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Good system design needs performance evaluation
Example : load balancing

N servers

Which allocation policy?

Random

Round-robin

JSQ

JSQ(d)

JIQ

We need methods to characterize emerging behavior starting from a
stochastic model of interacting objects

We can use mean field approximation.
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Mean Field and Refined Mean Field Approximations

For the steady-state performance of many systems,1:

Perf (N) ≈ Perf (∞)︸ ︷︷ ︸
mean field approximation

+
V

N

We provided analytical and numerical methods to compute V .

Example: steady-state average queue length (ρ = 0.9)

Policy Mean Field (N =∞) N = 100 N = 10
Simu.

R.M.F.

Simu

R.M.F.

SQ(2) 2.35 2.39

2.39

2.80

2.75

Pull-push 1.64 1.70

1.70

2.30

2.29

1
Ref: “A Refined Mean Field Approximation” by G. and Van Houdt (SIGMETRICS 2018)
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Question addressed in this work

Our contributions

We can compute the next term in the expansion.

We can do the same analysis for the transient regime?

We study the cost (computation) and the benefit (accuracy).

Perf (N, t) ≈ Perf (∞, t) +
V (t)

N
+

A(t)

N2
+ . . .
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“Mean field approximation” simplifies many problem
But how to apply it?

lim
N→∞

 0 2 4
Time

0.0

0.1

0.2

0.3 N = 100


=

0 2 4
Time

0.0

0.1

0.2

0.3 ODE (N = )

︸ ︷︷ ︸
Mean field approximation

Applications :

Performance of load balancing / caching algorithms
Communication protocols (CSMA, MPTCP, Simgrid)
Mean field games (evacuation, Mexican wave)
Stochastic approximation / learning
Theoretical biology
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The supermarket model (SQ(2))

Arrival at each server ρ.

Sample d − 1 other
queues.

Allocate to the
shortest queue

Service rate=1.
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SQ(d): state representation

The state space is X = (X1,X2, . . . ) where

Xi (t) = fraction of queues with queue length ≥ i .

X = (1, 0.8, 0.4, 0.2, 0, 0, 0, . . . )
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State transitions and Mean Field Approximation

State changes on x :

x 7→ x +
1

N
ei at rate Nρ(xdi−1 − xdi )

x 7→ x − 1

N
ei at rate N(xi − xi+1)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

ẋi = ρ(xdi−1 − xdi )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN ⊂ E and transitions (for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X ).

The Mean field approximation

The drift is f (x) =
d

dt
E [X (t) | X (0) = x ] =

∑
`

`β`(x).

The mean field approximation is the solution of the ODE ẋ = f (x).

Example: SQ(d) load balancing

ẋi = ρ(xdi−1 − xdi )− (xi − xi+1)

It has a unique attractor: πi = ρ(d i−1)/(d−1).
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Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) Fixed Point
N 10 20 30 50 100 ∞ (mean field)

ρ = 0.7 1.2194 1.1735 1.1584 1.1471 1.1384 1.1301

ρ = 0.9 2.8040 2.5665 2.4907 2.4344 2.3931 2.3527

ρ = 0.95 4.2952 3.7160 3.5348 3.4002 3.3047 3.2139

Fairly good accuracy for N = 100 servers.
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with ρ = 0.9):
N 10 100 1000 ∞

Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error decreases as 1/N
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System Size Expansion Approach
Recall that the transitions are X 7→ X +

`

N
at rate Nβ`(x).

d

dt
E [X ] = E

[∑
`

β`(X )`

]
= E [f (X )] (Exact)

d

dt
x = f (x) (Mean Field Approx.)

We can now look at the second moment:

E [(X − x)⊗ (X − x)] = E [(f (X )− f (x))⊗ (X − x)] (Exact)

+ E [(X − x)⊗ (f (X )− f (x))]

+
1

N
E

[∑
`∈L

β`(X )`⊗ `

]
... We can also look at higher order moments

E
[
(X − x)⊗3

]
= 3SymE [(f (X )− f (x))⊗ (X − x)⊗ (X − x)]

+
3

N
SymE

[∑
`∈L

β`(X )`⊗ `⊗ (X − x)

]
+

1

N
E

[∑
`∈L

β`(X )`⊗ `⊗ `

]
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Using this approach, we can derive linear ODEs
Theorem. Assume that f is C 2 and let x be the solution of

d

dt
x = f (x).

d

dt
E [X (t)] = x(t) + O(1/N).

Let Y (t) = X (t)− x(t). Then :

E [Y (t)] =
1

N
V (t)+

E [Y (t)⊗ Y (t)] =
1

N
W (t) +

espY (t)⊗3 =
1

N2
C(t) + O(1/N3)

espY (t)⊗4 =
1

N2
D(t) + O(1/N3)

where
d

dt
V i = f ij V

j + f ij,kW
j,k

d

dt
W j,k = f j`W

`,k + f k` W
j,`

d

dt
Ai = f ij A

j + f ij,kB
j,k + f ij,k,`C

j,k,` + f ij,k,`,mD
j,k,`,m

d

dt
B i,j = f ikB

k,j + f jkB
k,j +

3

2

[
f ik,`C

k,`,j + f jk,`C
k,`,i

]
+ 2(f ik,`,mD

k,`,m,j + f jk,`,mD
k,`,m,i ) +

1

2
Q i,j

k V k +
1

2
Q i,j

k,`W
k,`

. . .

Nicolas Gast – 16 / 26



Using this approach, we can derive linear ODEs
Theorem. Assume that f is C 2 and let x be the solution of

d

dt
x = f (x).

d

dt
E [X (t)] = x(t) + O(1/N).

Let Y (t) = X (t)− x(t). Then :

E [Y (t)] =
1

N
V (t) + O(1/N2)

E [Y (t)⊗ Y (t)] =
1

N
W (t) + O(1/N2)

espY (t)⊗3 =
1

N2
C(t) + O(1/N3)

espY (t)⊗4 =
1

N2
D(t) + O(1/N3)

where
d

dt
V i = f ij V

j + f ij,kW
j,k

d

dt
W j,k = f j`W

`,k + f k` W
j,`

d

dt
Ai = f ij A

j + f ij,kB
j,k + f ij,k,`C

j,k,` + f ij,k,`,mD
j,k,`,m

d

dt
B i,j = f ikB

k,j + f jkB
k,j +

3

2

[
f ik,`C

k,`,j + f jk,`C
k,`,i

]
+ 2(f ik,`,mD

k,`,m,j + f jk,`,mD
k,`,m,i ) +

1

2
Q i,j

k V k +
1

2
Q i,j

k,`W
k,`

. . .

Nicolas Gast – 16 / 26



Using this approach, we can derive linear ODEs
Theorem. Assume that f is C 2 and let x be the solution of

d

dt
x = f (x).

d

dt
E [X (t)] = x(t) + O(1/N).

Let Y (t) = X (t)− x(t). Then :

E [Y (t)] =
1

N
V (t) +

1

N2
A(t) + O(1/N3)

E [Y (t)⊗ Y (t)] =
1

N
W (t) +

1

N2
B(t) + O(1/N3)

espY (t)⊗3 =
1

N2
C(t) + O(1/N3)

espY (t)⊗4 =
1

N2
D(t) + O(1/N3)

where
d

dt
V i = f ij V

j + f ij,kW
j,k

d

dt
W j,k = f

j
`
W `,k + f k` W j,`

d

dt
Ai = f ij A

j + f ij,kB
j,k + f ij,k,`C

j,k,` + f ij,k,`,mD j,k,`,m

d

dt
B i,j = f ikB

k,j + f
j
k
Bk,j +

3

2

[
f ik,`C

k,`,j + f
j
k,`

Ck,`,i
]

+ 2(f ik,`,mDk,`,m,j + f
j
k,`,m

Dk,`,m,i ) +
1

2
Q

i,j
k

V k +
1

2
Q

i,j
k,`

W k,`

. . . Nicolas Gast – 16 / 26



Computational issues

Recall that x(t) be the mean field approximation and Y (t) = X (t)− x(t).

You can close the equations by assuming that Y (k) = 0 for k > K .

For K = 0, this gives the mean field approximation (1/N-accurate)

For K = 2, this gives the refined mean field (1/N2-accurate).

For K = 4, this gives a second order expansion (1/N3-accurate).

For a system of dimension d , Y (t)(k) has dk equations.
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Computational issues

The mean field is a system of non-linear ODE of dimension d .

The 1/N term adds two systems of time-inhomogeneous linear
ODEs of dimension d2 and d .

The 1/N2 term adds four systems of time-inhomogeneous linear
ODEs of dimension d4, d3, d2 and d .

To compute, you essentially need up to the second (for the 1/N-term) or
the fourth (for the 1/N2-term) derivatives of the drifts.
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The SQ(2)

Arrival at each server ρ.

Sample d − 1 other
queues.

Allocate to the
shortest queue

Service rate=1.

N = 10 N = 20 N = 50 N = 100

Mean Field 2.3527 2.3527 2.3527 2.3527
1/N-expansion 2.7513 2.5520 2.4324 2.3925

1/N2-expansion 2.8045 2.5653 2.4345 2.3930
Simulation 2.8003 2.5662 2.4350 2.3931

SQ(2): Steady-state average queue length (ρ = 0.9).
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How does the expected queue length evolve with time?

0 10 20 30 40 50 60 70 80
Time

2.4

2.5

2.6

2.7

2.8

Av
er

ag
e 

qu
eu

e 
le

ng
th

Mean Field Approximation
Simulation (N = 1000)

Remark about computation time :

10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations,
confidence intervals,...

80ms (mean field), 700ms (1/N-expansion), 9s (1/N2-expansion), Python numpy
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Analysis of the computation time

For the numerical examples of SQ(2), I used a bounded queue size d .
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Analysis of the computation time (Python numpy implementation)
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Does it always work?
Can I exchange the limits N →∞, k →∞, t →∞?

E [X (t)] = x(t) +
1

N
V (t) +

1

N2
+ · · ·+ O(

1

Nk+1
)

NO:

0 1 2 3 4 5
Time t

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

X A
(t)

mean-field
1/N-expansion
1/N2-expansion
simulation (N = 200)
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Recap and extensions

For a mean field model with four differentiable drift

E [X (t)] = x(t) +
V (t)

N
+

A(t)

N2
+ . . .

We can build expansion in 1/N

From a computational point of view:

The 1/N-term involves d2 linear equations.

The 1/N2-term involves d4 linear equations.

Most of the gain seems to come from the 1/N-term.
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