 2$:

There is no (known) close-form for the fixed point...

...but we can simulate the ODE!

```
for i in range(0,N):
   xi = sum(y[i]);
    if (xi>0):
        p[i] = (sum (y[i][i+1:N]) + y[i][i]/2) / xi;
for i in range(0,N):
    for j in range(0,N):
        if (i>0):
           derivative[i][j] += lam*p[i-1]*y[i-1][j] - mu*y[i][j];
           derivative[i-1][j] += -lam*p[i-1]*y[i-1][j] + mu*y[i][j];
            if (i<=i):
                derivative[i][j] += lam*y[i-1][j];
                derivative[i-1][j] += -lam*y[i-1][j];
           elif(i-1==j):
                derivative[i][j] += lam*y[i-1][j]/2;
                derivative[i-1][i] += -lam*v[i-1][i]/2;
        if (j>0):
           derivative[i][j] += lam*p[j-1]*y[i][j-1] - mu*y[i][j];
           derivative[i][j-1] += -lam*p[j-1]*y[i][j-1] + mu*v[i][i]:
            if (i<=i):
                derivative[i][j] += lam*v[i][j-1];
                derivative[i][j-1] += -lam*y[i][j-1];
           elif (i==j-1):
                derivative[i][j] += lam*y[i][j-1]/2;
                derivative[i][i-1] += -lam*v[i][i-1]/2;
```

Outline

The classical two-choice model

2 Construction of the pair approximation equations

3 Numerical validation: the pair approximation is accurate!

I compare numerically four values

Simu Simulation

Pair-approxFixed point of the pair-approximation ODEODE of size 100×100 .

No choice Theory for the M/M/1 queue $x_i = (1 - \lambda)\lambda^i$ Two-choice Theory (without geometry) $x_i = \lambda^{2^i} - \lambda^{2^{i+1}}$

 $\lambda = 0.7$

 $\lambda = 0.95$

The (steady-state) average queue length is very well approximated by pair-approximation

Nicolas Gast - 22 / 25

Outline

The classical two-choice model

2 Construction of the pair approximation equations

3 Numerical validation: the pair approximation is accurate!

Recap

I study a spatial version of the two-choice model.

- Motivation comes from bike-sharing systems.
- Without geometry, the problem can be solved by using a mean-field approximation (one-choice: $\sum_{j\geq i} x_j = \lambda^i$, two-choice, $\sum_{j\geq i} x_j = \lambda^{2^i-1}$).
- Pair-approximation:
 - How to construct the equations
 - Numerically, they are very accurate

Open questions / Future work

Why does it work so well? (in some other cases, *e.g.*, SIR, it does not)

Is the pair approximation exact? No

For a torus, is the decrease doubly-exponential? No? (recall: two-choice without geometry: $\sum_{j\geq i} x_j = \lambda^{2^i-1}$)

Can we solve analytically the PA equations (or bound?) ?

Can we add heterogeneity? seems OK

Non-exponential service time?

(maybe later)

?

Nicolas Gast - 25 / 25