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A new transportation system.

Bike sharing systems started in the 60s.

Increasing popularity. Ex : Velib’ in Paris (2007).

> 400 cities (and counting). Ex : Barcelona, Montreal, Washington.

Map of Velib’ stations in Paris (France).

Example of Velib’ :

20000 bikes

1500 stations.

Usage :

Take a bike from any
station.

Use it.

Return it to a station
of your choice.
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Public but different from public transportation

Many advantages :

Good for the town (pollution, traffic jams, health) ;

Good for the citizen (not to buy, to park the bike, no risk of theft).

However : congestions problems due to flows and random choices.

Empty station Full station Good stations

:( :( :)︸ ︷︷ ︸
problematic stations
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How to manage them ?

Sizing : number of stations ? bikes ? locations for bikes per station ?

performance : a low number of problematic stations
low number of empty or full stations

time dependent arrival rate : daily period

heterogeneity : popular or non popular stations
(housing and working areas, uphill and downhill stations,...)

Our approach : study the impact of random choices

1 Qualitative behavior and quantitative impact of different factors.

2 Strategies : redistribution (trucks) and incentives (pricing).

Related work :

Traces analysis (Borgnat et al. 10, Vogel et al. 11, Nair et al. 11]

Redistribution based of forcast [Raviv et al. 11, Chemla et al. 09]

Few stochastic models. In a similar context : limiting regime with
infinite capacity [ Malyshev Yakovlev 96, Georges Xia 10]
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The simplest case : homogeneous

C = 4
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For all N stations :

Fixed capacity C

Arrival rate λ.

Routing matrix :
homogeneous.

Travel time :
exponential of
mean 1/µ.

Other destination
chosen if full (≈
local search).

Will be extended to non-homogeneous :

arrival rate, routing probability
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A first result : distribution of stations
We focus on the distribution of occupancy in steady state.

Theorem

There exists ρ, such that in steady state, as N goes to infinity :

xi =
1

N
#{stations with i bikes} ∝ ρi .

We have ρ ≤ 1 iff s ≤ C
2 + λ

µ where s be the average number of bikes per
stations.

s < C
2 + λ

µ s = C
2 + λ

µ s > C
2 + λ

µ

ρ < 1 ρ = 1 ρ < 1
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Proof based on mean field approximation

xi =
1

N
#{stations with i bikes}

∝ ρi

N →∞

For fixed N, Xi is a complica-
ted stochastic process

Reversible process but
steady state not explicit.

System described by an ODE

The ODE has a unique
fixed point.

Closed-form formula.

Use mean field approximation [Kurtz 79]

Study the system when the number of stations N goes to infinity.
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Consequences
Proportion of problematic stations (=empty+full) x0+xC is minimal for

ρ = 1 i.e. s = sc
def
= λ/µ+ C/2

Prop. of problematic stations is at least 2/(C + 1) and “flat” at sc .

Ex : for C = 30 : at least 6.5% of problematic stations.
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(a) C = 30.
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(b) C = 100.

y -axis : Prop. of problematic stations. x-axis : number of bikes/station s.
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A first rule : “two choices” rule.

Users can observe the occupation of stations.

Rule : choose the least loaded among 2 stations close to destination
to return the bike.

Paradigm known as “the power of two choices” :

Used in balls and bills [Azar et al. 94]

Supermarket model, server farm [Vvedenskaya 96, Mitzenmacher 96]

Characteristics of bike-sharing systems :

1 Finite capacity of stations.

2 Local search (choice among neighbors).
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Two choices – finite capacity but no geometry
With no geometry, we can solve in close-form.

Proof uses similar mean field argument.

Choosing two stations at random, improves perf. from 1/C to 2−C
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Two choices – taking geometry into acount

Problem hard to solve : mean field do not apply (geometry) :(.

Existing results for balls and bins (see [Kenthapadi et al. 06])

Only numerical results exists for server farms (ex : [Mitzenmacher 96])

We rely on simulation

Occupancy of stations
x-axis = occupation of station.
y -axis : proportion of stations.

Recall : with no incentives, the
distribution would be uniform.

Empirically :

with geometry 2D : proportion of problematic stations is ≈ 2−C/2.
(recall : with no-geometry : 2−C , with no incentive : 1/C ).
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Regulation

C = 4

C = 4

C = 4

γ · λ

λ

λ

λ

Same model as before
with a truck

With rate γ · λ :

Take a bike from
the most loaded.

Put it in the least
loaded.

Question : what should be γ ? 10%, 20%, more ?
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Optimal rate of regulation

Recall C is the capacity, s the fleet size and N the number of stations.

Theorem

As N goes to infinity, we have :

The number of problematic stations decreases as γ increases.

If γ > 1
2[C−(s−λ/µ)]−1 , then there is no problematic stations.

For example : if s = C
2 + λ

µ , a regulation rate of 1/(C − 1) suffices.

Proof. Again mean field approximation but with discontinuous dynamics

The dynamical system is described by a differential inclusion

ẋ ∈ F (x).

The DI has a unique solution. We can solve in close-form.
See [Gast Gaujal 2010].
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Optimal rate of regulation, illustration
Example : capacity is C = 10. Fleet size is 3,5 or 7 bikes/stations.

1 No regulation, γ = 0

s = 3 s = 5 s = 7

2 Regulation (γ = 10%).

x-axis = occupancy of stations, from 0 to 10.
y -axis = proportion of stations.
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Conclusion on the homogeneous model

prop. of problematic stations ex : N = 30

Original model 1/C 6.5%

Two choices (random) 2−C 10−9 ≈ 0

(geom) 2−C/2 10−4.5

Regulation γ > 1
C−1 0 γ = .032

However : as mentioned before, there are some important factor :

time dependent arrival rate : daily period

heterogeneity : popular or non popular stations
(housing and working areas, uphill and downhill stations,...)
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Heterogeneous model

C1 = 5

C2 = 3

C3 = 4

λ1

λ2

λ3

p3 µ

p2 µ

For each station i :

Fixed capacity Ci

Arrival rate λi .

Popularity of station
P.

Travel time :
exponential of mean
1/µij .

Local search if full.
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Steady state performance
There are N stations. Assume that as N goes to infinity, the popularity of
the parameters pi = (λi , pi ) goes to some distribution.

Theorem (Propagation of chaos-like result)

There exists a function ρ(p) such that for all k, if stations 1, . . . k have
parameter p1, . . . pk , then, as N goes to infinity :

P(#{bikes in stations j} = ij for j = 1..k) ∝
k∏

j=1

ρ(pj)
ij

Depending on popularity, stations have different behaviors :
Popular start → Popular destination
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Steady-state performance : numerical example

In general, ρ is the solution of a fixed-point equation.

Can be plotted in closed form for particular cases.

Figure: Two types of stations : popular and non-popular for arrivals : λ1/λ2 = 2.
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Current and future work

Good understanding of the symmetric model

Performance poor : 1/C problematic stations (even for
symmetric !).

Simple incentives helps a lot : 2−C/2.

Optimal regulation rate is function of capacity : 1/C .

Current and future work

Building a realistic model of Paris (using traces).

Analyze transient and steady-state behavior.

Difference effect of flows vs random perturbations.

Develop model to approximate the influence of geometry.
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