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1. Introduction and motivation



Renewables increase volatility

B Europe incentives the
penetration of renewables

» Target: 20% of renewable
energy by 2020.

B Problem = stochasticity

Demand is predictable

Renewables are not —

B Possible solutions:
- Increase reserves
» Use storage

s | , Example: data from the UK
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Storage can mitigate volatility

B Batteries, Pump-hydro

Projects: artificial islands (north sea)
/ \

o Switzerland (mountains) Belgium Copenhagen
A Manmade Island to St
| Green Power Island Could Power Copenhagen . .
- ﬂ Sustainably Wind Energy
ety
S o ke {105 Belgium has plans for an artificial “‘energy atoll" to store excess

wind power in the North Sea.

B Business model:

» Pump when energy is cheap, release when energy is expensive

@ Main question of this paper:
» Is it efficient?




We focus on the real-time market

B Most electricity markets are organized in two stages
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Real-time Market exhibit highly volatile prices

Power Prices in Texas 3000| e ¢
go | /MW January 31,2011 i /

) \
40 |

10+

l\‘ﬁf
[ February 2,201

=10

B Efficiency or Market manipulation?



The first welfare theorem

B Impact of volatility on prices in real time market is studied by
Meyn and co-authors: price volatility is expected

Theorem (Cho and Meyn 2010). When generation
constraints (ramping capabilities) are taken into account:
* Markets are efficient
* Prices are never equal to marginal production costs.

We add storage to the model
B Q1: Still efficiency?

B Q2: Effects on prices?

B Q3: Investments strategies?

[Cho and Meyn, 2010] I. Cho and S. Meyn Efficiency and marginal cost pricing in dynamic competitive markets with friction, Theoretical Economics, 2010 8
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2. System model and dynamic competitive
equilibriums



A Macroscopic Model of Real-time generation and Storage
Randomness (forecast errors)

Assumption: (D —I') ~ Brownian motion
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Demand

D(t) = d®(t) + D(t)

/ u(t) extracted
(or stored) power

Day-ahead | —r,
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|WI < Storage eycle efficiency
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Macroscopic model
B At each time: generation = consumption

G(t) + u(t) = D%¢t)
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A Macroscopic Model of Real-time generation and Storage

RMW ______
In the paper, we / —————
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Definition of a competitive equilibrium

Assumption: agents are price takers
P(t) does not depend on players’ actions

B Both users want to maximize their average expected payoff:
B Consumer: find E such that
Ep € argmaxg E[[ Wp(t)e "idt]
B Supplier: find E, G, u such that

B (¢ and u satify generation constraints and
Es, G,u € argmaxg E|[ Ws(t)e "idt|

™ Question: does there exists a price process Psuch that consumer
and supplier aggree on the production: Es(t) = Ep (t)

(P,E,G,u) is called a dynamic competitive equilibrium
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Price

Storage level

Dynamic Competitive Equilibria

Theorem. Dynamic competitive equilibria exist and are
essentially independent of storage owner [Theorem 3]

For all 3 scenarios, the price and the use of generation and storage is the same.

Overproductlon that storage cannot store

Prices = marginal value of storage
e Concentrate on marginal
production cost whenn =1

Cycle efficiency

{;)ﬁ B (f)) Storage compensates
‘QbR*(f B (f < fluctuations

* Oscillate for n< 1 v+ C Underproduction that storage
cannot satisfy
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(a) Without storage (b) Bmax = 2u.e., n=1. (¢) Bumax = 10u.e., n=1 (d) Biax = 10we., 1= 0.

Parameters based on UK data: 1 u.e. =360 MWh, 1 u.p .= 600 MW, %= 0.6 GW2/h, ¢ = 2GW/h, Cmax=Dmax= 3 u.p.
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3. Social optimality and impact on
investments
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The social planner problem

B The social planner wants to find G and u to maximize total

expected discounted payoff @ |

max Ef (Ws(t) + Wp(t))e Ydt

vmin(DA(t), E(t) + g4 () — c2°(D4(t) — G99(t) — —u(t))” —cG(t) — c¥g?e(t)
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| | |
satisfied demand Frustrated demand Cost of generation

B Does not depend on storage owner
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ous values of the storage energy the optimal reserve and storage
capacity Bmax. processes. Bpax = Hu.e.
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Cycle efficiency

The SOCiaI WEIfare Overproduction that
Theorem _— storage cannot store
0
(R*(t), B*(t)),__Storage compensates
[Gast et al., 2013] P(t) = @(L(R*(t) B*(1).  fluctuations
7\ fv—f—c

B Any dynamic competitive
equilibrium for any of the Prices are dynamic Underproduction t.hat
three scenarios maximizes | Lagrange multipliers | ~ Storage cannot satisfy
social welfare

» The same price process _ _
controls optimally both the % 06 % 0
storage AND the production ¥ £
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price price
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B As storage grows, prices :
concentrate on the marginal § 2
production costifn =1 g E
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B [fn < 1: discontinuity in
R(t)=0 Figure 6: Steady-state distribution of prices for var-
ious storage energy capacities Bax. r Bhax =

(t)= ious st ities B For B

» Bad for decentralized control 10u.e., we zoom on ¢=1 to compare n = 0.8 and n = 1.
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The Invisible Hand
of the Market may
not be optimal

B Any dynamic competitive
equilibrium for any of the
three scenarios maximizes
social welfare

B However, this assumes a
given storage capacity.

B Is there an incentive to
install storage ?

» No, stand alone operators or
consumers have no incentive
to install the optimal storage
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Demand
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Storage t @ extracted (or stored) power
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Bm finwe)

(b] Cmax = 3u.p.
Expected social welfare

Expected welfare of
stand alone operator

Can lead to market manipulation
(undersize storage and generators)
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Scaling laws and optimal storage sizing

=0.0

B (steepness) being close to
social welfare requires the .,
optimal storage capacity

social welfare

B {inue.) E (inuw.e.)

B optimal storage capacity (a) Fixed ¢ (b) Fixed o
4

scales like ?—3!

(0 is =proportional to the

installed renewable capacity) Bad news for renewables

(similar situation in Spain: for
each 1IMW of wind turbines, 1MW

B increase volatility and
of gaz turbines in build!)

rampup capacity by x
= increase storage by x
18



What this suggests about storage :

B With a free and honest market, storage can be operated
by prices
» But prices are still discontinuous whenn < 1
B However:

» there may not be enough incentive for storage operators to install
the optimal storage size

» perhaps preferential pricing should be directed towards storage
as much as towards PV

B Multi temporal-scales are inherent to electricity networks

» Joint scheduling is essential

B Limitation of the model / future work
» Oligopolistic setting

» Network constraints and distributed storage i



Thank You !

[Cho and Meyn, 2010] I. Cho and S. Meyn Efficiency and marginal cost pricing in
dynamic competitive markets with friction, Theoretical Economics, 2010

[Gast et al 2012] Gast, Tomozei, Le Boudec. “Optimal Storage Policies with
Wind Forecast Uncertainties”, GreenMetrics 2012.
https://infoscience.epfl.ch/record/ 178202

[Gast et al 2013] Gast, Tomozei, Le Boudec. “Optimal Generation and Storage
Scheduling in the presence of Renewable Forecast Uncertainties”, submitted,
2013. https://infoscience.epfl.ch/record/ 183046

[Gast et al 2013] Gast, Le Boudec, Proutiere, Tomozei, “Impact of Storage on
the Efficiency and Prices in Real-Time Electricity Markets”, ACM e-Energy 2013,
Berkeley, May 2013. https://infoscience.epfl.ch/record/183149

20


https://infoscience.epfl.ch/record/178202
https://infoscience.epfl.ch/record/183046
https://infoscience.epfl.ch/record/183046
https://infoscience.epfl.ch/record/183149

Vue d’ensemble de mes contributions

Théorie (modeles mathematiques) Applicat
pplications

Champs moyen et contrdle optimal

- Controle optimal d’un systéme — Calcul distribué et équilibrage de charge
stochastique a 1’aide d’une » Ordonnancement centralisé [ValueTools 2009]

approximation fluide [ValueTools » Equilibrage de charge decentralisé [Sigmetrics

2009] best student paper award, [TAC 2010, ISAAC 2010, Anor 2012]
2011,JDEDS 2011]

. i : Réseaux de communication
Dynamiques discontinues et \_\ * MPTCP [Conext 2012] best paper award

Inclusions differentielles [Peva « Contrdle de Puissance [ToN 2011, brevet]
2012, Mama 2010]

I Réseaux électrique: controle multi-échelle de la
génération et du stockage
» Niveau national [GreenMetrics 2012]

o _ _ » Gestion décentralisé (théorie des jeux) [e-Energy 2013]
Véhicules en libre service

» Garantie de performance et redistribution
optimale [AofA 2012] Séminaire d’aujourd’hui
\ Collaborations

. 21
possibles?



