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Motivation: Studying interacting particle systems

Stochastic models are complex.
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Fluid / mean field approximation simplifies the analysis

n servers 0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

St
at

e 
X t

Stochastic system Xt

stochastic
model

Close form?
Complex to analyze

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
at

e 
X t

fluid

Easier to analyze

Question: What is
the error made?

Nicolas Gast – 3 / 33



Fluid / mean field approximation simplifies the analysis

n servers 0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

St
at

e 
X t

Stochastic system Xt

stochastic
model

Close form?
Complex to analyze

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
at

e 
X t

fluid

Easier to analyze

Question: What is
the error made?

Nicolas Gast – 3 / 33



Fluid / mean field approximation simplifies the analysis

n servers 0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

St
at

e 
X t

Stochastic system Xt

stochastic
model

Close form?
Complex to analyze

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
at

e 
X t

fluid

Easier to analyze

Question: What is
the error made?

Nicolas Gast – 3 / 33



Fluid approximation is often justified by a law of large
numbers

lim
n→∞


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almost surely.

Bound between Xt and ϕt(X0) by using Gronwall’s lemma.

Xt − X0 −
∫ t

0
f (Xs)ds is a martingale.

This gives a O(1/
√
n) convergence-rate.

In this talk: tools to provide sharp convergence results.
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(Main) Related work

Kurtz, 70s.
▶ Fluid limits, diffusion limits (mostly transient regime)

Stein’s method:
▶ Stein (1986)
▶ Application to queueing: Braverman, Dai (2017–)
▶ Application to mean-field models: Ying (2017).

Refined mean field / Size expansions
▶ Computational biology: Grima et al (2010s)
▶ G. Van Houdt (2018), Allmeier G. (2021,2022).
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Outline

1 Generators and Stein’s method

2 Application to classical density dependent processes

3 Two time-scale processes

4 Conclusion
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We compare a stochastic system and a fluid approximation
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Important notations:

Stochastic system Xt ∈ X .

Fluid approximation ẋ = f (x). Solution starting from X0 is ϕt(X0).

Nicolas Gast – 8 / 33



To compare Xt and ϕt(X0), we zoom on infinitesimal
changes
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We want to compare:

E [Xt ]− ϕt(X0)

=

∫ t

0
E
[
d

ds
ϕt−s(Xs)

]
ds
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To study infinitesimal changes, we need generators

G sto Generator of the stochastic system. For a test function h : X → R:

G stoh(x) = lim
t→0

1

t
E [h(Xt)− h(X0) | X0 = x ] .

Example: if Xt is a Markov chain of generator K :

G stoh(x) =
∑
y∈X

Kxy (h(y)− h(x)).

GODE Generator of the ODE. For a test function h : X → R:

GODEh(x) = lim
t→0

1

t
(h(Φt(x))− h(x))

= ∇h(x) · f (x).

Typically f (x) = G stoI (x), where I is the identity function.
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Using the generators, we can compare the two systems

E
[
d

ds
ϕt−s(Xs)

]
ds

= E
[
G stoϕt−s(Xs)− GODEϕt−s(Xs)

]
= E

[
(G sto − GODE)ϕt−s(Xs)

]
In particular:

E [Xt ]− ϕt(X0) =

∫ t

0
E
[
(G sto − GODE)ϕt−s(Xs)

]
ds

= (G sto − GODE)

∫ t

0
E [ϕt−s(Xs)] ds

(
= (GODE − G sto)

∫ t

0
E [ϕs(Xt−s)] ds

)
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Taking the limit t → ∞, we obtain Stein’s method

This also works for t = +∞ if Xt has a stationary distribution:

E [X∞]− ϕ∞(X0) = (GODE − G sto)

∫ ∞

0
(E [ϕs(X∞)]− ϕ∞(X0)) ds︸ ︷︷ ︸
solution of a Poisson equation

(provided that the above make sense)
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Zoom on the Poisson equation

Let G be a generator that has a stationary distribution π. For a function

h, we denote by h̄ =
∑
x

h(x)π(x).

A solution of the poisson equation is a function Ph such that

GPh(x) = h̄ − h(x). (1)

▶ Solution to (1) is not unique in general.
▶ Unique up to additive constant if the process is unichain.

Ph(x) represents how far x is from the stationary distribution. Indeed,
if Xt is a system whose generator is G , a solution to this equation is:

Ph(x) =

∫ ∞

0
(h(Xt)− h̄)dt.
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A solution of a Poisson equation is a bias

Link with MDPs and Markov reward process
Consider a Markov chain (Xt) and assume that you earn a reward h. Then:

∫ T

0
E [h(Xt)] dt = Th̄ + Ph(X0)︸ ︷︷ ︸

bias

+o(1).

If the Markov chain has a transition kernel K , then Ph satisfies:

Ph(x)− h̄ = h(x) +
∑
y

KxyPh(y).
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Recap

For finite t:

E [Xt ]︸ ︷︷ ︸
Stochastic system

− ϕt(X0)︸ ︷︷ ︸
deterministic approx.

= (G sto − GODE)

∫ t

0
E [ϕt−s(Xs)] ds

For t = +∞, if x∗ = ϕ∞(X0) does not depend on X0, we have:

E [h(X∞)]︸ ︷︷ ︸
Stochastic system

− h(x∗)︸ ︷︷ ︸
deterministic approx.

= (GODE − G sto)Ph(X∞).

To prove that the sto ≈ deterministic, we prove that:

for some h ∈ H, (GODE − G sto)h is small.∫ t

0
E [ϕt−s ] or Ph belongs to this H.
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Outline

1 Generators and Stein’s method

2 Application to classical density dependent processes

3 Two time-scale processes

4 Conclusion
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Classical Mean Field Setting

Example: Load-balancing

Mean Field Methodology:

X
(n)
s (t) =

1

n
{# objects in state s at t}

Kurtz’s density dependent population model:

X (n) → X (n) +
1

n
ℓ at rate nβℓ(X )

Drift : f (x) =
∑
ℓ

ℓβℓ(x).
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Mean field approximaiton and result

Consider a density dependent population process in Rd and assume that
βℓ(x) are bounded.

Theorem (G., Bortolussi, Tribastone 2019) If the drift is C 2, there
exists an (easily computable) vector V (t) such that for any finite
time:

E [Xt ] = ϕt(X0) +
1

n
V (t) + O(

1

n2
).

This holds uniformly in time if the ODE has a unique exponentially
stable attractor.

V (t) is the first-order expansion of the bias of the approximation.
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The expansion is in general very accurate for small values
of n

Table: Table from ”A refined mean field approximation” (G. Van Houdt
Sigmetrics 2018)

where

mean field = Φt(x).

Refined = mean-field + V /n.
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Proof (1/2) Generator of a density dependent population
process

The generator of the density dependent population process is:

G stoh(x) =
∑
ℓ

(
h(x +

1

n
ℓ)− h(x)

)
nβℓ(x)

= ∇h · f (x)︸ ︷︷ ︸
generator of the ODE, GODE

+
1

n
∇2h · Q(x)︸ ︷︷ ︸
Diffusion term

+O(1/n2).

As a consequence

(G sto − GODE)h = O(1/n) if h is C 2. ⇒ Set H of slide 15 is C 2.

The hidden constant depends on
∥∥∇2h · Q

∥∥. Studying this gives
V (t).
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Proof (2/2) Consequence for the error of mean field model

For finite-horizon, the function h(x) =

∫ t

0
ϕs(x)ds is C 2 if the drift

function f is C 2.

For infinite-horizon model, h(x) =

∫ ∞

0
(ϕs(x)− x∗)ds is C 2 if in

addition x∗ is an exponentially stable attractor.

The two functions belongs to “H” ⇒ Error = O(1/n).
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Some historical remarks

Ying 2016: L2 error is O(1/
√
n) for steady-state.

G. 2017: Bias is O(1/n).

G. 2018, 2019: Expansion terms for the bias.

G. Allmeier 2022: Extension to heterogeneous models.

Missing part: multi-scale models?
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What is a two-timescale stochastic process?

Slow process X ∈ Rdx Fast process Y ∈ {1 . . . dy}

X jumps from x to x +
1

n
ℓ

at rate nβℓ(x , y).

Y jumps from y to y ′

at rate nK fast
y ,y ′(x).

Two approximations:

Drift Ẋ ≈ f (X ,Y ) P [Y (t) = y ] ≈ πy (X (t))

The ODE is ẋ =
∑
y

πy (x)f (x , y)

(Averaging technique)
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Example: CSMA with queues
Model from Cecchi, Borst, Leeuwaarden 2015.

A B C

Interference graph, n nodes per class A, B or C .

“Slow process”: X .

Xi ,s = proportion of nodes of
class i with ≥ s messages

Arrival/departure:

Xi ,s 7→ Xi ,s ±
1

n

Rate depends on Y .

“Fast process”: Y .

Yi = 1 if class i talks.

(0,0,0)

(0,1,0)

(0,0,1) (1,0,0)

(1,0,1)

nµBXB,1(t)nνB
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Accuracy results (Allmeier, G. 2022)

We consider a “generic” multiscale model as in Slide 24.

Theorem. Assume that f (X ,Y ) and K (X ) are twice differentiable
in X , and that K fast(X ) is ”unichain” for all X , then:

E [X (t)] = ϕt(X0) +
1

n
V (t) + O(1/n2).

This holds uniformly in time if the ODE has an exponentially stable
attractor.
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Again, the refined approximation is very accurate
Example with n = 1 node per class.

A B C

Jobs arrive at rate 1, activation rate = 3. Job duration is 1/3.

0 2 4 6 8

0.05

0.10

0.15

0.20

0.25
servers with at least i+1 jobs

MF
RMF
simu

0 2 4 6 8

0.05

0.10

0.15

0.20
servers with at least i+1 jobs

MF
RMF
simu

Class A or C Class B
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Proof (1/3): comparison of generator is not sufficient!

Let h : X → R be a test function. We have:

G stoh(X ,Y ) =
∑
ℓ

(h(X +
1

n
ℓ)− h(X ))nβℓ(X ,Y )

= ∇h · f (X ,Y ) + O(1/n2).

GODEh(X ,Y ) = ∇h ·
∑
y

πy (X )f (X ,Y ).

Hence:

(G sto − GODE)h(X ,Y ) = ∇h · ( f (X ,Y )−
∑
y

πy (X )f (X ,Y )︸ ︷︷ ︸
this was = 0 for the singlescale model.

) + O(1/n)
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Proof (2/3): Introducing the Poisson equation for the fast
system

Let P fast
f the solution of the Poisson equation for K fast(x) and f . Then:

f (X ,Y )−
∑
y

πy (X )f (X ,Y ) = K fast(x)P fast
f (X ,Y ).

Lemma: if K (x) is C 2 and unichain for all x , then P fast
f is C 2.
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Proof (3/3)
Let h : X × Y → R be a test function.

G stoh(X ,Y ) = nK fasth(X ,Y ) +∇xh · f (X ,Y ) + O(1/n)

Hence, K fast =
1

n
G sto if h is C 1.

Going back to the previous slides, we have:

(G sto − GODE)h(X ,Y ) = K fast∇h · P fast
f (X ,Y ) + O(1/n).

Hence, we are left with terms of the form∫ s

0
K fastP fast

f (Xs ,Ys)ds =

∫ s

0

1

n
G stoP fast

f (Xs ,Ys)ds

=
1

n
(P fast

f (Xt ,Yt)− P fast
f (X0,Y0))

= O(1/n).

The last is because P fast
f is C 1 when f and K are C 1.
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Recap on multi-scale

This shows that the O(1/n)-expansion also holds for multiscale model
provided that:

Transitions are C 2 (as always).

K (x) is unichain for all x .

We can compute the expansion-term for t = +∞.
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Conclusion

Mean field or fluid approximations are widely used heuristic.

They simplify the analysis of stochastic systems.

We question its validity / accuracy.

We characterize the bias for different models (smooth
homogeneous, heterogeneous, multi-scale).

To do so, we take correlations into account.

Numerical library: https://pypi.org/project/rmftool/

Many open questions: optimizaton (bandit problems), (sparse) geometric
models, non-Markovian.

More slides and references: http://polaris.imag.fr/nicolas.gast
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