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A new transportation system.

@ Bike sharing systems started in the 60s.
@ Increasing popularity. Ex : Velib' in Paris (2007).
@ > 400 cities (and counting). Ex : Barcelona, Montreal, Washington.

Example of Velib’ :
@ 20000 bikes
@ 1500 stations.

Usage :

@ Take a bike from any
station.

o Use it.

@ Return it to a station
of your choice.

Map of Velib' stations in Paris (France).
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Public but different from public transportation

Many advantages :
@ Good for the town (pollution, traffic jams, health);
@ Good for the citizen (not to buy, to park the bike, no risk of theft).

However : congestions problems due to flows and random choices.

Empty station Full station Good stations

TV
problematic stations
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How to manage them?

@ Sizing : number of stations? bikes 7 locations for bikes per station ?
@ performance : a low number of problematic stations
e low number of empty or full stations

@ time dependent arrival rate : daily period

@ heterogeneity : popular or non popular stations
(housing and working areas, uphill and downhill stations,...)

Our approach : study the impact of random choices
© Qualitative behavior and quantitative impact of different factors.

@ Strategies : redistribution (trucks) and incentives (pricing).

Related work :
@ Traces analysis (Borgnat et al. 10, Vogel et al. 11, Nair et al. 11]
@ Redistribution based of forcast [Raviv et al. 11, Chemla et al. 09]

@ Few stochastic models. In a similar context : limiting regime with
infinite capacity [ Malyshev Yakovlev 96, Georges Xia 10]
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© Detailed study of the homogeneous case
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The simplest case : homogeneous

C=4

MNo 3

C—4 For all N stations :

@ Fixed capacity C

Will be extended to non-homogeneous :
@ arrival rate, routing probability
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A first result : distribution of stations

We focus on the distribution of occupancy in steady state
Theorem

There exists p, such that in steady state, as N goes to infinity
1 . c ;
= N#{statlons with i bikes} o p'.

We have p < 1 iffs < % I ﬁ where s be the average number of bikes per
stations.

p<l1 p < 1

Homogeneous case
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Proof based on mean field approximation

1
Xj = N#{stations with i bikes}

For fixed N, X; is a complica-
ted stochastic process

@ Reversible process but
steady state not explicit.
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Proof based on mean field approximation

1 )
Xj = N#{stations with i bikes}ox pf

N — oo
For fixed N, X; is a complica- System described by an ODE
ted stochastic process @ The ODE has a unique
@ Reversible process but fixed point.
steady state not explicit. @ Closed-form formula.

Use mean field approximation [Kurtz 79]

@ Study the system when the number of stations N goes to infinity.
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Consequences
Proportion of problematic stations (:empty+fu||) Xo+Xc is minimal for

p=1 e s=s & )\/,u—i-C/Z
@ Prop. of problematic stations is at least 2/(C + 1) and “flat” at s..

Ex : for C =30 : at least 6.5% of problematic stations.
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Number of bikes per station: 5 Number of bikes per station: s

(a) C = 30. (b) =100.

y-axis : Prop. of problematic stations. x-axis : number of bikes/station s.
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A first rule : “two choices” rule.

Users can observe the occupation of stations.

@ Rule : choose the least loaded among 2 stations close to destination
to return the bike.

Paradigm known as “the power of two choices” :
@ Used in balls and bills [Azar et al. 94]

@ Supermarket model, server farm [Vvedenskaya 96, Mitzenmacher 96]

Characteristics of bike-sharing systems :
@ Finite capacity of stations.
@ Local search (choice among neighbors).
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Two choices — finite capacity but no geometry
With no geometry, we can solve in close-form.

@ Proof uses similar mean field argument.

Proportion of problematic stations

i~ " . A .
5 10 15 20 25 30c N 35 40
T 22"empty x full

2 empty 2full

Choosing two stations at random, improves perf. from 1/C to 2=¢
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Two choices — taking geometry into acount

Problem hard to solve : mean field do not apply (geometry) (.
@ Existing results for balls and bins (see [Kenthapadi et al. 06])

@ Only numerical results exists for server farms (ex : [Mitzenmacher 96])

We rely on simulation

Occupancy of stations
x-axis = occupation of station.
y-axis : proportion of stations.

- Recall : with no incentives, the
distribution would be uniform.

Empirically :
@ with geometry 2D : proportion of problematic stations is ~ 2~ /2,

(recall : with no-geometry : 2=¢, with no incentive : 1/C).
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Regulation
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Optimal rate of regulation

Recall C is the capacity, s the fleet size and N the number of stations.
Theorem
As N goes to infinity, we have :

@ The number of problematic stations decreases as y increases.

o If~y> Wlk/u)]—l then there is no problematic stations.

C

For example : if s = 5 + % a regulation rate of 1/(C — 1) suffices.

Proof. Again mean field approximation but with discontinuous dynamics

@ The dynamical system is described by a differential inclusion
x € F(x).

@ The DI has a unique solution. We can solve in close-form.
See [Gast Gaujal 2010].

Introduction and model Homogeneous case Heterogeneous case Current and future work 15/23



Optimal rate of regulation, illustration
Example : capacity is C = 10. Fleet size is 3,5 or 7 bikes/stations.

Q@ No regulatlon v=20

(2] Regulatlon v =10%).

x-axis = occupancy of stations, from 0 to 10.
y-axis = proportion of stations.
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Conclusion on the homogeneous model

prop. of problematic stations | ex : N =30
Original model 1/C 6.5%
Two choices  (random) 2=¢ 1079 ~0
(geom) 2-C/2 10745
Regulation v > ﬁ 0 v =.032

However : as mentioned before, there are some important factor :

@ time dependent arrival rate : daily period

@ heterogeneity : popular or non popular stations
(housing and working areas, uphill and downhill stations,...)
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Outline

0 Adding some Heterogeneity
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Heterogeneous model

G =3
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@ Fixed capacity C;
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Heterogeneous model

G =3
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Heterogeneous model
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Heterogeneous case

For each station i :

Fixed capacity C;
Arrival rate \;.

Popularity of station
P.

Travel time :
exponential of mean
1/ i

Local search if full.
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Steady state performance

There are N stations. Assume that as N goes to infinity, the popularity of
the parameters p; = (\;, pi) goes to some distribution.

Theorem (Propagation of chaos-like result)

There exists a function p(p) such that for all k, if stations 1,...k have
parameter p1, ... px, then, as N goes to infinity :

k
P(#{bikes in stations j} = ij for j = 1..k) o Hp(Pj)ij

j=1

Depending on popularity, stations have different behaviors :

Popular start Popular destination

Heterogeneous case 20/23



Steady-state performance : numerical example

@ In general, p is the solution of a fixed-point equation.
@ Can be plotted in closed form for particular cases.
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Figure: Two types of stations : popular and non-popular for arrivals : A1 /A, = 2.
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Outline

@ Current and future work

:
Introduction and model Homogeneous case Heterogeneous case Current and future work  22/23



Current and future work

Good understanding of the symmetric model
@ Performance poor : 1/C problematic stations (even for
symmetric!).
@ Simple incentives helps a lot : 27¢/2.

@ Optimal regulation rate is function of capacity : 1/C.

Current and future work
@ Building a realistic model of Paris (using traces).
@ Analyze transient and steady-state behavior.

o Difference effect of flows vs random perturbations.

@ Develop model to approximate the influence of geometry.
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