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Good system design needs performance evaluation

Example : load balancing

Which allocation policy?
@ Random

@ Round-robin

e JSQ

e JSQ(d)

e JIQ

N servers
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Good system design needs performance evaluation

Example : load balancing

N servers

Which allocation policy?

o Random

@ Round-robin
e JSQ

e JSQ(d)

e JIQ

We need methods to characterize emerging behavior starting from a
stochastic model of interacting objects

@ We can use mean field approximation.
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Mean Field and Refined Mean Field Approximations

For the steady-state performance of many systems,*

%4
Perf(N) ~ Perf (o) + N
——
mean field approximation

We provided analytical and numerical methods to compute V.

Example: steady-state average queue length (p = 0.9)

Policy | Mean Field (N = c0) N =100 N =10
Simu. Simu
SQ(2) 2.35 2.39 2.80
Pull-push 1.64 1.70 2.30

1
Ref: “A Refined Mean Field Approximation” by G. and Van Houdt (SIGMETRICS 2018)
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Mean Field and Refined Mean Field Approximations

For the steady-state performance of many systems,!:
vV
Perf(N) ~ Perf (c0) + —
— N
mean field approximation

refined mean field approximation

We provided analytical and numerical methods to compute V.

Example: steady-state average queue length (p = 0.9)

Policy Mean Field (N = o0) N =100 N =10
Simu. ‘ R.M.F. | Simu ‘ R.M.F.
SQ(2) 2.35 2.39 2.39 2.80 2.75
Pull-push 1.64 1.70 1.70 2.30 2.29

1
Ref: “A Refined Mean Field Approximation” by G. and Van Houdt (SIGMETRICS 2018)
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Question addressed in this work

Our contributions
@ We can compute the next term in the expansion.
@ We can do the same analysis for the transient regime?

@ We study the cost (computation) and the benefit (accuracy).

%4
Perf(N,t) = Perf(co,t) + —— + —=~ + ...
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Outline

@ Classical Mean Field Approximation

© System Size Expansion

© Numerical Examples

@ Conclusion and Open Questions
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Outline

@ Classical Mean Field Approximation
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“Mean field approximation” simplifies many problem
But how to apply it?

034 — N=100 0.3
0.2 1 0.2 1
[im =
Nesoo 0.1 0.1
0.0 . 0.0
0 2 4
Time
Applications :

—— ODE (N = )

Mean field approximation

Performance of load balancing / caching algorithms
Communication protocols (CSMA, MPTCP, Simgrid)
Mean field games (evacuation, Mexican wave)

Stochastic approximation / learning
Theoretical biology
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The supermarket model (SQ(2))

| .O Arrival at each server p.
f) e == =3 | ...O @ Sample d — 1 other
' queues.
L]
* I .O e Allocate to the

.
3 | O shortest queue

| ..O Service rate=1.
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SQ(d): state representation

The state space is X = (X1, X2, ...) where

Xi(t) = fraction of queues with queue length > /.

p— | [T

 C—®0 X =(1,0.8,04,0.2,0,0,0,...)
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State transitions and Mean Field Approximation
State changes on x:

1
X = X+ i at rate Np(x? ; — x7)

1
X X = e at rate N(x; — xj41)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

X = p(xy = xf') = (% — Xit1)

Arrival Departure
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XV (t) indexed by the
population size N, with state space EN C E and transitions (for £ € L):

1
X=X+ N at rate Nj3(X).
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XV (t) indexed by the
population size N, with state space EN C E and transitions (for £ € L):

1
X=X+ N at rate Nj3(X).

The Mean field approximation
The drift is f(x) = 715 [X(t) | X(0) =x] = Zw@ X).

The mean field approximation is the solution of the ODE x = f(x).
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XV (t) indexed by the
population size N, with state space EN C E and transitions (for £ € L):

1
X=X+ N at rate Nj3(X).

The Mean field approximation
The drift is f(x) = 715 [X(t) | X(0) =x] = Zw@ X).

The mean field approximation is the solution of the ODE x = f(x).

Example: SQ(d) load balancing
Xj = p(Xid—l - X/d) - (Xf - Xi+1)

It has a unique attractor: m; = p(dlfl)/(dfl).
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Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) Fixed Point
N 10 20 30 50 100 oo (mean field)
p=0.7 [ 12194 11735 1.1584 1.1471 1.1384 1.1301
p=0.9 [28040 25665 24907 24344 23931 | 2.3527
p=0.95]42052 3.7160 3.5348 3.4002  3.3047 | 3.2139

Fairly good accuracy for N = 100 servers.
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Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) | _ Fixed Point

N 10 20 30 50 100 | oo (mean field)

p=07 [ 12194 11735 11584 1.1471 : 1.1384 1.1301 .
p=09 [2.8040 25665 2.4907 2.4344 ; 23931 | 23527
p=0095]420952 37160 35348 3.4002 % 33047 | 32139

Lo

Fairly good accuracy for N = 100 servers.
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Outline

© System Size Expansion
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):

N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error decreases as 1/N
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System Size Expansion Approach
Recall that the transitions are X — X + — at rate Nfy(x).

N
%E X]=E ;ﬁg(X)f = E[f(X)] (Exact)
%X =f(x) (Mean Field Approx.)
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System Size Expansion Approach

Recall that the transitions are X — X + m at rate Nfy(x).

%E X] = Zﬁe =E[f(X)]  (Exact)
%x = f(x) (Mean Field Approx.)

We can now look at the second moment:

E[(X =x)@ (X =x)] =E[(f(X) = f(x)) @ (X =x)]  (Bxact)
+E[(X =x) @ (f(X) = f(x))]

S ax) et

el

—IE
+N
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System Size Expansion Approach
Recall that the transitions are X — X + — at rate Nfy(x).

N
%E X] = Zﬁe =E[f(X)]  (Exact)
%x = f(x) (Mean Field Approx.)

We can now look at the second moment:

E[(X —x)® (X —x)] =E[(f(X) — f(x)) ® (X — x)] (Exact)
+E[(X —x) @ (f(X) = f(x))]

S ax) et

lel
... We can also look at higher order moments

E [(X — x)®*] = 3SymE [(f(X) — f(x)) ® (X — x) ® (X — x)]

1
—E
+N

+%SymE {;@(X)mz@( —x)} + 4 E LZ@(X £®£®4
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Using this approach, we can derive linear ODEs

d
Theorem. Assume that f is C2 and let x be the solution of 5= f(x).
d

ZEIX(8)] = x(t) + O(1/N).
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Using this approach, we can derive linear ODEs

Theorem. Assume that f is C2 and let x be the solution of %x = f(x).
d
EE [X(t)] = x(t) + O(1/N).

Let Y(t) = X(t) — x(t). Then:
E[Y(t)] = 5 V(1) + O(1/N%)

Efy(t) @ Y(1)] =

=2~z

W(t) + O(1/N?)

where

d i iy /i i j
Vv =V Wik

d Wik — ijWe,k T Fwit

dt
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Using this approach, we can derive linear ODEs

d
Theorem. Assume that f is C2 and let x be the solution of 5= f(x).
d
EE [X(t)] = x(t) + O(1/N).

Let Y(t) = X(t) — x(t). Then:

EY(t)] = %V(t) + %A(t) +O0(1/N?)
E[Y()@ V(0] = L W(E) + 1 B(t) + O(1/N)
espY () = %C(t) +O(1/N?)
espY (8)** = %D(t) + O(1/N?)
where
%v" — iV Wk

IWj’k = Awhk o gfwht

d i i i mik i Jokol | i j ko €,m
A AT GB T T  f mD

d i ik | gk o 3 e ~kilij | g kot i kolymj | keymiy | L oigk L i kit
pY—— ) J 3J ! €5 7] Ry 1 2E,myy ) s E€,myi v 1) B
B =B 4B+ [l €O 4 ] 0] 4+ 2(F g mD D ) S QIVEE S w
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Computational issues

Recall that x(t) be the mean field approximation and Y (t) = X(t) — x(t).

You can close the equations by assuming that Y(K) =0 for k > K.
@ For K =0, this gives the mean field approximation (1/N-accurate)
@ For K = 2, this gives the refined mean field (1/N3-accurate).

o For K = 4, this gives a second order expansion (1/N3-accurate).

For a system of dimension d, Y (t)X) has d* equations.
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Computational issues

@ The mean field is a system of non-linear ODE of dimension d.

@ The 1/N term adds two systems of time-inhomogeneous linear
ODEs of dimension d? and d.

@ The 1/N? term adds four systems of time-inhomogeneous linear
ODEs of dimension d*, d3, d? and d.

To compute, you essentially need up to the second (for the 1/N-term) or
the fourth (for the 1/N?-term) derivatives of the drifts.
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Outline

© Numerical Examples
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Arrival at each server p.
0@, "

@ Sample d — 1 other
P_)'-") I ...O queuis
“ | |
‘.;\ I D o Allocate to the
I D shortest queue
| ..O Service rate=1.

N=10 | N=20| N=50 | N =100
Mean Field 2.3527 | 2.3527 | 2.3527 | 2.3527
1/N-expansion | 2.7513 | 2.5520 | 2.4324 | 2.3925
1/N2-expansion | 2.8045 | 2.5653 | 2.4345 | 2.3930
Simulation 2.8003 | 2.5662 | 2.4350 | 2.3931
SQ(2): Steady-state average queue length (p = 0.9).
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How does the expected queue length evolve with time?

—— Mean Field Approximation
—— Simulation (N =1000)

2.8 1

p—t e |

0 10 20 30 40 50 60 70 80
Time
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How does the expected queue length evolve with time?

—— Mean Field Approximation
—— Simulation (N =10)

2.8 1

p—t e |

0 10 20 30 40 50 60 70 80
Time
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How does the expected queue length evolve with time?

289 e
=
5 2.7 4
c
:D % —— Mean Field Approximation
! =] ~ == 1/N-expansion
p— ey [T L 2.6 1 )
L—ws | N L expansion
N —c % —— Simulation (N = 10)
@ 2.5
=0 2
<
2.4 4
0 10 20 30 40 50 60 70 80

Time
Remark about computation time :

@ 10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations,
confidence intervals,...

@ 80ms (mean field), 700ms (1/N-expansion), 9s (1/N’-expansion), Python numpy
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Analysis of the computation time

For the numerical examples of SQ(2), | used a bounded queue size d.

17.5 20 1
m 15.0 %\
g g
g 125 817
c £
< 10.0 >
: £ o]
F 75 -
5 S
g 507 .
£ £
S 251 o

0.0 A 0

100 200 300 400 500 10 20 30 40
Number of dimensions (d) Number of dimensions (d)
Time to compute the 1/N-expansion | Time to compute the 1/N2—expansior

Analysis of the computation time (Python numpy implementation)
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Does it always work?
Can | exchange the limits N — oo, k = o0, t — o0?

EIX(0)] = (1) + 1 V() + 30+ -+ Ozer)
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Does it always work?
Can | exchange the limits N — oo, k = o0, t — o0?

NO:

1
EIX(0)] = (1) + 1 V() + 30+ -+ Ozer)
3.0
mean-field i
2.5 A 1/N-expansion "
1/N2-expansion ”
2.0 simulation (N =200) Il
1.5- il
= il
;‘Ez 1.0 ;
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Outline

@ Conclusion and Open Questions
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Recap and extensions

For a mean field model with four differentiable drift

V(t) At)
E[X(t)] = X(t) + N + N

e We can build expansion in 1/N

From a computational point of view:
@ The 1/N-term involves d? linear equations.
@ The 1/N>-term involves d* linear equations.

@ Most of the gain seems to come from the 1/N-term.
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Some References

Paper (simulation, slides) is reproducible!
https://github.com/ngast/sizeExpansionMeanField/
nicolas.gast@inria.fr

http://mescal.imag.fr/membres/nicolas.gast

A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)

Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone
Expected Values Estimated via Mean Field Approximation are O(1/N)-accurate by Gast. SIGMETRICS 2017.
https://github.com/ngast/rmf_tool/
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