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Why do we need models?

Design, prediction, optimization, correctness, etc.

Nicolas Gast – 2 / 30



Uncertainties in models: stochastic v.s. non-determinism

Stochastic Non-determinism
ex: Markov chains ex: ODE, timed-automata

Quantitative analysis. Worst case / correctness

+ can be simulated

− How to choose parameters?

− Symbolic computation

+ No problem of parameters

Uncertain Markov chains

Combination of the two
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Building a

n uncertain

continuous time Markov chain

agents engage in actions at some rate.

(α, θ).P

action
type

activity rate
(parameter of an

exponential distribution)

component
/ derivative

d

dt
P(t) = P(t).Q

d

dt
P(t) = P(t).Q

d

dt
P(t) ∈

⋃
θ∈[θmin,θmax]

P(t)Q(θ)unknown θ ∈ [θmin, θmax]
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Main problem: the state space grows exponentially

313 ≈ 106 states.

We need to keep track

P(X1(t) = i1, . . . ,Xn(t) = in)

and solve the differential inclusion:

d

dt
P(t) ∈

⋃
θ∈[θmin,θmax]

P(t)Q(θ)

Is there any hope?
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Contributions (and Outline)

1 Some systems simplify when the population grows.
I Mean-field approach

2 We can add non-determinism to these models

3 We can build and use numerical algorithms.
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Outline

1 Population Processes and Classical Mean Field Methods

2 Uncertain and Imprecise Population Processes

3 Numerical Algorithms and Comparisons
Numerical algorithms (transient regime)
Steady-state
General processor sharing example

4 Conclusion
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Mean field methods have been used in a multiple contexts
ex: model-checking, performance of SSD, load balancing, MAC protocol,...

SPAA 98 Analyses of Load Stealing Models Based on Differential
Equations by Mitzenmacher

JSAC 2000 Performance Analysis of the IEEE 802.11 Distributed Coordination
Function by Bianchi

FOCS 2002 Load balancing with memory by Mitzenmacher et al.

DSN 2013 A logic for model-checking mean-field models by Kolesnichenko et al

DSN 2013 Lumpability of fluid models with heterogeneous agent types by
Iacobelli and Tribastone

SIGMETRICS 2013 A mean field model for a class of garbage collection algorithms in
flash-based solid state drives by Van Houdt

...
...
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These models correspond to distributed systems
Each object interacts with the mass

We view the population of objects more abstractly, assuming that
individuals are indistinguishable.
An occupancy measure records the proportion of agents that are currently
exhibiting each possible state.
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Population CTMC
We consider a sequence XN , indexed by the population size N, with state
spaces EN ⊂ E ⊂ Rd . The transitions are:

X 7→ X +
`

N
at rate Nβ`(X ).

for a finite number of ` ∈ L.
The drift is f (x) =

∑
`

`β`(x).

Example :
The state is (XS ,XI ,XR) and the transitions are

`1 = (−1,+1, 0) at rate NXSXI

`2 = (0,−1,+1) at rate NXI

`3 = (+1, 0,−1) at rate NXR

`4 = (−1, 0,+1) at rate NXS
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Kurtz’ convergence theorem

Theorem: Let X be a population model. If XN(0) converges (in
probability) to a point x , then the stochastic process XN converges (in
probability) to the solutions of the differential equation ẋ = f (x), where f
is the drift.
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xs (mean-field approximation)

N = 10

Nicolas Gast – 12 / 30



Kurtz’ convergence theorem

Theorem: Let X be a population model. If XN(0) converges (in
probability) to a point x , then the stochastic process XN converges (in
probability) to the solutions of the differential equation ẋ = f (x), where f
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Outline

1 Population Processes and Classical Mean Field Methods

2 Uncertain and Imprecise Population Processes

3 Numerical Algorithms and Comparisons
Numerical algorithms (transient regime)
Steady-state
General processor sharing example

4 Conclusion
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Uncertain and imprecise models

Instead of β`(x), the rates can depend on a parameter ϑ: β`(x , ϑ).

We distinguish two kinds of uncertainties:

Uncertain Imprecise

ϑ ∈ Θ is constant but its value is
not known precisely.

Uncertainties in the model

ϑ = ϑ(t) ∈ Θ can vary (measur-
ably) as a function of time

human behavior,
environment, adversary,...
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Uncertain and imprecise population models

We consider a sequence XN of Imprecise or Uncertain population processes, indexed by
the size N, with state spaces EN ⊂ E ⊂ Rd . The transitions are (for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X , ϑ)

The drifts corresponding to parameter ϑ is f (x , ϑ) =
∑
`∈L

`β`(x , ϑ).

Theorem (Bortolussi, G. 2016)

if XN(0) converges (in probability) to a point x , then the uncertain (or
imprecise) stochastic process XN converges in probability to:

Uncertain Imprecise

A solution of ẋ = f (x , ϑ) (for a given ϑ) A solution of ẋ ∈
⋃
ϑ∈Θ

f (x , ϑ)
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Example of the SIR model
The state is (XS ,XI ,XR) and the transitions are

`1 = (−1,+1, 0) at rate N(aXS + ϑXSXI )
`2 = (0,−1,+1) at rate NbXI

`3 = (+1, 0,−1) at rate NcXR
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Consequence on the stochastic system

Uncertain Imprecise
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Remark : the proportion of infected is non-monotone on the infection rate.
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Outline

1 Population Processes and Classical Mean Field Methods

2 Uncertain and Imprecise Population Processes

3 Numerical Algorithms and Comparisons
Numerical algorithms (transient regime)
Steady-state
General processor sharing example

4 Conclusion
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Numerical algorithms

Uncertain (fixed parameter)
I Exhaustive search
I Online learning

Imprecise (varying parameter). Difficulty = non-linear.
I Exact: reachability (ex: solvable by Pontryagin’s principle)
I Approximation: polygons (ex: differential hull)
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Example of numerical algorithm: differential hull
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xS (proportion of susceptible)
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diff hull
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For any solution of the differential
equation x , we have:

x(t) ≤ x(t) ≤ x(t)

where x and x satisfy ẋ = f (x , x)
and ẋ = f (x , x), with

f i (x , x)= min
x∈[x ,x]:xi=x i (t)

minFi (x)

f i (x , x)= max
x∈[x ,x]:xi=x i (t)

maxFi (x)

ϑ ∈ Θ = [1, 3]

Differential hull provide loose bounds when Θ is large.
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and ẋ = f (x , x), with

f i (x , x)= min
x∈[x ,x]:xi=x i (t)

minFi (x)

f i (x , x)= max
x∈[x ,x]:xi=x i (t)

maxFi (x)

ϑ ∈ Θ = [1, 3]

Differential hull provide loose bounds when Θ is large.

Nicolas Gast – 20 / 30



Example of numerical algorithm: differential hull

0.4 0.5 0.6 0.7 0.8 0.9
xS (proportion of susceptible)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

x
I

(p
ro

po
rt

io
n

of
in

fe
ct

ed
)

diff hull
opti

For any solution of the differential
equation x , we have:

x(t) ≤ x(t) ≤ x(t)

where x and x satisfy ẋ = f (x , x)
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x∈[x ,x]:xi=x i (t)

minFi (x)

f i (x , x)= max
x∈[x ,x]:xi=x i (t)

maxFi (x)

ϑ ∈ Θ = [1, 6]

Differential hull provide loose bounds when Θ is large.
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An alternative is to formulate the problem as an
optimization problem

xmax
i (T ) := max

θ
xi (T ) such that for all t ∈ [0;T ]: x(t) = x +

∫ t

0
f (x(s), θ(s))ds

θ(t) ∈ Θ

Pontryagin’s principle can be used.

Easier than MDP
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SIR model: we can compute an minimal/maximal
trajectory by using Pontraygin’s maximum principle
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A trajectory that A trajectory that
maximizes XI (3). minimizes XI (3).
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Stationary regime of imprecise models

Asymptotic reachable set of the differential inclusion AF :

AF =
⋂
T>0

⋃
x ,t≥T ,x∈SF ,x

{x(t)}

Theorem: Let X be an imprecise population process, then

lim
N→∞

lim
t→∞

d(XN(t),AF ) = 0 in probability.

Theorem: Let X be an imprecise population process such that XN is a
Markov chain that has a stationary measure µN . Let µ be a limit
point of µN (for the weak convergence). Then, the support of µ is
included in the Birkhoff centre of F : µ(BF ) = 1.
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Asymptotically reachable set: example for the SIR model
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Note: comparison with the differential hull approach: bounds are very
loose.
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SIR model: stationary regime
N

=
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(a) policy θ1 (b) policy θ2

No policy can make the stochastic system exit the blue zone (for large
N).
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In the paper, we also study a Generalized Processor
Sharing model

Phase type

Phase type

Poisson

Poisson

 

Parameters: µ1 = 5, µ2 = 1,
φ1 = φ2 = 1, a1 = 1 and
a2 = 2. λi , λ

′
i imprecise with

λmin
1 = 1, λmax

1 = 7, λmin
2 = 2,

λmax
2 = 3,

λ′i
min

= 1/(1/ai + a/λmin
i ) ,and

λ′i
max

= 1/(1/ai + a/λmax
i )

A model of two tandem queues Q1,Q2 sharing a processor. Qi gets a
fraction φiNiQi/(φ1N1Q1 + φ2N2Q2) of the capacity C of the server. Each
queue serves a job of type i , with average completion time µi . Arrivals are
Poisson (Di - delay station - rate λ′i ) or MAP ( two delay stations in series
Ei ,Di rates ai , λi ).
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Generalized Processor Sharing: for the imprecise model, a
higher arrival rate does not imply a larger queuing delay.
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Optimization (for imprecise) of φ1 to minimize the maximum queue
length at time t: Q̄(t) = max

θ
(Qθ

1 (t) + Qθ
2 (t)).
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Outline

1 Population Processes and Classical Mean Field Methods

2 Uncertain and Imprecise Population Processes

3 Numerical Algorithms and Comparisons
Numerical algorithms (transient regime)
Steady-state
General processor sharing example

4 Conclusion
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Recap and Future Work

Mean field methods are useful to study
large stochastic systems.
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We extended the mean field results for im-
precise and uncertain PCTMCs, both at
transient and at steady state.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
op

or
tio

n
of

in
fe

ct
ed

xmax
I (imprecise)

xmin
I (imprecise)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
op

or
tio

n
of

in
fe

ct
ed

xmax
I (uncertain)

xmin
I (uncertain)

We developed numerical method to
bound the reachable sets.
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Future work: scalability of numerical algorithms, integration in a toolset
(EU project Quanticol), algorithmic complexity.
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Thank you!

Slides are online:

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr
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systems, M.Benäım and J.Y. Le Boudec., Performance evaluation, 2008.

Le Boudec 10 The stationary behaviour of fluid limits of reversible processes is
concentrated on stationary points., J.-Y. L. Boudec. , Arxiv:1009.5021, 2010

G. Van Houdt 15 Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms., Gast, Van Houdt., ACM Sigmetrics 2015

Nicolas Gast – 30 / 30

http://mescal.imag.fr/membres/nicolas.gast

	Population Processes and Classical Mean Field Methods
	Uncertain and Imprecise Population Processes
	Numerical Algorithms and Comparisons
	Numerical algorithms (transient regime)
	Steady-state
	General processor sharing example

	Conclusion

