A Refined Mean Field Approximation

Nicolas Gast Benny Van Houdt

Inria Univ. Antwerp

ACM SIGMETRICS, Irvine, CA, June 2018

Nicolas Gast, Benny Van Houdt - 1 / 23

Good system design needs accurate performance evaluation Example : load balancing with *N* server

N servers

Which allocation policy?

- Random
- Round-robin
- JSQ
- *JSQ*(*d*)
- JIQ

Good system design needs accurate performance evaluation Example : load balancing with *N* server

N servers

Which allocation policy?

- Random
- Round-robin
- JSQ
- *JSQ*(*d*)
- JIQ

Model with finite N is difficult to analyze.

Many systems are analyzed via mean field approximation It can be shown that some systems simplify as N goes to infinity

- Theoretical biology, statistical mechanics
- Game theory (Mean field games : evacuation, Mexican wave)
- Performance of computer systems : Load balancing (power of two-choice), Wireless (CSMA), Caching,...

Mean-field approximation is widely used in our community

A few examples of recent SIGMETRICS papers...

- 2018 The PDE Method for the Analysis of Randomized Load Balancing Networks Aghajani et al.
- 2018 Asymptotically Optimal Load Balancing Topologies Mukherjee et al.
- 2018 On the Power-of-d-choices with Least Loaded Server Selection Hellemans and Van Houdt
- 2018 Delay Scaling in Many-Sources Wireless Networks without Queue State Information Borst and Zubeldia
- 2017 Analysis of a Stochastic Model of Replication in Large Distributed Storage Systems: A Mean-Field Approach Sun et al.
- 2017 Optimal Service Elasticity in Large-Scale Distributed Systems Mukherjee et al
- 2017 Stein's Method for Mean Field Approximations in Light and Heavy Traffic Regimes Ying
- 2017 Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate G
- 2016 Asymptotics of Insensitive Load Balancing and Blocking Phases Jonckheere Prabhu
- 2016 On the Approximation Error of Mean-Field Models Ying
- 2015 Power of d Choices for Large-Scale Bin Packing: A Loss Model Xie et al
- 2015 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms G, Van Houdt
- 2014 Data Dissemination Performance in Large-Scale Sensor Networks Meyfroyt et al.
- 2013 Queueing system topologies with limited flexibility. Tsitsiklis, Xu
- 2013 A mean field model for a class of garbage collection algorithms inflash-based solid state drives. Van Houdt
- 2012 Fluid limit of an asynchronous optical packet switch with shared per link full range wavelength conversion. Van Houdt, Bortolussi
- 2011 On the power of (even a little) centralization in distributed processing. Xu and Tsitsiklis
- 2010 Randomized load balancing with general service time distributions. Bramson et al.
- 2010 Incentivizing peer-assisted services: a fluid shapley value approach. Misra et al
- 2010 A mean field model of work stealing in large-scale systems. G, Gaujal
- 2009 The age of gossip: spatial mean field regime. Chaintreau et al.

Common steps in many of these papers:

- **Prove the convergence** to a limit (the mean field approximation)
- Analyze the limit
- S Evaluate numerically models with finite N.

Mean field is for (very) large systems. What about moderate sizes?

Mean field is for (very) large systems. What about moderate sizes?

By studying what happens when $N \rightarrow \infty$, we get a very accurate approximation even for N = 10

	Coupon	Supermarket	Pull/push
Simulation ($N = 10$)	1.530	2.804	2.304
Refined mean field ($N = 10$)	1.517	2.751	2.295
Mean field ($N = \infty$)	1.250	2.353	1.636

Outline

1 Mean field and refined mean field approximations

Numerical experiments : how (more) accurate is the refined approximation?

Outline

1 Mean field and refined mean field approximations

Numerical experiments : how (more) accurate is the refined approximation?

We study a population of N interchangeable objects.

X denotes the empirical measure.

 $X_i(t) =$ fraction of objects in state *i*

Framework: Density dependent population processes (Kurtz 70s)¹

A population process is a sequence of CTMC \mathbf{X}^N , indexed by the population size N, with state spaces $\mathbf{E}^N \subset \mathbf{E}$, with initial state x_0 and with transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

 $^{^{1}}$ Our results can also be applied to the discrete-time model of (Benaim, Le Boudec 2008).

Framework: Density dependent population processes (Kurtz 70s)1

A population process is a sequence of CTMC \mathbf{X}^N , indexed by the population size N, with state spaces $\mathbf{E}^N \subset \mathbf{E}$, with initial state x_0 and with transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The drift (average variation) is $f(x) = \sum_{\ell} \ell \beta_{\ell}(x)$.

The mean field approximation is : $\dot{x} = f(x)$.

¹Our results can also be applied to the discrete-time model of (Benaim, Le Boudec 2008).

Example : supermarket model, $JSQ(2)^2$

More examples in the paper

Randomly choose two, and select one

²Vvedenskaya et al. 96, Mitzenmacher 98.

Example : supermarket model, $JSQ(2)^2$

More examples in the paper

Randomly choose two, and select one

 X_i = fractions of servers with *i* or more jobs.

The transitions are:

$$egin{aligned} X &\mapsto X + rac{1}{N} \mathbf{e}_i ext{ at rate } N
ho(X_{i-1}^2 - X_i^2) \ X &\mapsto X - rac{1}{N} \mathbf{e}_i ext{ at rate } N(x_i - x_{i+1}) \end{aligned}$$

The mean field approximation is given by the (infinite) system of ODE:

$$\dot{x}_i = \underbrace{\rho(x_{i-1}^2 - x_i^2)}_{\text{arrivals}} - \underbrace{(x_i - x_{i+1})}_{\text{departures}}$$

²Vvedenskaya et al. 96, Mitzenmacher 98.

Steady-state analysis : main assumptions

(A0)
$$\sup_{x}\sum_{\ell}|\ell|^{2}|\beta_{\ell}(x)|<\infty.$$

- (A1) The stochastic process is a density dependent population process.
- (A2) The drift f is twice-differentiale
- (A3) The ODE has a globally stable attractor π , *i.e.*, for any solution x of the ODE $\dot{x} = f(x)$:

$$||x(t) - \pi|| \le Ce^{-\alpha t} ||x(0) - \pi||.$$

(A4) For each *N*, the population process has a unique stationary distribution.

The constant is defined as a function of the first two derivatives of the drift at π

Let π be the fixed point of the mean field approximation and

$$A = Df(\pi)$$
 $B = D^2f(\pi)$ $Q_{ij} = \sum_{\ell} \ell_i \ell_j \beta_\ell(\pi).$

Let W be the unique solution of the Lyapunov equation

 $AW + (AW)^T = Q$

THEOREM 3.1. Assume that the model satisfies (A0–A4). Let $h : \mathcal{E} \to \mathbb{R}$ be a twice-differentiable function that has a uniformly continuous second derivative. Then,

$$\lim_{N \to \infty} N\left(\mathbf{E}^{(N)} \left[h(X^{(N)}) \right] - h(\pi) \right) = \sum_{i} \frac{\partial h}{\partial x_{i}}(\pi) V_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}(\pi) W_{ij}, \tag{2}$$

where the matrices A, C and W are defined above and V_i is equal to:

$$V_i = -\sum_j (A^{-1})_{i,j} \left[C_j + \frac{1}{2} \sum_{k_1, k_2} (B_j)_{k_1, k_2} W_{k_1, k_2} \right].$$
 (3)

Nicolas Gast, Benny Van Houdt - 13 / 23

The constant is defined as a function of the first two derivatives of the drift at π

Let π be the fixed point of the mean field approximation and

$$A = Df(\pi)$$
 $B = D^2f(\pi)$ $Q_{ij} = \sum_{\ell} \ell_i \ell_j \beta_\ell(\pi).$

Let V To compute V, you need to :

- Evaluate derivatives at π
 Solve a Lyapunov equation (linear algebra)

THEOREM 3.1. Assume that the model satisfies (A0–A4). Let $h : \mathcal{E} \to \mathbb{R}$ be a twice-differentiable function that has a uniformly continuous second derivative. Then,

$$\lim_{N \to \infty} N\left(\mathbb{E}^{(N)}\left[h(X^{(N)}) \right] - h(\pi) \right) = \sum_{i} \frac{\partial h}{\partial x_{i}}(\pi) V_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}(\pi) W_{ij}, \tag{2}$$

where the matrices A, C and W are defined above and V_i is equal to:

$$V_i = -\sum_j (A^{-1})_{i,j} \left[C_j + \frac{1}{2} \sum_{k_1, k_2} (B_j)_{k_1, k_2} W_{k_1, k_2} \right].$$
 (3)

Nicolas Gast, Benny Van Houdt - 13 / 23

Main ideas of the proof

Stein's method (1); comparison of generators; (2); perturbation theory (3).

Let G_h be the function $G_h(x) = \int_0^\infty (h(\Phi_t(x)) - h(\pi)) dt$, where $\Phi_t(x)$ is the solution of the ODE $\dot{x} = f(x)$ starting in x at time 0.

$$N\mathbb{E}\left[h(X^{N}) - h(\pi)\right] = N\mathbb{E}\left[\Lambda G_{h}\right)(X^{N})\right]$$

$$= N\mathbb{E}\left[(\Lambda - L^{(N)})(G_{h})(X^{N})\right] \qquad (1)$$

$$= \frac{1}{2}\mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X^{N})D^{2}G_{h}(X^{N}) \cdot (\ell, \ell)\right] + O(\frac{1}{N}) \quad (2)$$

$$\rightarrow \frac{1}{2}\sum_{\ell} \beta_{\ell}(\pi)D^{2}G_{h}(\pi) \cdot (\ell, \ell). \qquad (3)$$

The computation of $D^2G_h(\pi)$ gives you the result (perturbation theory).

Main ideas of the proof

Stein's method (1); comparison of generators; (2); perturbation theory (3).

Let G_h be the function $G_h(x) = \int_0^\infty (h(\Phi_t(x)) - h(\pi))dt$, where $\Phi_t(x)$ is the solution of the ODE $\dot{x} = f(x)$ starting in x at time 0.

$$N\mathbb{E}\left[h(X^{N}) - h(\pi)\right] = N\mathbb{E}\left[\Lambda G_{h}\right)(X^{N})\right]$$

$$= N\mathbb{E}\left[(\Lambda - L^{(N)})(G_{h})(X^{N})\right] \qquad (1)$$

$$= \frac{1}{2}\mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X^{N})D^{2}G_{h}(X^{N}) \cdot (\ell, \ell)\right] + O(\frac{1}{N}) \quad (2)$$

$$\rightarrow \frac{1}{2}\sum_{\ell} \beta_{\ell}(\pi)D^{2}G_{h}(\pi) \cdot (\ell, \ell). \qquad (3)$$

The computation of $D^2G_h(\pi)$ gives you the result (perturbation theory).

Outline

D Mean field and refined mean field approximations

Numerical experiments : how (more) accurate is the refined approximation?

How hard is the computation of the refined model?

$$Perf(N) \approx \underbrace{Perf(\infty) + \frac{V}{N}}_{\text{refined mean field approximation}}$$

How to compute V?

- V can sometimes be computed in closed (not often)
- Numerical evaluation is easy (linear algebra) https://github.com/ngast/rmf_tool/

The supermarket model (JSQ(2))

N	10	20	30	50	100	∞
ho = 0.7						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.1301
$\rho = 0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	_
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\rho = 0.95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Two-choice model : Average queue length for various values of ρ and N. We compare simulation with the refined mean field approximation

The supermarket model (JSQ(2))

N	10	20	30	50	100	∞
$\rho = 0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	_
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.130 1
$\rho = 0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	-
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\rho = 0.95$	┮ ╸╸╸╸╸╸╸╸ ╸					
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.213 9

Two-choice model : Average queue length for various values of ρ and N. We compare simulation with the refined mean field approximation

The supermarket model (JSQ(2))

	N	10	20	30	50	100	∞	
	$\rho = 0.7$							
	Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	_	
_	Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.130 1	_
£	$\rho = 0.9$				Me	an field	approxim	ation
i.	Simulation	2.8040	2.5665	2.4907	2.4344	2.3931		
ŝ.	Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527	
Ĩ.	ho = 0.95							r.
	Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_	
	Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.213 9	

Two-choice model : Average queue length for various values of ρ and N. We compare simulation with the refined mean field approximation

Pull-push model (servers with ≥ 2 jobs push to empty)

Push-pull model : Mean queue length under pull/push with $r = 1/(1 - \rho)$: simulation vs refined mean field approximation

Comparison of policy

Is pull-push or JSQ(2) better for $\rho = 0.9$ and N = 10?

- Mean field predicts that pull-push reduces the average queue length by 30%.
- Refined mean field predicts : the reduction is only 17%.
- \bullet Simulation : the reduction is about 16.5%.

Other example of result : the impact of choosing with or without replacement (power of two-choice, N = 10 servers)

$$\Delta \{\text{Avg queue length (with-without)}\} \approx \frac{1}{N} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} (\rho^{2^{i+j}-2^j} - \rho^{2^{i+j}-1}) 2^{i-1}$$

Other example of result : the impact of choosing with or without replacement (power of two-choice, N = 10 servers)

$$\Delta\{\text{Avg queue length (with-without)}\} \approx \frac{1}{N} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} (\rho^{2^{i+j}-2^j} - \rho^{2^{i+j}-1})2^{i-1}$$

		Simulation	Refined mean field	Mean field
$\rho = 0.7$	with	1.215	1.215	1.1301
	without	1.173	1.169	1.1301
	with-without	0.042	0.046	_
$\rho = 0.9$	with	2.820	2.751	2.3527
	without	2.705	2.630	2.3527
	with-without	0.115	0.121	—
$\rho = 0.95$	with	4.340	4.102	3.2139
	without	4.169	3.923	3.2139
	with-without	0.171	0.179	_

Outline

Mean field and refined mean field approximations

2 Numerical experiments : how (more) accurate is the refined approximation?

Recap

- We can use the rate of convergence to define a refined approximation. The main ideas are:
 - The mean field approximation is $x = \lim_{N \to \infty} X^N$
 - Using linear algebra, we can compute $V = \lim_{N \to \infty} N(X^N \pi)$
 - The refined approximation is x + V/N.
- **2** The refined approximation is often very accurate even for N = 10:

	Coupon	Supermarket	Pull/push
Simulation $(N = 10)$	1.530	2.804	2.304
Refined mean field ($N = 10$)	1.517	2.751	2.295
Mean field $(N = \infty)$	1.250	2.353	1.636

Potential applications

- More examples in the paper.
- Variant of this model can be studied
- Application to queuing systems
- Some assumptions can be relaxed

Main references :

- A Refined Mean Field Approximation by G and Van Houdt. SIGMETRICS 2018 https://hal.inria.fr/hal-01622054/ https://github.com/ngast/rmf_tool/
- Expected Values Estimated via Mean Field Approximation are O(1/N)-accurate by G SIGMETRICS 2017. https://github.com/ngast/meanFieldAccuracy