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Motivating scenario is to study incentives in bike-sharing
systems

1200 stations

20k bikes

Map of Velib’ stations (Paris)
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These system can be viewed as closed queuing-networks

Use it for
a while

λ take an object

Use it for
a while

Expo(1/µ)

return it

Uniform routing

if station full

N stations, capacity C bikes per station.
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When the number of stations N →∞, we can show that
the model boils down to a single (open) queue.

Moving bikes

arrival of bikes

departure of bikes

i 7→ i + 1 at rate µZ (i < K )

i 7→ i − 1 at rate λ (i > 0)
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Can we improve performance?

Even in a uniform scenario, the proportion of problematic stations
(i.e. empty or full) is at least 1/(C + 1).

What if a user chooses to go to a less crowded station?
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In this talk, I study a generalization of the two-choice
models

N identical servers

Exponential service time

Arrival Nλ
Pick two

at random

1

1

What happens when we restrict the choice to two neighbors?

Nicolas Gast – 6 / 25



Outline

1 The classical two-choice model

2 Construction of the pair approximation equations

3 Numerical validation: the pair approximation is accurate!

4 Remarks and open questions
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Two-choice rule: each incoming job/bike is routed to the
least loaded of two servers picked at random.

?

Paradigm known as “the power of two choices”:
Comes from balls and bills [Azar et al. 94]:

I Throw n balls into n bins: what is the maximal number of balls in a
bin?

F log(n) if no choice
F log(log(n)) is two choices.

Drastic improvement of service time in server farm [Vvedenskaya 96,
Mitzenmacher 96]

I P(#jobs ≥ i)ρi (no choice)
I P(#jobs ≥ i) = 2λi+1−1 (two choices)

Interesting advances for non-exponential service times (Bramson
2000, Ramanan 2014)
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We use mean-field to solve the two-choice equations

Arrival Nλ
Pick two

at random

1

1

Let xj be the proportion of stations with j bikes.

(i 7→ i − 1) at rate 1

(i 7→ i + 1) at rate λ(xi + 2
∞∑

j=i+1

xj)

Note: the rate of change of xi has to be multiplied by xi .
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With no geometry, we can solve the equation in close-form

xi = λ2
i − λ2i+1

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

no choice
two-choice (no space)

For bike-sharing, choosing two stations at random, decreases the number
of problematic stations from 1/C to

√
C2−C/2
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What if we add geometry?

Arrival Nλ
Pick two

neighbors
at random

1

1

Mean field do not apply (geometry) :(.

For balls and bins, the power of two-choice does not work (see
[Kenthapadi et al. 06])

Only numerical results?
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I consider that stations are placed on a ring

Arrival Nλ
Pick two

neighbors
at random

1

1

Let yij be the proportion of (ordered) pairs having (i , j) jobs.
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We track the proportion of (ordered) pairs (i , j)

We focus on the transitions that modify i (equations are similar for j).

(i , j) 7→(i − 1, j) at rate 1 departure

(i , j) 7→(i + 1, j) at rate


λ if i < j
λ/2 if i = j

0 if i > j
arrival on (i , j)

(i , j) 7→(i + 1, j) at rate λ

(
1

2
zi ,i ,j +

∞∑
`=i+1

z`,i ,j︸ ︷︷ ︸
=:pi

)
/yij arrival on (`, i),

where z`,i ,j is the proportion of triplets.

The pair approximation is z`,i ,j ≈ y`,iyi ,j/xi or:

pi ≈
Yii/2 +

∑
k>i Yki∑

k Yki
.
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The pair approximation ODE is composed of four terms

Yij decreases at rate:

µYij (departure)

λYi ,j

2

k

(arrival on (i , j) when (i < j))

λYi ,j/2 (arrival on (i , i) when i = j)

λpiYi ,j

2
k − 1

k

(arrival on neighbor)

The equations can be generalized to graph with fixed degree k ≥ 2:
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There is no (known) close-form for the fixed point...
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...but we can simulate the ODE!
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2 Construction of the pair approximation equations

3 Numerical validation: the pair approximation is accurate!

4 Remarks and open questions
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I compare numerically four values

Simu Simulation

Pair-approx Fixed point of the pair-approximation ODE

ODE of size 100× 100.

No choice Theory for the M/M/1 queue xi = (1− λ)λi

Two-choice Theory (without geometry) xi = λ2
i − λ2i+1
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The fixed point of the pair-approximation is close to the
system’s steady-state (checked for λ = .5 to λ = .99)

0 5 10 15 20
queue length

0.00

0.05
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n
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Simulation (line)
Pair Approx
One choice
two-choice (non geom)

λ = 0.7
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The (steady-state) average queue length is very well
approximated by pair-approximation
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Simulation (ring)
Simulation (2D torus)
Simu, FD(2)
Simu, FD(4)
Pair Approx (k=2)
Pair Approx (k=4)
One choice
mean-field approx.
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Recap

I study a spatial version of the two-choice model.

Motivation comes from bike-sharing systems.

Without geometry, the problem can be solved by using a mean-field

approximation (one-choice:
∑
j≥i

xj = λi , two-choice,
∑
j≥i

xj = λ2
i−1).

Pair-approximation:
I How to construct the equations
I Numerically, they are very accurate
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Open questions / Future work

Why does it work so well? ?
(in some other cases, e.g., SIR, it does not)

Is the pair approximation exact? No

For a torus, is the decrease doubly-exponential? No?

(recall: two-choice without geometry:
∑

j≥i xj = λ2
i−1)

Can we solve analytically the PA equations (or bound?) ?

Can we add heterogeneity? seems OK

Non-exponential service time? (maybe later)
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