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Good system design needs accurate performance evaluation

Example : load balancing with N server

Which allocation policy?
@ Random
@ Round-robin
e JSQ
e JSQ(d)
e JIQ

N servers
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Good system design needs accurate performance evaluation

Example : load balancing with N server

.“\ Which allocation policy?
@ Random

@ Round-robin
e JSQ

. e JSQ(d)
. e JIQ

»

N servers

Model with finite N is difficult to analyze.
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Many systems are analyzed via mean field approximation

It can be shown that some systems simplify as N goes to infinity

034 — N=1000 03] —— ODE (N =)
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0.0 ; 0.0 :
0 2 4 0 2 4
Time Time

Mean field approximation

@ Theoretical biology, statistical mechanics
@ Game theory (Mean field games : evacuation, Mexican wave)

@ Performance of computer systems : Load balancing (power of
two-choice), Wireless (CSMA), Caching,...
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Mean-field approximation is widely used in our community

A few examples of recent SIGMETRICS papers. ..

2018 The PDE Method for the Analysis of Randomized Load Balancing Networks — Aghajani et al.

2018 Asymptotically Optimal Load Balancing Topologies — Mukherjee et al.

2018 On the Power-of-d-choices with Least Loaded Server Selection — Hellemans and Van Houdt

2018 Delay Scaling in Many-Sources Wireless Networks without Queue State Information — Borst and Zubeldia

2017 Analysis of a Stochastic Model of Replication in Large Distributed Storage Systems: A Mean-Field Approach — Sun
et al.

2017 Optimal Service Elasticity in Large-Scale Distributed Systems — Mukherjee et al

2017 Stein’s Method for Mean Field Approximations in Light and Heavy Traffic Regimes — Ying

2017 Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate — G

2016 Asymptotics of Insensitive Load Balancing and Blocking Phases — Jonckheere - Prabhu

2016 On the Approximation Error of Mean-Field Models — Ying

2015 Power of d Choices for Large-Scale Bin Packing: A Loss Model — Xie et al

2015 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms — G, Van Houdt

2014 Data Dissemination Performance in Large-Scale Sensor Networks — Meyfroyt et al.

2013 Queueing system topologies with limited flexibility. — Tsitsiklis, Xu

2013 A mean field model for a class of garbage collection algorithms inflash-based solid state drives. — Van Houdt

2012 Fluid limit of an asynchronous optical packet switch with shared per link full range wavelength conversion. — Van
Houdt, Bortolussi

2011 On the power of (even a little) centralization in distributed processing. — Xu and Tsitsiklis

2010 Randomized load balancing with general service time distributions. — Bramson et al.

2010 Incentivizing peer-assisted services: a fluid shapley value approach. — Misra et al

2010 A mean field model of work stealing in large-scale systems. — G, Gaujal

2009 The age of gossip: spatial mean field regime. — Chaintreau et al.

Common steps in many of these papers:
@ Prove the convergence to a limit (the mean field approximation)
© Analyze the limit

© Evaluate numerically models with finite .
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Mean field is for (very) large systems. What about

moderate sizes?

We study what happens here
N

10 N =100 N = 1000

N = oo
(Mean Field)

L \
| | L4
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Mean field is for (very) large systems. What about
moderate sizes?

N =00
We study what happens here (Mean Field)
10 N = 100 N = 1000

N
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, L %
Mean field approximatio can be. computed by
an analytical method

Refined mean field approximation
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By studying what happens when N — oo, we get a very
accurate approximation even for N = 10

Coupon Supermarket Pull/push
Simulation (N = 10) 1.530 2.804 2.304

Refined mean field (N = 10)| 1.517 2.751 2.295
Mean field (N = o) 1.250 2.353 1.636
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Outline

@ Mean field and refined mean field approximations

© Numerical experiments : how (more) accurate is the refined
approximation?

© Conclusion
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Outline

@ Mean field and refined mean field approximations
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We study a population of N interchangeable objects.

X denotes the empirical measure.

Xi(t) = fraction of objects in state i
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Framework: Density dependent population processes (ur 70

A population process is a sequence of CTMC X"V, indexed by the

population size N, with state spaces EV C E, with initial state xo and with
transitions (for ¢ € L):

1
X = X+ N at rate Nj3y(X).

'Qur results can also be applied to the discrete-time model of (Benaim, Le Boudec
2008).
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Framework: Density dependent population processes (ur 70

A population process is a sequence of CTMC X"V, indexed by the

population size N, with state spaces EV C E, with initial state xo and with
transitions (for ¢ € L):

1
X = X+ N at rate Nj3y(X).

The drift (average variation) is f(x Zfﬁg

The mean field approximation is : x = f(x).

Our results can also be applied to the discrete-time model of (Benaim, Le Boudec
2008).
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Example : supermarket model, JSQ(2)2

More examples in the paper

N servers
CoIIIzIziy
AL

Randomly choose two, and select one

?\/vedenskaya et al. 96, Mitzenmacher 98.
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Example : supermarket model, JSQ(2)2

More examples in the paper

X; = fractions of servers with j or
N servers .
fIIiiIizily more jobs.
',;‘ b The transitions are:
Np— < N 1
_________ - ) 2 32
\ fIIIiIIz: O X=X+ & atrate Np(X1 — X7)

1
X—=X- Ne; at rate N(x; — xj1+1)
Randomly choose two, and select one

The mean field approximation is given by the (infinite) system of ODE:

X = p(xfy = x7) = (% — Xiq1)

arrivals departures

2 .
Vvedenskaya et al. 96, Mitzenmacher 98.
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Steady-state analysis : main assumptions

(A0) sup > |112181(x)] < oc.
J4

(A1) The stochastic process is a density dependent population process.

(A2) The drift f is twice-differentiale
(A3) The ODE has a globally stable attractor , i.e., for any solution x of
the ODE x = f(x) :

Ix(£) = 7| < Ce™*[1x(0) — || .

(A4) For each N, the population process has a unique stationary
distribution.

Nicolas Gast, Benny Van Houdt — 12 / 23



The constant is defined as a function of the first two

derivatives of the drift at 7
Let 7 be the fixed point of the mean field approximation and

A=Df(r) B=Df(r) Q5= liliB(r)
l

Let W be the unique solution of the Lyapunov equation

AW + (AW)T = Q

THEOREM 3.1. Assume that the model satisfies (A0-A4). Let h : & — R be a twice-differentiable
function that has a uniformly continuous second derivative. Then,

1 d%h
lim N (E™) |h(X™)| - h(x)) = Vi + Wi, 2
Jim N (B [A(X®)] - h(x)) (m Mgl (@)
where the matrices A, C and W are defined above and V; is equal to:
Z(A Dij [Ci+ 5 Z(B Yes, ke Wi ks | - ®)

k; k2
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The constant is defined as a function of the first two
derivatives of the drift at 7

Let 7 be the fixed point of the mean field approximation and

A=Df(r) B=Df(r) Qj=Y liljB(n).
.

[ et | To compute V, you need to :
@ Evaluate derivatives at 7

@ Solve a Lyapunov equation (linear algebra)

THEOREM 3.1. Assume that the model satisfies (A0-A4). Let h : & — R be a twice-differentiable
function that has a uniformly continuous second derivative. Then,
Oh 1 d%h

lim N (BN [h(X™)] - h(r)) = (Vi + 3 £ 9x;0%;

Nooo i c')Tr, (7m) Wi 2

where the matrices A, C and W are defined above and V; is equal to:

V== DA (Gt 5 D Bl Wik ®)

J ki,k2
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Main ideas of the proof

Stein’s method (1); comparison of generators; (2); perturbation theory (3).

o0

Let Gy be the function Gp(x) = /0 (h(®(x)) — h(x))dt, where ®¢(x) is

the solution of the ODE x =

f(x) starting in x at time 0.

NE [A(X") ~ h(r)| = NE [AGy)(X")]
— NE[(A - L("’))(Gh)(x"’)} (1)
L S 0MPRGM-(00)| + o) @
5 23 BUR)D2Gi(r) - (2., ()
l

The computation of D?Gj,(7) gives you the result (perturbation theory).
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Let Gy be the function Gp(x) = / (h(®(x)) — h(x))dt, where ®¢(x) is
0
the solution of the ODE x = f(x) starting in x at time 0.

NE [h(XN) — h(x)]

— NE _/\G,,)(X’V)]

— NE [(/\ _ L(N))(Gh)(XN)-‘ (1)

L S 0MPRGM-(00)| + o) @
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Outline

© Numerical experiments : how (more) accurate is the refined
approximation?
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How hard is the computation of the refined model?

Perf(N) ~ Perf (o0) + %

refined mean field approximation

How to compute V7
@ V can sometimes be computed in closed (not often)

@ Numerical evaluation is easy (linear algebra)
https://github.com/ngast/rmf_tool/
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https://github.com/ngast/rmf_tool/

The supermarket model (JSQ(2))

N 10 20 30 50 100 00
p=0.7
Simulation | 1.2194 1.1735 1.1584 1.1471 1.1384 -
Refined mf | 1.2150 1.1726 1.1584 1.1471 1.1386 | 1.1301
p=209
Simulation | 2.8040 2.5665 2.4907 2.4344 2.3931 -
Refined mf | 2.7513 2.5520 2.4855 2.4324 2.3925 | 2.3527
p=0.95
Simulation | 42952 3.7160 3.5348 3.4002 3.3047 -
Refined mf | 41017 3.6578 3.5098 3.3915 3.3027 | 3.2139

Two-choice model : Average queue length for various values of p and N.
We compare simulation with the refined mean field approximation
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The supermarket model (JSQ(2))
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Two-choice model : Average queue length for various values of p and N.
We compare simulation with the refined mean field approximation
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The supermarket model (JSQ(2))

N 10 20 30 50 100 00
p=0.7
Simulation | 1.2194 1.1735 1.1584 1.1471 1.1384 -
_Refined mf | 1.2150 ' 1.1726 1.1584 1.1471 1.1386 | 1.1301
p=20.9 Mean field pproxim%tion
Simulation | 2.8040 | 2.5665 2.4907 2.4344 2.3931 .
Refined mf | 2.7513 | 2.5520 2.4855 2.4324 2.3925 E
WL
Simulation | 4.2952 3.7160 3.5348 3.4002 3.3047 -
Refined mf | 41017 3.6578 3.5098 3.3915 3.3027 | 3.2139

Two-choice model : Average queue length for various values of p and N.
We compare simulation with the refined mean field approximation
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Pull-push model (servers with > 2 jobs push to empty)

N 10 20 50 100 00
p=20.8
Simulation 1.5569 1.4438 1.3761 1.3545 -
=Relined meap.iigld L. L0803, 14805, 13700 L 1 30d] L 13333, .
: p=0.90 Mean field approxim.ation
: Simulation 2.3043) 1.9700 1.7681 1.7023 = .
E Refined mean field []2.2945| 1.9654 1.7680 1.7022 1.6364| :
ST =095 T e )
Simulation 3.4288 2.6151 2.1330 1.9720 -
Refined mean field | 3.4369 2.6232 2.1350 1.9723 | 1.8095

Push-pull model : Mean queue length under pull /push with r =1/(1 — p):
simulation vs refined mean field approximation
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Comparison of policy

Is pull-push or JSQ(2) better for p = 0.9 and N = 107

@ Mean field predicts that pull-push reduces the average queue
length by 30%.

@ Refined mean field predicts : the reduction is only 17%.

@ Simulation : the reduction is about 16.5%.
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Other example of result : the impact of choosing with or
without replacement (power of two-choice, N = 10 servers)

o0 oo
A{Avg queue length (with-without)} ZZ 22 2IJFJ*1)2"*1
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Other example of result :

the impact of choosing with or

without replacement (power of two-choice, N = 10 servers)

A{Avg queue length (with-without)} ZZ - i 1yoi-1
Simulation | Refined mean field | Mean field

p=07 with 1.215 1.215 1.1301
without 1.173 1.169 1.1301

with-without 0.042 0.046 -
p=0.9 with 2.820 2.751 2.3527
without 2.705 2.630 2.3527

with-without 0.115 0.121 -
p=0.95 with 4.340 4.102 3.2139
without 4.169 3.923 3.2139

with-without 0.171 0.179 -
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Outline

© Conclusion
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Recap

@ We can use the rate of convergence to define a refined approximation.
The main ideas are:

» The mean field approximation is x = lim X"V
N—oo
» Using linear algebra, we can compute V = Nlim N(XN — )
— 00

» The refined approximation is x + V//N.

@ The refined approximation is often very accurate even for N = 10:

Coupon [Supermarket| Pull/push
Simulation (N = 10) 1.530 2.804 2.304
Refined mean field (N = 10)| 1.517 2.751 2.295
Mean field (N = o) 1.250 2.353 1.636
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Potential applications

@ More examples in the paper.
@ Variant of this model can be studied
@ Application to queuing systems

@ Some assumptions can be relaxed

Main references :

@ A Refined Mean Field Approximation by G and Van Houdt. SIGMETRICS
2018 https://hal.inria.fr/hal-01622054/
https://github.com/ngast/rmf_tool/

@ Expected Values Estimated via Mean Field Approximation are
O(1/N)-accurate by G SIGMETRICS 2017.
https://github.com/ngast/meanFieldAccuracy
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