Sizing, Incentives and Regulations in Bike-sharing Systems

Nicolas Gast ${ }^{1}$

Informs Meeting 2011, Charlotte, NC

1. joint work with Christine Fricker (Inria)

Outline

(1) Introduction and model
(2) Detailed study of the homogeneous case
(3) Adding some Heterogeneity
(4) Current and future work

A new transportation system.

- Bike sharing systems started in the 60s.
- Increasing popularity. Ex : Velib' in Paris (2007).
- >400 cities (and counting). Ex : Barcelona, Montreal, Washington.

Example of Velib' :

- 20000 bikes
- 1500 stations.

Usage :

- Take a bike from any station.
- Use it.
- Return it to a station of your choice.
Map of Velib' stations in Paris (France).

Public but different from public transportation

Many advantages :

- Good for the town (pollution, traffic jams, health);
- Good for the citizen (not to buy, to park the bike, no risk of theft).

However : congestions problems due to flows and random choices.

How to manage them?

- Sizing : number of stations? bikes? locations for bikes per station?
- performance : a low number of problematic stations
- low number of empty or full stations
- time dependent arrival rate : daily period
- heterogeneity : popular or non popular stations (housing and working areas, uphill and downhill stations,...)

Our approach : study the impact of random choices

(1) Qualitative behavior and quantitative impact of different factors.
(2) Strategies : redistribution (trucks) and incentives (pricing).

Related work:

- Traces analysis (Borgnat et al. 10, Vogel et al. 11, Nair et al. 11]
- Redistribution based of forcast [Raviv et al. 11, Chemla et al. 09]
- Few stochastic models. In a similar context : limiting regime with infinite capacity [Malyshev Yakovlev 96, Georges Xia 10]

Outline

(1) Introduction and model

(2) Detailed study of the homogeneous case

(3) Adding some Heterogeneity

(4) Current and future work

The simplest case : homogeneous

$$
C=4
$$

$$
C=4
$$

For all N stations :

- Fixed capacity C

0

Will be extended to non-homogeneous :

- arrival rate, routing probability

The simplest case : homogeneous

$$
C=4
$$

For all N stations :

- Fixed capacity C
- Arrival rate λ.

Will be extended to non-homogeneous :

- arrival rate, routing probability

The simplest case : homogeneous

For all N stations :

- Fixed capacity C
- Arrival rate λ.
- Routing matrix : homogeneous.
- Travel time : exponential of mean $1 / \mu$.

Will be extended to non-homogeneous :

- arrival rate, routing probability

The simplest case : homogeneous

$$
C=4
$$

For all N stations :

- Fixed capacity C
- Arrival rate λ.
- Routing matrix : homogeneous.
- Travel time : exponential of mean $1 / \mu$.
- Other destination chosen if full (\approx local search).

Will be extended to non-homogeneous :

- arrival rate, routing probability

A first result : distribution of stations

We focus on the distribution of occupancy in steady state.

Theorem

There exists ρ, such that in steady state, as N goes to infinity :

$$
x_{i}=\frac{1}{N} \#\{\text { stations with i bikes }\} \propto \rho^{i}
$$

We have $\rho \leq 1$ iff $s \leq \frac{C}{2}+\frac{\lambda}{\mu}$ where s be the average number of bikes per stations.

$$
s<\frac{C}{2}+\frac{\lambda}{\mu}
$$

$$
\rho<1
$$

$$
s=\frac{C}{2}+\frac{\lambda}{\mu}
$$

$$
s>\frac{C}{2}+\frac{\lambda}{\mu}
$$

$\rho=1$

Proof based on mean field approximation

$$
x_{i}=\frac{1}{N} \#\{\text { stations with i bikes }\}
$$

For fixed N, X_{i} is a complicated stochastic process

- Reversible process but steady state not explicit.

Proof based on mean field approximation

$$
x_{i}=\frac{1}{N} \#\{\text { stations with i bikes }\} \propto \rho^{i}
$$

For fixed N, X_{i} is a complicated stochastic process

- Reversible process but steady state not explicit.

System described by an ODE

- The ODE has a unique fixed point.
- Closed-form formula.

Use mean field approximation [Kurtz 79]

- Study the system when the number of stations N goes to infinity.

Consequences

Proportion of problematic stations (=empty + full $) x_{0}+x_{C}$ is minimal for

$$
\rho=1 \quad \text { i.e. } \quad s=s_{c} \stackrel{\text { def }}{=} \lambda / \mu+C / 2
$$

- Prop. of problematic stations is at least $2 /(C+1)$ and "flat" at s_{C}. Ex : for $C=30$: at least 6.5% of problematic stations.

(a) $\stackrel{\text { Number thbuses per sataon: }}{=} 30$.

(b) $C=100$.
y-axis : Prop. of problematic stations. x-axis : number of bikes/station s.

A first rule : "two choices" rule.

Users can observe the occupation of stations.

- Rule : choose the least loaded among 2 stations close to destination to return the bike.

Paradigm known as "the power of two choices" :

- Used in balls and bills [Azar et al. 94]
- Supermarket model, server farm [Vvedenskaya 96, Mitzenmacher 96]

Characteristics of bike-sharing systems :
(1) Finite capacity of stations.
(2) Local search (choice among neighbors).

Two choices - finite capacity but no geometry

With no geometry, we can solve in close-form.

- Proof uses similar mean field argument.

Choosing two stations at random, improves perf. from $1 / C$ to 2^{-C}

Two choices - taking geometry into acount

Problem hard to solve : mean field do not apply (geometry) :(.

- Existing results for balls and bins (see [Kenthapadi et al. 06])
- Only numerical results exists for server farms (ex : [Mitzenmacher 96])

We rely on simulation
Occupancy of stations
x-axis $=$ occupation of station. y-axis : proportion of stations.

Recall : with no incentives, the distribution would be uniform.

Empirically :

- with geometry 2D : proportion of problematic stations is $\approx 2^{-C / 2}$. (recall : with no-geometry : 2^{-C}, with no incentive : $1 / C$).

Regulation

Same model as before with a truck

Regulation

Same model as before with a truck

With rate $\gamma \cdot \lambda$:

- Take a bike from the most loaded.
- Put it in the least loaded.

Question: what should be γ ? $10 \%, 20 \%$, more?

Regulation

Same model as before with a truck

With rate $\gamma \cdot \lambda$:

- Take a bike from the most loaded.
- Put it in the least loaded.

Question: what should be γ ? $10 \%, 20 \%$, more?

Regulation

Same model as before with a truck

With rate $\gamma \cdot \lambda$:

- Take a bike from the most loaded.
- Put it in the least loaded.

Question: what should be γ ? $10 \%, 20 \%$, more?

Optimal rate of regulation

Recall C is the capacity, s the fleet size and N the number of stations.

Theorem

As N goes to infinity, we have :

- The number of problematic stations decreases as γ increases.
- If $\gamma>\frac{1}{2[C-(s-\lambda / \mu)]-1}$, then there is no problematic stations.

For example : if $s=\frac{C}{2}+\frac{\lambda}{\mu}$, a regulation rate of $1 /(C-1)$ suffices.
Proof. Again mean field approximation but with discontinuous dynamics

- The dynamical system is described by a differential inclusion

$$
\dot{x} \in F(x)
$$

- The DI has a unique solution. We can solve in close-form. See [Gast Gaujal 2010].

Optimal rate of regulation, illustration

Example : capacity is $C=10$. Fleet size is 3,5 or 7 bikes/stations.
(1) No regulation, $\gamma=0$

(2) Regulation $(\gamma=10 \%)$.

x-axis $=$ occupancy of stations, from 0 to 10.
y-axis $=$ proportion of stations.

Conclusion on the homogeneous model

		prop. of problematic stations	ex $: N=30$
Original model		$1 / C$	6.5%
Two choices	$($ random $)$	2^{-C}	$10^{-9} \approx 0$
	$($ geom $)$	$2^{-C / 2}$	$10^{-4.5}$
Regulation	$\gamma>\frac{1}{C-1}$	0	$\gamma=.032$

However : as mentioned before, there are some important factor :

- time dependent arrival rate: daily period
- heterogeneity : popular or non popular stations (housing and working areas, uphill and downhill stations,...)

Outline

(1) Introduction and model

(2) Detailed study of the homogeneous case
(3) Adding some Heterogeneity
(4) Current and future work

Heterogeneous model

$$
C_{2}=3
$$

$C_{3}=4$

For each station i :

- Fixed capacity C_{i}

Heterogeneous model

For each station i :

- Fixed capacity C_{i}
- Arrival rate λ_{i}.

Heterogeneous model

For each station i :

- Fixed capacity C_{i}
- Arrival rate λ_{i}.
- Popularity of station P.
- Travel time : exponential of mean $1 / \mu_{i j}$.
- Local search if full.

Steady state performance

There are N stations. Assume that as N goes to infinity, the popularity of the parameters $p_{i}=\left(\lambda_{i}, p_{i}\right)$ goes to some distribution.

Theorem (Propagation of chaos-like result)
There exists a function $\rho(p)$ such that for all k, if stations $1, \ldots k$ have parameter $p_{1}, \ldots p_{k}$, then, as N goes to infinity :

$$
P\left(\#\{\text { bikes in stations } \mathrm{j}\}=i_{j} \text { for } j=1 . . k\right) \propto \prod_{j=1}^{k} \rho\left(p_{j}\right)^{i_{j}}
$$

Depending on popularity, stations have different behaviors :

Popular start

Popular destination

Steady-state performance : numerical example

- In general, ρ is the solution of a fixed-point equation.
- Can be plotted in closed form for particular cases.

Figure: Two types of stations : popular and non-popular for arrivals : $\lambda_{1} / \lambda_{2}=2$.

Outline

(1) Introduction and model

(2) Detailed study of the homogeneous case
(3) Adding some Heterogeneity
(4) Current and future work

Current and future work

Good understanding of the symmetric model

- Performance poor : 1/C problematic stations (even for symmetric!).
- Simple incentives helps a lot: $2^{-C / 2}$.
- Optimal regulation rate is function of capacity : $1 / C$.

Current and future work

- Building a realistic model of Paris (using traces).
- Analyze transient and steady-state behavior.
- Difference effect of flows vs random perturbations.
- Develop model to approximate the influence of geometry.

