Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis

Nicolas Gast Luca Bortolussi Mirco Tribastone Inria, France Univ. Trieste, Italy IMT Lucca, Italy

IFIP Performance 2018, Toulouse

Good system design needs performance evaluation Example : load balancing

Which allocation policy?

- Random
- Round-robin
- JSQ
- *JSQ*(*d*)
- JIQ

Good system design needs performance evaluation Example : load balancing

Which allocation policy?

- Random
- Round-robin
- JSQ
- *JSQ*(*d*)
- JIQ

We need methods to characterize emerging behavior starting from a stochastic model of interacting objects

• We can use mean field approximation.

Mean Field and Refined Mean Field Approximations

For the steady-state performance of many systems,¹:

We provided analytical and numerical methods to compute V.

Example: steady-state average queue length (ho = 0.9)

Policy	Mean Field ($N=\infty)$	N = 100	N = 10
		Simu.	Simu
SQ(2)	2.35	2.39	2.80
Pull-push	1.64	1.70	2.30

¹Ref: "A Refined Mean Field Approximation" by G. and Van Houdt (SIGMETRICS 2018)

Mean Field and Refined Mean Field Approximations

For the steady-state performance of many systems,¹:

We provided analytical and numerical methods to compute V.

Example: steady-state average queue length (ho=0.9)

Policy	Mean Field ($N=\infty)$	N = 100		N = 10	
		Simu.	R.M.F.	Simu	R.M.F.
SQ(2)	2.35	2.39	2.39	2.80	2.75
Pull-push	1.64	1.70	1.70	2.30	2.29

¹Ref: "A Refined Mean Field Approximation" by G. and Van Houdt (SIGMETRICS 2018)

Question addressed in this work

Our contributions

- We can compute the next term in the expansion.
- We can do the same analysis for the transient regime?
- We study the cost (computation) and the benefit (accuracy).

$$Perf(N,t) \approx Perf(\infty,t) + \frac{V(t)}{N} + \frac{A(t)}{N^2} + \dots$$

Outline

2 System Size Expansion

3 Numerical Examples

Outline

1 Classical Mean Field Approximation

2 System Size Expansion

3 Numerical Examples

"Mean field approximation" simplifies many problem But how to apply it?

Applications :

- Performance of load balancing / caching algorithms
- Communication protocols (CSMA, MPTCP, Simgrid)
- Mean field games (evacuation, Mexican wave)
- Stochastic approximation / learning
- Theoretical biology

The supermarket model (SQ(2))

Arrival at each server ρ .

- Sample d-1 other queues.
- Allocate to the shortest queue

Service rate=1.

SQ(d): state representation

The state space is $X = (X_1, X_2, ...)$ where

 $X_i(t) =$ fraction of queues with queue length $\geq i$.

State transitions and Mean Field Approximation

State changes on x:

$$x \mapsto x + \frac{1}{N} \mathbf{e}_{i}$$
 at rate $N \rho(x_{i-1}^{d} - x_{i}^{d})$
 $x \mapsto x - \frac{1}{N} \mathbf{e}_{i}$ at rate $N(x_{i} - x_{i+1})$

The mean field approximation is to consider the ODE associated with the drift (average variation):

$$\dot{x}_i = \underbrace{\rho(x_{i-1}^d - x_i^d)}_{\text{Arrival}} - \underbrace{(x_i - x_{i+1})}_{\text{Departure}}$$

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell($

X).

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The Mean field approximation
The drift is
$$f(x) = \frac{d}{dt} \mathbb{E} [X(t) \mid X(0) = x] = \sum_{\ell} \ell \beta_{\ell}(x).$$

The mean field approximation is the solution of the ODE $\dot{x} = f(x)$.

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The Mean field approximation
The drift is
$$f(x) = \frac{d}{dt} \mathbb{E} [X(t) | X(0) = x] = \sum_{\ell} \ell \beta_{\ell}(x).$$

The mean field approximation is the solution of the ODE $\dot{x} = f(x)$.

Example: SQ(d) load balancing

$$\dot{x}_i = \rho(x_{i-1}^d - x_i^d) - (x_i - x_{i+1})$$

It has a unique attractor: $\pi_i = \rho^{(d^i-1)/(d-1)}$.

Nicolas Gast - 11 / 26

Accuracy of the mean field approximation Numerical example of SQ(d) load balancing (d = 2)

	Simulation (steady-state average queue length)					Fixed Point
Ν	10	20	30	50	100	∞ (mean field)
$\rho = 0.7$	1.2194	1.1735	1.1584	1.1471	1.1384	1.1301
ho = 0.9	2.8040	2.5665	2.4907	2.4344	2.3931	2.3527
ho = 0.95	4.2952	3.7160	3.5348	3.4002	3.3047	3.2139

Fairly good accuracy for N = 100 servers.

Accuracy of the mean field approximation Numerical example of SQ(d) load balancing (d = 2)

	Simulation (steady-state average queue length)					Fixed Point
Ν	10	20	30	50	100	∞ (mean field)
$\rho = 0.7$	1.2194	1.1735	1.1584	1.1471	1.1384	1.1301
ho = 0.9	2.8040	2.5665	2.4907	2.4344	2.3931	2.3527
$\rho = 0.95$	4.2952	3.7160	3.5348	3.4002	3.3047	3.2139

Fairly good accuracy for N = 100 servers.

Outline

1 Classical Mean Field Approximation

2 System Size Expansion

3 Numerical Examples

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $\rho = 0.9$):							
N 10 100 1000							
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527			
Error of mean field	0.4513	0.0404	0.0040	0			
Error decreases as $1/N$							

System Size Expansion Approach Recall that the transitions are $X \mapsto X + \frac{\ell}{N}$ at rate $N\beta_{\ell}(x)$.

$$\frac{d}{dt}\mathbb{E}[X] = \mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X)\ell\right] = \mathbb{E}[f(X)] \qquad \text{(Exact)}$$
$$\frac{d}{dt}x = f(x) \qquad \qquad \text{(Mean Field Approx.)}$$

System Size Expansion Approach Recall that the transitions are $X \mapsto X + \frac{\ell}{N}$ at rate $N\beta_{\ell}(x)$.

$$\frac{d}{dt}\mathbb{E}\left[X\right] = \mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X)\ell\right] = \mathbb{E}\left[f(X)\right] \qquad (\mathsf{Exact})$$
$$\frac{d}{dt}x = f(x) \qquad (\mathsf{Mean Field Approx.})$$

We can now look at the second moment:

$$\mathbb{E}\left[(X-x)\otimes(X-x)\right] = \mathbb{E}\left[(f(X) - f(x))\otimes(X-x)\right] \qquad (Exact) \\ + \mathbb{E}\left[(X-x)\otimes(f(X) - f(x))\right] \\ + \frac{1}{N}\mathbb{E}\left[\sum_{\ell\in\mathcal{L}}\beta_{\ell}(X)\ell\otimes\ell\right]$$

System Size Expansion Approach Recall that the transitions are $X \mapsto X + \frac{\ell}{N}$ at rate $N\beta_{\ell}(x)$.

$$\frac{d}{dt}\mathbb{E}\left[X\right] = \mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X)\ell\right] = \mathbb{E}\left[f(X)\right] \qquad (\mathsf{Exact})$$
$$\frac{d}{dt}x = f(x) \qquad (\mathsf{Mean Field Approx.})$$

We can now look at the second moment:

$$\mathbb{E}\left[(X-x)\otimes(X-x)\right] = \mathbb{E}\left[(f(X) - f(x))\otimes(X-x)\right] \qquad (Exact) \\ + \mathbb{E}\left[(X-x)\otimes(f(X) - f(x))\right] \\ + \frac{1}{N}\mathbb{E}\left[\sum_{\ell\in\mathcal{L}}\beta_{\ell}(X)\ell\otimes\ell\right]$$

... We can also look at higher order moments

$$\mathbb{E}\left[(X-x)^{\otimes 3}\right] = 3 \operatorname{Sym}\mathbb{E}\left[(f(X) - f(x)) \otimes (X-x) \otimes (X-x)\right] \\ + \frac{3}{N} \operatorname{Sym}\mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \beta_{\ell}(X)\ell \otimes \ell \otimes (X-x)\right] + \frac{1}{N}\mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \beta_{\ell}(X)\ell \otimes \ell \otimes \ell \right]_{\operatorname{Nicolas Gast} - 15} \right]_{26}$$

Using this approach, we can derive linear ODEs Theorem. Assume that f is C^2 and let x be the solution of $\frac{d}{dt}x = f(x)$.

.

$$\frac{d}{dt}\mathbb{E}\left[X(t)\right] = x(t) + O(1/N).$$

Using this approach, we can derive linear ODEs Theorem. Assume that f is C^2 and let x be the solution of $\frac{d}{dt}x = f(x)$.

$$\frac{d}{dt}\mathbb{E}\left[X(t)\right] = x(t) + O(1/N).$$

Let Y(t) = X(t) - x(t). Then :

$$\mathbb{E}\left[Y(t)
ight] = rac{1}{N}V(t) + O(1/N^2) \ \mathbb{E}\left[Y(t)\otimes Y(t)
ight] = rac{1}{N}W(t) + O(1/N^2)$$

where

$$\frac{d}{dt}V^{i} = f^{i}_{j}V^{j} + f^{i}_{j,k}W^{j,k}$$
$$\frac{d}{dt}W^{j,k} = f^{j}_{\ell}W^{\ell,k} + f^{k}_{\ell}W^{j,\ell}$$

Using this approach, we can derive linear ODEs Theorem. Assume that f is C^2 and let x be the solution of $\frac{d}{dt}x = f(x)$.

$$\frac{d}{dt}\mathbb{E}\left[X(t)\right] = x(t) + O(1/N).$$

Let Y(t) = X(t) - x(t). Then :

$$\mathbb{E}[Y(t)] = \frac{1}{N}V(t) + \frac{1}{N^2}A(t) + O(1/N^3)$$
$$\mathbb{E}[Y(t) \otimes Y(t)] = \frac{1}{N}W(t) + \frac{1}{N^2}B(t) + O(1/N^3)$$
$$espY(t)^{\otimes 3} = \frac{1}{N^2}C(t) + O(1/N^3)$$
$$espY(t)^{\otimes 4} = \frac{1}{N^2}D(t) + O(1/N^3)$$

where

$$\begin{aligned} \frac{d}{dt}V^{i} &= f_{j}^{i}V^{j} + f_{j,k}^{i}W^{j,k} \\ \frac{d}{dt}W^{j,k} &= f_{\ell}^{j}W^{\ell,k} + f_{\ell}^{k}W^{j,\ell} \\ \frac{d}{dt}A^{i} &= f_{\ell}^{j}A^{j} + f_{j,k}^{i}B^{j,k} + f_{j,k,\ell}^{i}C^{j,k,\ell} + f_{j,k,\ell,m}^{j}D^{j,k,\ell,m} \\ \frac{d}{dt}B^{i,j} &= f_{k}^{i}B^{k,j} + f_{k}^{j}B^{k,j} + \frac{3}{2}\left[f_{k,\ell}^{i}C^{k,\ell,j} + f_{k,\ell}^{j}C^{k,\ell,i}\right] + 2(f_{k,\ell,m}^{i}D^{k,\ell,m,j} + f_{k,\ell,m}^{j}D^{k,\ell,m,i}) + \frac{1}{2}Q_{k,\ell}^{i,j}V^{k} + \frac{1}{2}Q_{k,\ell}^{i,j}W^{k,\ell} \\ & \cdots \end{aligned}$$
Nicolas Gast - 16 / 26

Computational issues

Recall that x(t) be the mean field approximation and Y(t) = X(t) - x(t).

You can close the equations by assuming that $Y^{(k)} = 0$ for k > K.

- For K = 0, this gives the mean field approximation (1/N-accurate)
- For K = 2, this gives the refined mean field $(1/N^2$ -accurate).
- For K = 4, this gives a second order expansion $(1/N^3$ -accurate).

For a system of dimension d, $Y(t)^{(k)}$ has d^k equations.

Computational issues

- The mean field is a system of non-linear ODE of dimension d.
- The 1/N term adds two systems of **time-inhomogeneous linear** ODEs of dimension d^2 and d.
- The $1/N^2$ term adds four systems of **time-inhomogeneous linear** ODEs of dimension d^4 , d^3 , d^2 and d.

To compute, you essentially need up to the second (for the 1/N-term) or the fourth (for the $1/N^2$ -term) derivatives of the drifts.

Outline

1 Classical Mean Field Approximation

2 System Size Expansion

3 Numerical Examples

4 Conclusion and Open Questions

Arrival at each server ρ .

- Sample *d* 1 other queues.
- Allocate to the shortest queue

Service rate=1.

	N = 10	<i>N</i> = 20	<i>N</i> = 50	N = 100			
Mean Field	2.3527	2.3527	2.3527	2.3527			
1/N-expansion	2.7513	2.5520	2.4324	2.3925			
$1/N^2$ -expansion	2.8045	2.5653	2.4345	2.3930			
Simulation 2.8003 2.5662 2.4350 2.3931							
<i>SQ</i> (2): Steady-state average queue length ($\rho = 0.9$).							

How does the expected queue length evolve with time?

How does the expected queue length evolve with time?

How does the expected queue length evolve with time?

Remark about computation time :

- 10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations, confidence intervals,...
- 80ms (mean field), 700ms (1/N-expansion), 9s $(1/N^2$ -expansion), Python numpy

Analysis of the computation time

For the numerical examples of SQ(2), I used a bounded queue size d.

Does it always work?

Can I exchange the limits $N \to \infty$, $k \to \infty$, $t \to \infty$?

$$\mathbb{E}[X(t)] = x(t) + \frac{1}{N}V(t) + \frac{1}{N^2} + \dots + O(\frac{1}{N^{k+1}})$$

Does it always work?

Can I exchange the limits $N \to \infty$, $k \to \infty$, $t \to \infty$?

$$\mathbb{E}[X(t)] = x(t) + \frac{1}{N}V(t) + \frac{1}{N^2} + \dots + O(\frac{1}{N^{k+1}})$$

Outline

1 Classical Mean Field Approximation

- 2 System Size Expansion
- 3 Numerical Examples

Recap and extensions

For a mean field model with four differentiable drift

$$\mathbb{E}\left[X(t)\right] = x(t) + \frac{V(t)}{N} + \frac{A(t)}{N^2} + \dots$$

• We can build expansion in 1/N

From a computational point of view:

- The 1/N-term involves d^2 linear equations.
- The $1/N^2$ -term involves d^4 linear equations.
- Most of the gain seems to come from the 1/N-term.

Some References

Paper (simulation, slides) is reproducible! https://github.com/ngast/sizeExpansionMeanField/ nicolas.gast@inria.fr

http://mescal.imag.fr/membres/nicolas.gast

A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)
 Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone
 Expected Values Estimated via Mean Field Approximation are O(1/N)-accurate by Gast. SIGMETRICS 2017.
 https://github.com/ngast/rmf_tool/