Sizing, Incentives and Redistribution in Bike-sharing Systems

Nicolas Gast 1

G-scop seminar, dec 2011, Grenoble

Outline

- 1 Introduction and model
- 2 Detailed study of the homogeneous case
- 3 Adding some Heterogeneity
- Conclusion and future work

A new transportation system.

- Bike sharing systems started in the 60s.
- Increasing popularity since Velib' in Paris (2007).
- > 400 cities. Ex: Lausanne, Barcelona, Montreal, Washington.
- Various size : from 200 to more than 50000 bikes.

Map of Velib' stations in Paris (France).

Example of Velib':

- 20000 bikes
- 2000 stations.

Usage :

- Take a bike from any station.
- Use it.
- Return it to a station of your choice.

Public but different from public transportation

Business model (in most of the cities)

• publicity in exchange of guarantee of service.

Many advantages:

- Good for the town (pollution, traffic jams, health, image);
- Good for the citizen (cheap, quick, no bike to buy, no risk of theft).

However: congestions problems.

problematic stations

Goal of city: minimize the number of problematic stations.

Goal of operator: minimize the running cost.

How to manage them?

Identify bottlenecks:

- time dependent arrival rate : daily period
- heterogeneity: popular or non popular stations
 (housing and working areas, uphill and downhill stations,...)
- random choices of users.

Strategic decisions

- Planning: number of stations, location, size.
- Long term operation decisions : static pricing, number of bikes.
- Short term operating decisions: dynamic pricing, repositioning.

Research challenges:

- Quantify what can be asked by the city.
- Modelling: temporal and spacial dependencies.

Our approach

Congestion due to flows and random choices

In this talk: study the impact of random choices

- Qualitative behavior and quantitative impact of different factors.
- 2 Strategies: redistribution (trucks) and incentives (pricing).

Related work:

- Traces analysis, clustering (Borgnat et al. 10, Vogel et al. 11, Nair et al. 11]
- Redistribution based of forecast [Raviv et al. 11, Chemla et al. 09]
- Few stochastic models. In a similar context: limiting regime with infinite capacity [Malyshev Yakovlev 96, Georges Xia 10]

Outline

- Introduction and model
- 2 Detailed study of the homogeneous case
- 3 Adding some Heterogeneity
- Conclusion and future work

$$C = 4$$

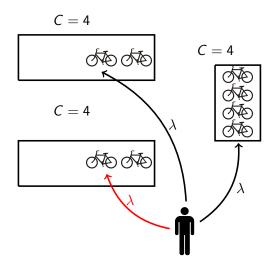
$$C = 4$$

$$C = 4$$

For all *N* stations :

Fixed capacity C

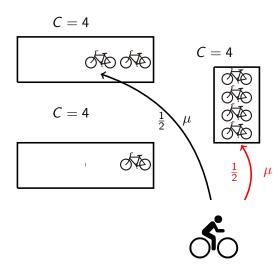
Will be extended to non-homogeneous :



For all N stations:

- Fixed capacity C
- Arrival rate λ .

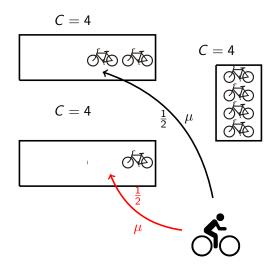
Will be extended to non-homogeneous:



For all N stations:

- Fixed capacity C
- Arrival rate λ .
- Routing matrix : homogeneous.
- Travel time : exponential of mean $1/\mu$.

Will be extended to non-homogeneous :



For all N stations:

- Fixed capacity C
- Arrival rate λ .
- Routing matrix : homogeneous.
- Travel time : exponential of mean $1/\mu$.
- Other destination chosen if full (\approx local search).

Will be extended to non-homogeneous:

A first result : steady state distribution of stations

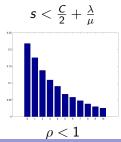
• Compute the fraction of station with *i* bikes.

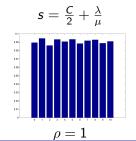
Theorem

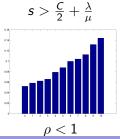
There exists ρ , such that in steady state, as N goes to infinity:

$$x_i = \frac{1}{N} \#\{ \text{stations with i bikes} \} \propto \rho^i.$$

We have $\rho \leq 1$ iff $s \leq \frac{C}{2} + \frac{\lambda}{\mu}$ where s be the average number of bikes per stations.

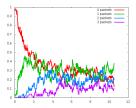






Proof based on mean field approximation

$$x_i = \frac{1}{N} \#\{\text{stations with i bikes}\}$$

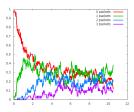


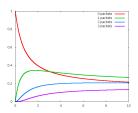
For fixed N, X_i is a complicated stochastic process

 Reversible process but steady state not explicit.

Proof based on mean field approximation

$$x_i = \frac{1}{N} \#\{\text{stations with i bikes}\} \propto \rho^i$$





For fixed N, X_i is a complicated stochastic process

 Reversible process but steady state not explicit. System described by an ODE

- The ODE has a unique fixed point.
- Closed-form formula.

Use mean field approximation [Kurtz 79]

• Study the system when the number of stations *N* goes to infinity.

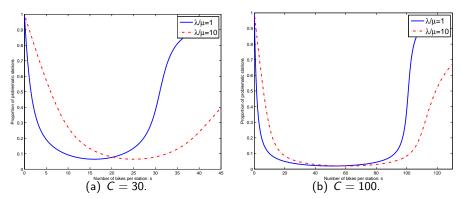
Consequences : optimal performance for $s \approx C/2$

Fraction of problematic stations (=empty+full) x_0+x_C is minimal for

$$\rho = 1$$
 i.e. $s = s_c \stackrel{\text{def}}{=} \lambda/\mu + C/2$

• Prop. of problematic stations is at least 2/(C+1) and "flat" at s_c .

Ex : for C = 30 : at least 6.5% of problematic stations.



y-axis : Prop. of problematic stations. x-axis : number of bikes/station s.

Improvement by dynamic pricing: "two choices" rule

- Users can observe the occupation of stations.
- Users choose the least loaded among 2 stations close to destination to return the bike (ex : force by pricing)

Improvement by dynamic pricing: "two choices" rule

- Users can observe the occupation of stations.
- Users choose the least loaded among 2 stations close to destination to return the bike (ex : force by pricing)

Paradigm known as "the power of two choices":

- Comes from balls and bills [Azar et al. 94]
- Drastic improvment of service time in server farm [Vvedenskaya 96, Mitzenmacher 96]

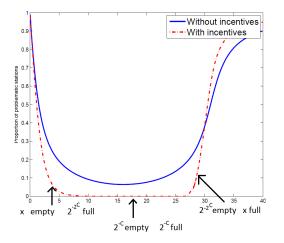
Question: what is the effect on bike-sharing systems? Characteristics:

- Finite capacity of stations.
- 2 Strong geometry : choice among neighbors.

Two choices – finite capacity but no geometry

With no geometry, we can solve in close-form.

• Proof uses similar mean field argument.

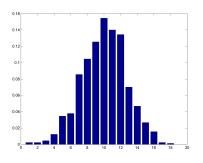


Choosing two stations at random, improves perf. from 1/C to 2^{-C}

Two choices – taking geometry into acount

Problem hard to solve: mean field do not apply (geometry): (.

- Existing results for balls and bins (see [Kenthapadi et al. 06])
- Only numerical results exists for server farms (ex : [Mitzenmacher 96])



We rely on simulation

Occupancy of stations x-axis = occupation of station. y-axis: proportion of stations.

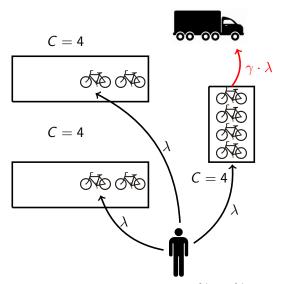
Recall: with no incentives, the distribution would be uniform.

Empirically:

• with geometry 2D : proportion of problematic stations is $\approx 2^{-C/2}$. (recall : with no-geometry : 2^{-C} , with no incentive : 1/C).



Same model as before with a truck

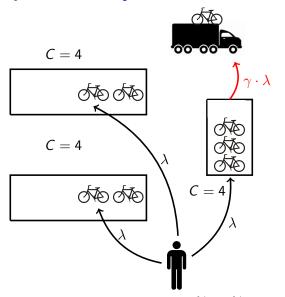


Same model as before with a truck

With rate $\gamma \cdot \lambda$:

- Take a bike from the most loaded.
- Put it in the least loaded.

Question : what should γ be? 10%, 20%, more?

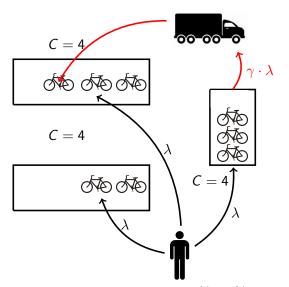


Same model as before with a truck

With rate $\gamma \cdot \lambda$:

- Take a bike from the most loaded.
- Put it in the least loaded.

Question : what should γ be ? 10%, 20%, more ?



Same model as before with a truck

With rate $\gamma \cdot \lambda$:

- Take a bike from the most loaded.
- Put it in the least loaded.

Question : what should γ be ? 10%, 20%, more ?

Optimal rate of regulation is 1/(C-1)

Recall C is the capacity, s the fleet size and N the number of stations.

Theorem

As N goes to infinity, we have :

- ullet The number of problematic stations decreases as γ increases.
- If $\gamma > \frac{1}{2[C-(s-\lambda/\mu)]-1}$, then there is no problematic stations.

For example : if $s=\frac{\mathcal{C}}{2}+\frac{\lambda}{\mu}$, a regulation rate of $1/(\mathcal{C}-1)$ suffices.

Proof. Again mean field approximation but with discontinuous dynamics

The dynamical system is described by a differential inclusion

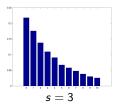
$$\dot{x} \in F(x)$$
.

The DI has a unique solution. We can solve in close-form.
 See [Gast Gaujal 2010].

Optimal rate of regulation, illustration

Example : capacity is C = 10. Fleet size is 3,5 or 7 bikes/stations.

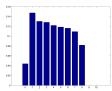
 $\textbf{ 0} \ \ \text{No regulation, } \gamma = \textbf{0}$

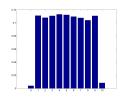


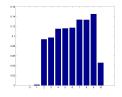
s=5



2 Regulation ($\gamma = 10\%$).







x-axis = occupancy of stations, from 0 to 10. y-axis = proportion of stations.

Conclusion on the homogeneous model

		prop. of problematic stations	ex : $N = 30$
Original model		1/C	6.5%
Two choices	(random)	2 ^{-C}	$10^{-9} \approx 0$
	(geom)	$2^{-C/2}$	$10^{-4.5}$
Regulation	$\gamma > \frac{1}{C-1}$	0	$\gamma = .032$

However: as mentioned before, there are some important factor:

- time dependent arrival rate : daily period
- heterogeneity: popular or non popular stations
 (housing and working areas, uphill and downhill stations,...)

Outline

- Introduction and model
- 2 Detailed study of the homogeneous case
- 3 Adding some Heterogeneity
- Conclusion and future work

Heterogeneous model

$$C_2 = 3$$

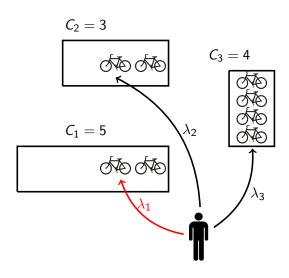
$$C_1 = 5$$

$$C_3 = 4$$

For each station i:

Fixed capacity C_i

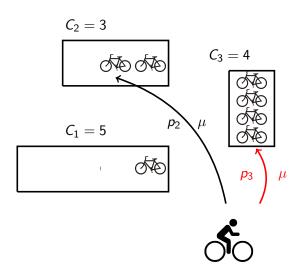
Heterogeneous model



For each station i:

- Fixed capacity C_i
- Arrival rate λ_i .

Heterogeneous model



For each station i:

- Fixed capacity C_i
- Arrival rate λ_i .
- Popularity of station
 p_i.
- Travel time : exponential of mean $1/\mu$.
- Local search if full.

Steady state performance

There are N stations. Assume that as N goes to infinity, the popularity of the parameters $p_i = (\lambda_i, p_i)$ goes to some distribution.

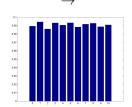
Theorem (Propagation of chaos-like result)

There exists a function $\rho(p)$ such that for all k, if stations $1, \ldots k$ have parameter $p_1, \ldots p_k$, then, as N goes to infinity :

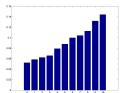
$$P(\#\{\text{bikes in stations j}\} = i_j \text{ for } j = 1..k) \propto \prod_{j=1}^{k} \rho(p_j)^{i_j}$$

Depending on popularity, stations have different behaviors :

Popular start



Popular destination



Steady-state performance: numerical example

- ullet In general, ho is the solution of a fixed-point equation.
- Can be plotted in closed form for particular cases.

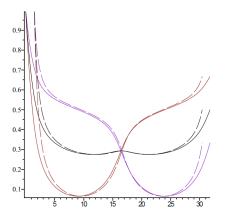


Figure: Two types of stations : popular and non-popular for arrivals : $\lambda_1/\lambda_2=2$.

Outline

- Introduction and model
- 2 Detailed study of the homogeneous case
- 3 Adding some Heterogeneity
- Conclusion and future work

Current and future work

Good understanding of the symmetric model

- Performance poor : 1/C problematic stations (even for symmetric!).
- Simple incentives helps a lot : $2^{-C/2}$.
- Optimal regulation rate is function of capacity : 1/C.

Current and future work

- Building a realistic model of Paris (using traces).
- Analyze transient and steady-state behavior.
- Difference effect of flows vs random perturbations.
- Develop models to approximate the influence of geometry.