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In this talk, we will study dynamical systems
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From Wikipedia: In mathematics, a dynamical system is a system in which
a function describes the time dependence of a point in a geometrical
space.

time

system’s
state

0 1 2 3 4 5 6 7
temps (en jour)

0

2

4

6

8

10

12

14

n
o
m

b
re

s 
d
e
 p

la
ce

 d
is

p
o
n
ib

le
s

1-7 mai

Nicolas Gast (Inria) – 3 / 47



From Wikipedia: In mathematics, a dynamical system is a system in which
a function describes the time dependence of a point in a geometrical
space.

time

system’s
state

0 1 2 3 4 5 6 7
temps (en jour)

0

2

4

6

8

10

12

14

n
o
m

b
re

s 
d
e
 p

la
ce

 d
is

p
o
n
ib

le
s

1-7 mai

Nicolas Gast (Inria) – 3 / 47



Continuous time Markov chains: Three possible definitions

S

I R

1

2

0.1 Q =

 −1 1 0
0 −2 2

0.1 0 −0.1



Transition graph Infinitesimal generator

P(Z (t + dt) = j | Z (t) = i ∧ the past) = P(Z (t + dt) = j | Z (t) = i)
= Qijdt + o(dt) if i 6= j

Markov property
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Transient and steady-state analysis

Q =

 −1 1 0
0 −2 2

0.1 0 −0.1



Transient analysis: the master equation

If X is a CTMC (continuous time Markov chain) with generator Q:

where Pi (t) = P(X (t) = i).

Steady-state analysis

If the chain is irreducible,

The equation πQ = 0 has a unique solution such that
∑

i πi = 1.

limi→∞ Pi (t) = πi
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State space explosion and decoupling method

313 ≈ 106 states.

We need to keep track of SN states

P(Z1(t) = i1, . . . ,Zn(t) = in)

The generator Q has SN entries.

The decoupling assumption is

P(Z1(t) = i1, . . . ,Zn(t) = in)︸ ︷︷ ︸
SN variables

≈ P(Z1(t) = i1) . . .P(Zn(t) = in)︸ ︷︷ ︸
N×S variables

Question: when is this (not) valid?
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Mean field methods have been used in a multiple contexts
ex: model-checking, performance of SSD, load balancing, MAC protocol,...

JAP 90 On an index policy for restless bandits by Weber and Weiss

SPAA 98 Analyses of Load Stealing Models Based on Differential Equations by
Mitzenmacher

JSAC 2000 Performance Analysis of the IEEE 802.11 Distributed Coordination
Function by Bianchi

FOCS 2002 Load balancing with memory by Mitzenmacher et al.

Ramaiyan et al Fixed point analys is of single cell IEEE 802.11e WLANs:
Uniqueness, multistability by ToN 2008

SIGMETRICS 2013 A mean field model for a class of garbage collection algorithms in
flash-based solid state drives by Van Houdt

EJTL 2014 Incentives and redistribution in homogeneous bike-sharing systems
with stations of finite capacities by Fricker and G.

SIGMETRICS 2015 Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms by G. and Van Houdt

...
...
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These models correspond to distributed systems
Each object interacts with the mass

We view the population of objects more abstractly, assuming that
individuals are indistinguishable.
An occupancy measure records the proportion of agents that are currently
exhibiting each possible state.
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Population CTMC
A population process is a sequence of CTMC XN , indexed by the
population size N, with state spaces EN ⊂ E ⊂ Rd such that the
transitions are (for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X ).

The drift is f (x) =
∑

` `β`(x).

Example : SIRS model

S

I R

infection

recovery

susc.

vacc

The state is (xS , xI , xR). The transitions are

` β`(x)

Infection (−1,+1, 0) xS + xSxI
Recovery (0,−1,+1) xI

Susceptible (+1, 0,−1) xR
Vaccination (−1, 0,+1) xS
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Kurtz’ convergence theorem

Theorem: Let X be a population process and assume that its drift f is
Lipschitz-continuous and that sup`∈L |`| <∞. If XN(0) converges (in
probability) to a point x , then the stochastic process XN converges (in
probability) to the solutions of the differential equation ẋ = f (x), where f
is the drift.

0 1 2 3 4 5 6 7 8
time

0.0

0.1
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X
S

XS (one simulation)

[XS] (ave. over 10000 simu)

xs (mean-field approximation)

N = 10
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Decoupling and ẋ = xQ(x)

P(Z1(t) = i1, . . . ,Zn(t) = in) ≈ P(Z1(t) = i1)︸ ︷︷ ︸
=x1,i1

(t)

. . .P(Zn(t) = in)︸ ︷︷ ︸
=xn,in (t)

When we zoom on one object

P(Z1(t + dt) = j |Z1(t) = i) ≈ Q
(1)
i ,j (x(t))

:=
∑

i2...in,j2...jn

K(i ,i2...in)→(j ,j2...jn)x2,i2 . . . xn,in

We then get:
d

dt
x1,j(t) ≈

∑
i

x1,iQ
(1)
i ,j (x(t))
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Transient regime

For fixed t, the decoupling assumption is equivalent to the mean-field
convergence.

Theorem (Snitzman (99), Kurtz (70’), Benaim, Le Boudec (08),...)

Let XN be a population process such that the drift is Lipschitz-continuous.
Then for any finite k :

lim
N→∞

P [Z1(t) = i1 . . .Zk(t) = ik ] = xi1(t) . . . xik (t).
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The fixed point method

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

x∗Q(x∗) = 0
fixed points

N →∞

Method was used in many papers:

Bianchi 00, Performance analysis of the IEEE 802.11 distributed coordination function.

Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.

Kwak et al. 05, Performance analysis of exponenetial backoff.

Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.
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Does it always work?

SIRS model:

A node S becomes I at rate 1 (external infection)

When a S meets an I, it becomes infected at rate 1/(S + a)

An I recovers at rate 5.

A node R becomes S by:
I meeting a node S (rate 10S)
I alone (at rate 10−3).

S

I

R

1 + 10xI
xS+a 5

10xS + 10−3
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Does it always work?

S

I

R

1 + 10xI
xS+a 5

10xS + 10−3

Markov chain is irreducible.

Unique fixed point x∗Q(x∗) = 0.

Fixed point Stat. measure
xQ(x) = 0 N = 103, 104. . .

xS xI πS πI
a = .3 0.209 0.234 0.209 0.234

a = .1 0.078 0.126 0.11 0.13
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What happened?
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What happened?
(xS = 0.078, xI = 0.126), (πS = 0.11, πI = 0.13)
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What happened?
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What happened?
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Fixed points?

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

x∗Q(x∗) = 0
fixed points

N →∞

N →∞

t →∞if yes

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution πN concentrates on the fixed points

In that case, we also have:

lim
N→∞

P [Z1 = i1 . . .Zk = ik ] = x∗1 . . . x
∗
k .
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ṗ = pK

πK = 0

t →∞

x∗Q(x∗) = 0

Mean-field
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Steady-state: illustration
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Quiz

Consider the SIRS model:

0.0

1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.0

Fixed point
true stationnary distribution

limit cycle

R

S

I

positive correlation

Under the stationary distribution
πN :

(A) As the trajectory converge
to a fixed point, there is no
such stationary distribution.

(B) P(Z1 = S ,Z2 = S) ≈
P(Z1 = S)P(Z2 = S)

(C) P(Z1 = S ,Z2 = S) >
P(Z1 = S)P(Z2 = S)

(D) P(Z1 = S ,Z2 = S) <
P(Z1 = S)P(Z2 = S)

Answer: C

P(Z1(t) = S ,Z2(t) = S) = x1(t)2. Thus: positively correlated.
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How to show that trajectories converge to a fixed point?
Possible solution: find Lyapunov function [G. 2016]

A Lyapunov function if a function f such that

Lower bounded: infx f (x) > +∞
Decreasing along trajectories:

d

dt
f (x(t)) < 0,

whenever x(t)Q(x(t)) 6= 0.

If there exists a Lyapunov function, then ẋ = xQ(x) converges to a fixed
point x∗Q(x∗) = 0.

How to find a Lyapunov function

Energy? Entropy? (or often: Luck)
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The rate of convergence is O(1/
√
N)

Theorem

Let X be a population process such that its drift is L-Lipschitz-continuous.
Then: if XN(0) = x0:

E

[
sup
t≤T

∥∥∥XN(t)− x(t)
∥∥∥] ≤ O

( 1√
N

)
eLT .

Note: we also have

|P [Z (t) = i ]− xi (t)| = O(1/N).

Can be extended to:

Steady-state

Non-homogeneous objects.

Non-smooth dynamics
Nicolas Gast (Inria) – 28 / 47



A martingale argument
Recall that the transitions are x 7→ x + `/N at rate Nβ`(x). Then,
f (x) =

∑
` `β`(x) satisfies:

lim
dt→0

1

dt
E [X (t + dt)− X (t)|X (t) = x ] = f (x)

lim
dt→0

1

dt
var [X (t + dt)− X (t)− f (X (t))|X (t) = x ] ≤ C/N

This means that:

M(t) = X (t)− (x0 −
∫ t

0
f (X (s))ds)

is such that:

E [M(t) | Fs ] = M(s)︸ ︷︷ ︸
M(t) is a martingale

∧ var [M(t)] ≤ Ct/N︸ ︷︷ ︸
Small variance

.

By Doob’s inequality:

P

[
sup
t≤T
‖M(t)‖ ≥ ε

]
≤ C

Nε2
.
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Mean-field convergence

We then have

X (t) = x0 +

∫ t

0
f (X (s))ds + M(t)︸ ︷︷ ︸

small by previous slide

Let x(t) be the solution of the ODE ẋ = f (x) such that x(0) = x0.

Gronwall’s Lemma

If f is Lipschitz-continuous, then

sup
t≤T
‖X (t)− x(t)‖ ≤ sup

t≤T
‖M(t)‖ eLT .
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Recap

Decoupling ≈ mean-field convergence

If the rates are continuous, convergence always holds for the transient
regime

The stationary regime should be handle with care
I The uniqueness of the fixed point is not enough.
I Lyapunov functions can help but are not easy to find.
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Bike-sharing systems
141312 15 16 17 18
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Empty station

Full station

Each station has a given number of parking slots.

Users enter the system by picking up a bike at a station and making a
trip to another station, where they drop the bike on an available
parking spot.
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A time-varying system
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A time-varying and stochastic system
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We need stochastic forecasts
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Exercise

Assuming independence, write down an approximation for

P(k bikes are parked at a given station)
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Solution: a time-inhomogeneous CTMC per station

1 2 C. . . . . .

λi λi λi

µi (x)µi (x)µi (x)

µi (x) = piµ#{bike circulating}
= piµ(#{total bikes} −

∑
i∈stations

∑Ci
k=1 kxi ,k)

Nicolas Gast (Inria) – 38 / 47



Two types of results

BSS model

Sizing, incentives
[Fricker G. 2014, Fricker et al. 2013]

Prediction
[G. et al 2015]

theoretical

data-analysis
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requests

one item is replaced
(at random)

miss
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requestshit

one item is replaced
(at random)

miss

Model:

Items have the same size.

Cache can store m items.

There are n items. Item i is
requested with probability pi .

Exercise

By using the independence
assumption, find an approximation
for P(item i is in cache at time t).
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requestshit

one item is replaced
(at random)

miss Markov model

State space : set of m distinct items.

Transitions:

{i1 . . . im} 7→ {i1 . . . ik−1, j , ik+1 . . . in}

with probability pj/m.
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requestshit

one item is replaced
(at random)

miss

Markov model

State space : set of m distinct items.

Transitions:

{i1 . . . im} 7→ {i1 . . . ik−1, j , ik+1 . . . in}

with probability pj/m.

Decoupling assumption

P(i1 . . . im) ≈ P(i1)︸︷︷︸
=:xi1

. . .P(im)
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Application

data source

cache

requestshit

one item is replaced
(at random)

miss

Decoupling assumption

P(i1 . . . im) ≈ P(i1)︸︷︷︸
=:xi1

. . .P(im)

If we zoom on object k :

out in cache

pk

1

m

∑
j not in cache

pj

1

m

∑
j not in cache

pj︸ ︷︷ ︸
≈
∑

j pj (1−xj )
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requestshit

one item is replaced
(at random)

miss

If we zoom on object k :

out in cache

pk

1

m

∑
j not in cache

pj︸ ︷︷ ︸
≈
∑

j pj (1−xj )

Mean-field model

Let xk := P(item k is in the cache).

ẋk = pk(1− xk)−
∑

`(p`(1−x`))
m xk .

g
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A cache-replacement policy: simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

Simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

Mean-field: ẋ = xQ(x)

Figure: Popularities of objects change every 2000 steps.
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Stationary distribution

Fixed point equation

0 = ẋk = pk(1− xk)−
∑

`(p`(1−x`))
m xk .∑

k xk = m.

Algorithm: easy to solve:
1 Define xk(T ) the solution of pk(1− xk)− Txk .

I xk(T ) = pk/(1 + T )

2 Find T such that
∑

k(1− xk(T )) = m.
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Recap

Mean field methods are useful to study large
stochastic systems.
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Mean-field ≈ decoupling assumption

Valid for finite time.

Infinite horizon should be handle with care

Applications:

Give ideas on how to construct models

Provide good approximations
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Extensions: centralized optimization (OK), mean-field game (not that OK,
see tomorrow)
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr
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