The Power of Two Choices on Graphs: the Pair-Approximation is Accurate

Nicolas Gast

Inria
ACM MAMA Workshop, June 15, 2015, Portland, Oregon

Motivating scenario is to study incentives in bike-sharing systems

- 1200 stations
- 20k bikes

Map of Velib' stations (Paris)

These system can be viewed as closed queuing-networks

N stations, capacity C bikes per station.

When the number of stations $N \rightarrow \infty$, we can show that the model boils down to a single (open) queue.
Moving bikes

When the number of stations $N \rightarrow \infty$, we can show that the model boils down to a single (open) queue.

Moving bikes

Can we improve performance?

- Even in a uniform scenario, the proportion of problematic stations (i.e. empty or full) is at least $1 /(C+1)$.

What if a user chooses to go to a less crowded station?

In this talk, I study a generalization of the two-choice models

- N identical servers
- Exponential service time

What happens when we restrict the choice to two neighbors?

Outline

(1) The classical two-choice model
(2) Construction of the pair approximation equations
(3) Numerical validation: the pair approximation is accurate!
(4) Remarks and open questions

Outline

(1) The classical two-choice model
(2) Construction of the pair approximation equations
(3) Numerical validation: the pair approximation is accurate!

4 Remarks and open questions

Two-choice rule: each incoming job/bike is routed to the least loaded of two servers picked at random.

$$
0-?>
$$

Two-choice rule: each incoming job/bike is routed to the least loaded of two servers picked at random.

Paradigm known as "the power of two choices":

- Comes from balls and bills [Azar et al. 94]:
- Throw n balls into n bins: what is the maximal number of balls in a bin?
$\star \log (n)$ if no choice
$\star \log (\log (n))$ is two choices.
- Drastic improvement of service time in server farm [Vvedenskaya 96, Mitzenmacher 96]
- $P(\# j o b s \geq i) \rho^{i}$ (no choice)
- $P(\# j o b s \geq i)=2^{\lambda^{i+1}-1}$ (two choices)
- Interesting advances for non-exponential service times (Bramson 2000, Ramanan 2014)

We use mean-field to solve the two-choice equations

We use mean-field to solve the two-choice equations

Let x_{j} be the proportion of stations with j bikes.

$$
\begin{aligned}
& (i \mapsto i-1) \text { at rate } 1 \\
& (i \mapsto i+1) \text { at rate } \lambda\left(x_{i}+2 \sum_{j=i+1}^{\infty} x_{j}\right)
\end{aligned}
$$

Note: the rate of change of x_{i} has to be multiplied by x_{i}.

With no geometry, we can solve the equation in close-form

$$
x_{i}=\lambda^{2^{i}}-\lambda^{2^{i+1}}
$$

For bike-sharing, choosing two stations at random, decreases the number of problematic stations from $1 / C$ to $\sqrt{C} 2^{-C / 2}$

With no geometry, we can solve the equation in close-form

$$
x_{i}=\lambda^{2^{i}}-\lambda^{2^{i+1}}
$$

For bike-sharing, choosing two stations at random, decreases the number of problematic stations from $1 / C$ to $\sqrt{C} 2^{-C / 2}$

What if we add geometry?

Mean field do not apply (geometry) :(.

- For balls and bins, the power of two-choice does not work (see [Kenthapadi et al. 06])
- Only numerical results?

Outline

(1) The classical two-choice model
(2) Construction of the pair approximation equations
(3) Numerical validation: the pair approximation is accurate!

4 Remarks and open questions

I consider that stations are placed on a ring

Let $y_{i j}$ be the proportion of (ordered) pairs having (i, j) jobs.

We track the proportion of (ordered) pairs (i, j)

We focus on the transitions that modify i (equations are similar for j).
$(i, j) \mapsto(i-1, j)$ at rate 1
departure

We track the proportion of (ordered) pairs (i, j)

We focus on the transitions that modify i (equations are similar for j).
$(i, j) \mapsto(i-1, j)$ at rate 1
departure
$(i, j) \mapsto(i+1, j) \quad$ at rate $\left\{\begin{array}{cl}\lambda & \text { if } i<j \\ \lambda / 2 & \text { if } i=j \\ 0 & \text { if } i>j\end{array} \quad\right.$ arrival on (i, j)

We track the proportion of (ordered) pairs (i, j)

We focus on the transitions that modify i (equations are similar for j).
$(i, j) \mapsto(i-1, j)$ at rate 1
departure

$$
\begin{aligned}
& (i, j) \mapsto(i+1, j) \text { at rate }\left\{\begin{array}{cc}
\lambda & \text { if } i<j \\
\lambda / 2 & \text { if } i=j \\
0 & \text { if } i>j
\end{array}\right. \\
& (i, j) \mapsto(i+1, j) \text { at rate } \lambda(\underbrace{\frac{1}{2} z_{i, i, j}+\sum_{\ell=i+1}^{\infty} z_{\ell, i, j}}_{=: p_{i}}) / y_{i j} \quad \text { arrival on }(i, j)
\end{aligned}
$$

where $z_{\ell, i, j}$ is the proportion of triplets.

We track the proportion of (ordered) pairs (i, j)

We focus on the transitions that modify i (equations are similar for j).

$$
\begin{array}{ll}
(i, j) \mapsto(i-1, j) & \text { at rate } 1 \\
(i, j) \mapsto(i+1, j) & \text { at rate }\left\{\begin{array}{cc}
\lambda & \text { if } i<j \\
\lambda / 2 & \text { if } i=j \\
0 & \text { if } i>j
\end{array}\right. \\
(i, j) \mapsto(i+1, j) \text { at rate } \lambda(\underbrace{\frac{1}{2} z_{i, i, j}+\sum_{\ell=i+1}^{\infty} z_{\ell, i, j}}_{=: p_{i}}) / y_{i j} & \text { arrival on }(i, j)
\end{array}
$$

where $z_{\ell, i, j}$ is the proportion of triplets.

The pair approximation is $z_{\ell, i, j} \approx y_{\ell, i} y_{i, j} / x_{i}$ or:

$$
p_{i} \approx \frac{Y_{i i} / 2+\sum_{k>i} Y_{k i}}{\sum_{k} Y_{k i}}
$$

The pair approximation ODE is composed of four terms
$Y_{i j}$ decreases at rate:

$$
\begin{aligned}
& \mu Y_{i j} \\
& \lambda Y_{i, j} \\
& \lambda Y_{i, j} / 2 \\
& \lambda p_{i} Y_{i, j}
\end{aligned}
$$

(departure)

$$
\text { (arrival on }(i, j) \text { when }(i<j))
$$

$$
\text { (arrival on }(i, i) \text { when } i=j \text {) }
$$

(arrival on neighbor)

The pair approximation ODE is composed of four terms $Y_{i j}$ decreases at rate:
$\mu Y_{i j}$
$\lambda Y_{i, j} \frac{2}{k}$
$\lambda Y_{i, j} / k$
$\lambda p_{i} Y_{i, j} 2 \frac{k-1}{k}$
(departure)
(arrival on (i, j) when $(i<j)$)
(arrival on (i, i) when $i=j$)
(arrival on neighbor)

The equations can be generalized to graph with fixed degree $k \geq 2$:

(a) 2 D torus

(b) Fixed degree $k=3$

There is no (known) close-form for the fixed point...

...but we can simulate the ODE!

```
for i in range(0,N):
    xi = sum(y[i]);
    if (xi>0):
        p[i] = (sum (y[i][i+1:N]) + y[i][i]/2) / xi;
for i in range(0,N):
    for j in range(0,N):
        if (i>0):
            derivative[i][j] += lam*p[i-1]*y[i-1][j] - mu*y[i][j];
            derivative[i-1][j] += -lam*p[i-1]*y[i-1][j] + mu*y[i][j];
            if (i<=j):
                derivative[i][j] += lam*y[i-1][j];
                derivative[i-1][j] += -lam*y[i-1][j];
        elif(i-1==j):
                derivative[i][j] += lam*y[i-1][j]/2;
                derivative[i-1][j] += -lam*y[i-1][j]/2;
    if (j>0):
        derivative[i][j] += lam*p[j-1]*y[i][j-1] - mu*y[i][j];
        derivative[i][j-1] += -lam*p[j-1]*y[i][j-1] + mu*y[i][j];
        if (j<=i):
            derivative[i][j] += lam*y[i][j-1];
            derivative[i][j-1] += -lam*y[i][j-1];
        elif (i==j-1):
            derivative[i][j] += lam*y[i][j-1]/2;
            derivative[i][j-1] += -lam*y[i][j-1]/2;
```


Outline

(1) The classical two-choice model

(2) Construction of the pair approximation equations
(3) Numerical validation: the pair approximation is accurate!

I compare numerically four values

Simu
Simulation

Pair-approx Fixed point of the pair-approximation ODE ODE of size 100×100.

No choice Theory for the $M / M / 1$ queue

Two-choice Theory (without geometry)
$x_{i}=(1-\lambda) \lambda^{i}$
$x_{i}=\lambda^{2^{i}}-\lambda^{2^{i+1}}$

The fixed point of the pair-approximation is close to the system's steady-state (checked for $\lambda=.5$ to $\lambda=.99$)

The fixed point of the pair-approximation is close to the system's steady-state (checked for $\lambda=.5$ to $\lambda=.99$)

$$
\lambda=0.7
$$

The fixed point of the pair-approximation is close to the system's steady-state (checked for $\lambda=.5$ to $\lambda=.99$)

The fixed point of the pair-approximation is close to the system's steady-state (checked for $\lambda=.5$ to $\lambda=.99$)

$$
\lambda=0.95
$$

The fixed point of the pair-approximation is close to the system's steady-state (checked for $\lambda=.5$ to $\lambda=.99$)

The (steady-state) average queue length is very well approximated by pair-approximation

Outline

(1) The classical two-choice model

(2) Construction of the pair approximation equations
(3) Numerical validation: the pair approximation is accurate!
(4) Remarks and open questions

Recap

I study a spatial version of the two-choice model.

- Motivation comes from bike-sharing systems.
- Without geometry, the problem can be solved by using a mean-field approximation (one-choice: $\sum_{j \geq i} x_{j}=\lambda^{i}$, two-choice, $\sum_{j \geq i} x_{j}=\lambda^{2^{i}-1}$).
- Pair-approximation:
- How to construct the equations
- Numerically, they are very accurate

Open questions / Future work

Why does it work so well?
(in some other cases, e.g., SIR, it does not)

Is the pair approximation exact?
No

For a torus, is the decrease doubly-exponential? (recall: two-choice without geometry: $\sum_{j \geq i} x_{j}=\lambda^{2^{i}-1}$)

Can we solve analytically the PA equations (or bound?)
No?

Can we add heterogeneity?
seems OK

Non-exponential service time?
?
(maybe later)

